Oxidation of Inorganic Nitrogen Compounds as an Energy Source

  • Eberhard Bock
  • Michael Wagner


Life depends on the element nitrogen. In nature, nitrogen exists mainly in the oxidation states -III (NH3), O (N2), +I (N2O), +II (NO), +III (NO2), +IV (NO2), and +V (NO3). Owing to nitrogen transformations by the activity of living organisms and to chemical instability, any form of oxidation state has only a transient existence. Dinitrogen (N2) is the most inert and frequent constituent of the atmosphere.

Taking into account also abiotic transformations, three cycles of nitrogen can be distinguished:

  1. 1.

    The cycle of the atmosphere

  2. 2.

    The interaction between the atmosphere and the biosphere

  3. 3.

    The cycle of the biosphere


The nitrogen cycle mediated by the biosphere (Fig. 1) can also be characterized by mobilization and immobilization of nitrogen compounds. Most of the reactions are catalyzed exclusively by prokaryotes. By microbial nitrogen fixation, dinitrogen is reduced to ammonia and subsequently transferred to amino acids and assimilated into cell material. On...


Nitric Oxide Anaerobic Ammonia Oxidation Nitrogen Dioxide Nitrite Oxidizer Heterotrophic Nitrification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Aakra, A., J. B. Utaker, and I. F. Nes. 1999 RFLP of rRNA genes and sequencing ot the 16S-23S rDNA intergenic spacer region of ammonia-oxidizing bacteria: A phylogenetic approach Int. J. Syst. Bacteriol. 49 123–130PubMedCrossRefGoogle Scholar
  2. Abeliovich, A., and A. Vonshak. 1992 Anaerobic metabolism of Nitrosomonas europaea Arch. Microbiol. 158 267–270CrossRefGoogle Scholar
  3. Abeliovich, A., and A. Vonshak. 1993 Factors inhibiting nitrification of ammonia in deep wastewater reservoirs Water Res. 27 1585–1590CrossRefGoogle Scholar
  4. Ahlers, B., W. König, and E. Bock. 1990 Nitrite reductase activity in Nitrobacter vulgaris FEMS Microbiol. Lett. 67 121–126CrossRefGoogle Scholar
  5. Aleem, M. I. H. 1965aPath of carbon and assimilatory power in chemosynthetic bacteria. I. Nitrobacter agilis Biochim. Biophys. Acta 107 14–28PubMedCrossRefGoogle Scholar
  6. Aleem, M. I. H., G. E. Hoch, and J. E. Varner. 1965bWater is the source of oxidant and reductant in bacterial chemosynthesis Proc. Natl. Acad. Sci. USA 54 869–873PubMedCrossRefGoogle Scholar
  7. Aleem, M. I. H. 1966 Generation of reducing power in chemosynthesis. II: Energy-linked reduction of pyridine nucleotides in the chemoautotroph Nitrosomonas europaea Biochim. Biophys. Acta 113 216–224PubMedCrossRefGoogle Scholar
  8. Aleem, M. I. H. 1968 Mechanism of oxidative phosphorylation in the chemoautotroph Nitrobacter agilis Biochim. Biophys. Acta 162 338–347PubMedCrossRefGoogle Scholar
  9. Aleem, M. I. H., and D. L. Sewell. 1981 Mechanism of nitrite oxidation and oxidoreductase-systems in Nitrobacter agilis Curr. Microbiol. 5 267–272CrossRefGoogle Scholar
  10. Aleem, M. I. H., and D. L. Sewell. 1984 Oxidoreductase systems in Nitrobacter agilis In: W. R. Strohl and O. H. Tuovinen (Eds.) Microbial Chemoautotrophy Ohio State University Press Columbus OH 185–210Google Scholar
  11. Allison, S. M., and J. I. Prosser. 1993 Survival of ammonia oxidizing bacteria in air-dried soil FEMS Microbiol. Lett. 79 65–68CrossRefGoogle Scholar
  12. Alzerreca, J. J., J. M. Norton, and M. G. Klotz. 1999 The amo operon in marine ammonia-oxidzing gamma-proteobacteria FEMS Microbiol. Lett. 180 21–29PubMedGoogle Scholar
  13. Andersson, K. K., and A. B. Hooper. 1983 O2 and H2O are each the source of one O in NO2-produced from NH3 by Nitrosomonas; 15N-NMR evidence FEBS Lett. 164 236–240CrossRefGoogle Scholar
  14. Andersson, K. K., T. A. Kent, J. D. Lipscomb, A. B. Hooper, and E. Münck. 1984 Mössbauer, EPR and optical studies of the P-460 center of hydroxylamine oxidoreductase from Nitrosomonas J. Biol. Chem. 259 6833–6840PubMedGoogle Scholar
  15. Andersson, I. C., and J. S. Levine. 1986aRelative rates of NO and N2O production by nitrifiers, denitrifiers and nitrate respirers Appl. Environ. Microbiol. 51 938–945Google Scholar
  16. Andersson, K. K., D. J. Lipscomb, M. Valentine, E. Munck, and A. B. Hooper. 1986b Tetraheme cytochrome c-554 from Nitrosomonas europaea: Heme-heme interactions and ligand bindings J. Biol. Chem. 261 1126–1138PubMedGoogle Scholar
  17. Anthonisen, A. C., R. C. Loehr, T. B. S. Prakasam, and E. G. Srinath. 1976 Inhibition of nitrification by ammonia and nitrous acid J. Wat. Poll. Control Fed. 48 835–852Google Scholar
  18. Anthony, C. 1982 The Biochemistry of Methanotrophs Academic Press London United KingdomGoogle Scholar
  19. Arciero, D. M., C. Balny, and A. B. Hooper. 1991 Spectroscopic and rapid kinetic studies of reduction of cytochrome c554 by hydroxylamine oxidoreductase from Nitrosomonas europaea Biochem. 30 11466–11472CrossRefGoogle Scholar
  20. Arciero, D. M., and A. B. Hooper. 1993 Hydroxylamine oxidoreductase from Nitrosomonas europaea is a multimer of an octa-heme subunit J. Biol. Chem. 268 14645–14654PubMedGoogle Scholar
  21. Arciero, D. M., and A. B. Hooper. 1994 A di-heme cytochrome c peroxidase from Nitrosomonas europaea catalytically active in both the oxidized and half-reduced state J. Biol. Chem. 269 11878–11886PubMedGoogle Scholar
  22. Barraclough, D., and G. Puri. 1995 The use of 15N pool dilution and enrichment to separate the heterotrophic and autotrophic pathways of nitrification Soil Biol. Biochem. 27 17–22CrossRefGoogle Scholar
  23. Bartosch, S., I. Wolgast, E. Spieck, and E. Bock. 1999 Identification of nitrite-oxidizing bacteria with monoclonal antibodies recognizing the nitrite oxidoreductase Appl. Environ. Microbiol. 65 4126–4233PubMedGoogle Scholar
  24. Batchelor, S. E., M. Cooper, S. R. Chhabra, L. A. Glover, G. S. Stewart, P. Williams, and J. I. Prosser. 1997 Cell density-regulated recovery of starved biofilm populations of ammonia-oxidizing bacteria Appl. Environ. Microbiol. 63 2281–2286PubMedGoogle Scholar
  25. Baumgärtner, M. 1991 Umsetzung von Stickoxiden (NOx) in Böden, auf Gebäudeoberflächen und in Mikroorganismen. Konstanzer Dissertationen Nr. 327. Hartung-Gorre Konstanz Germany. Konstanzer Dissertationen Nr. 327.Google Scholar
  26. Baumgärtner, M., M. Koschorreck, and R. Conrad. 1996 Oxidative consumption of nitric oxide by heterotrophic bacteria in soil FEMS Microbiol. Ecol. 19 165–170CrossRefGoogle Scholar
  27. Bedard, C., and R. Knowles. 1989 Physiology, biochemistry, and specific inhibitors of CH4, NH4 +, and CO oxidation by methanotrophs and nitrifiers Microbiol. Rev. 53 68–84PubMedGoogle Scholar
  28. Belser, L. W., and E. L. Schmidt. 1978 Serological diversity within a terrestrial ammonia-oxidizing population Appl. Environ. Microbiol. 36 589–593PubMedGoogle Scholar
  29. Belser, L. W. 1979 Population ecology of nitrifying bacteria Ann. Rev. Microbiol. 33 309–333CrossRefGoogle Scholar
  30. Belser, L. W., and E. L. Mays. 1982 Use of nitrifier activity measurements to estimate the efficiency of viable nitrifier counts in soilsand sediments Appl. Environ. Microbiol. 43 945–948PubMedGoogle Scholar
  31. Berben, G. 1996 Nitrobacter winogradskyi cytochrome c oxidase genes are organized in a repeated gene cluster Ant. v. Leeuwenhoek 69 305–315CrossRefGoogle Scholar
  32. Bergmann, D. J., and A. B. Hooper. 1994aPrimary structure of cytochrome P-460 of Nitrosomonas FEBS Lett. 353 324–326PubMedCrossRefGoogle Scholar
  33. Bergmann, D. J., and A. B. Hooper. 1994bSequence of the gene amoB for the 43 kDa polypeptide of ammonia monooxygenase of Nitrosomonas europaea Biochim. Biophys. Res. Comm. 204 759–762CrossRefGoogle Scholar
  34. Bergmann, D. J., D. Arciero, and A. B. Hooper. 1994cOrganization of the HAO gene cluster of Nitrosomonas europaea: Genes for two tetraheme cytochromes J. Bacteriol. 176 3148–3153PubMedGoogle Scholar
  35. Bergmann, D. J., J. A. Zahn, and A. A. DiSpirito. 2000 Primary structure of cytochrome c of Methylococcus capsulatus Bath: Evidence of a phylogenetic link between P460 and c′-type cytochromes Arch. Microbiol. 173 29–34PubMedCrossRefGoogle Scholar
  36. Blasco, F., C. Lobbi, J. Ratouchniak, V. Bonnefoy, and M. Chippaux. 1990 Nitrate reductases of Escherichia coli: Ssequence of the second nitrate reductase and comparison with that encoded by the narGHJI operon Molec. Gen. Genet. 222 104–111PubMedGoogle Scholar
  37. Bock, E. 1965 Vergleichende Untersuchungen über die Wirkung sichtbaren Lichtes auf Nitrosomonas europaea und Nitrobacter winogradskyi Arch. Mikrobiol. 51 18–41PubMedCrossRefGoogle Scholar
  38. Bock, E. 1970 Untersuchungen über die Wechselwirkung zwischen Licht und Chemosynthese am Beispiel von Nitrobacter winogradskyi Arch. Mikrobiol. 70 217–239PubMedCrossRefGoogle Scholar
  39. Bock, E. 1976 Growth of Nitrobacter in the presence of organic matter. II. Chemoorganotrophic growth of Nitrobacter agilis Arch. Microbiol. 108 305–312PubMedCrossRefGoogle Scholar
  40. Bock, E., P. A. Wilderer, and A. Freitag. 1988 Growth of Nitrobacter in the absence of dissolved oxygen Water Res. 22 245–250CrossRefGoogle Scholar
  41. Bock, E., H.-P. Koops, U. C. Möller, and M. Rudert. 1990 A new facultatively nitrite oxidizing bacterium, Nitrobacter vulgaris sp. nov Arch. Microbiol. 153 105–110CrossRefGoogle Scholar
  42. Bock, E., H.-P. Koops, H. Harms, and B. Ahlers. 1991 The biochemistry of nitrifying organisms In: J. M. Shively (Ed.) Variations of Autotrophic Life Academic Press London 171–200Google Scholar
  43. Bock, E., and H.-P. Koops. 1992 The genus Nitrobacter and related genera In: A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer (Eds.) [{} The Prokaryotes (2nd ed.)] Springer New York NY 2302–2309Google Scholar
  44. Bock, E., and W. Sand. 1993 The Microbiology of masonry biodeterioration J. Appl. Bacteriol. 74 503–514Google Scholar
  45. Bock, E., R. Stüven, I. Schmidt, and D. Zart. 1995 Nitrogen loss caused by denitrifying Nitrosomonas cells using ammonium, or hydroxylamine as electron donors and nitrite as electron acceptor Arch. Microbiol. 163 16–20CrossRefGoogle Scholar
  46. Bodelier, P. L., and P. Frenzel. 1999 Contribution of methanotrophic and nitrifying bacteria to CH4 and NH4 + oxidation in the rhizosphere of rice plants as determined by new methods of discrimination Appl. Environ. Microbiol. 65 1826–1833PubMedGoogle Scholar
  47. Bodenstein, M. 1918 Die Geschwindigkeit der Reaktion zwischen Stickoxid und Sauerstoff Z. f. Elektroch. 24 183–201Google Scholar
  48. Bömeke, H. 1954 Über das Verhältnis des oxidierten Stickstoffs zum reduzierten Kohlenstoff beim Nitratbildner Arch. Mikrobiol. 20 176–182PubMedCrossRefGoogle Scholar
  49. Böttcher, B., and H.-P. Koops. 1994 Growth of lithotrophic ammonia-oxidizing bacteria on hydroxylamine FEMS Microbiol. Lett. 122 263–266CrossRefGoogle Scholar
  50. Bouwman, A. F., I. Fung, E. Matthews, and J. John. 1993 Global analysis of the potential for N2O production in natural soils Global Biogeochem. Cycles 7 557–597CrossRefGoogle Scholar
  51. Brady, N. C. 1984 The Nature and Properties of Soils Macmillan New York NY 283–302Google Scholar
  52. Braun, C., and W. G. Zumft. 1991 Marker exchange of the structural genes for nitric oxide reductase blocks the denitrification pathway of Pseudomonas stuzeri at nitric oxide J. Biol. Chem. 266 22785–22788PubMedGoogle Scholar
  53. Broda, E. 1977 Two kinds of lithotrophs missing in nature Z. Allg. Mikrobiol. 17 491–493PubMedCrossRefGoogle Scholar
  54. Brown, C. M. 1988 Nitrate metabolism in aquatic bacteria In: B. Austin (Ed.) Methods in Aquatic Bacteriology John Wiley New York NY 367–388Google Scholar
  55. Buchanan, R. E. 1917 Studies on the nomenclature and classification of bacteria J. Bacteriol. 2 347–350PubMedGoogle Scholar
  56. Burrell, P. C., J. Keller, and L. L. Blackall. 1998 Microbiology of a nitrite-oxidizing bioreactor Appl. Environ. Microbiol. 64 1878–1883PubMedGoogle Scholar
  57. Carr, G. J., and S. J. Ferguson. 1990 Nitric oxide formed by nitrite reductase of Paracoccus denitrificans is sufficiently stable to inhibit cytochrome oxidase activity and is reduced by its reductase under aerobic conditions Biochim. Biophys. Acta 1017 57–62PubMedCrossRefGoogle Scholar
  58. Casciotti, K. L., and B. B. Ward. 2001 Dissimilatory nitrite reductase genes from autotrophic ammonia-oxidizing bacteria Appl. Environ. Microbiol. 67 2213–2221PubMedCrossRefGoogle Scholar
  59. Castignetti, D., and H. B. Gunner. 1980 Sequential nitrification by an Alcaligenes sp. and Nitrobacter agilis Can. J. Microbiol. 26 1114–1119PubMedCrossRefGoogle Scholar
  60. Castignetti, D., and T. C. Hollocher. 1984 Heterotrophic nitrification among denitrifiers Appl. Environ. Microbiol. 47 620–623PubMedGoogle Scholar
  61. Chaudhry, G. R., I. Suzuki, H. W. Duckworth, and H. Lees. 1981 Isolation and properties of cytochrome c553, cytochrome c550, and cytochrome c549, 554 from Nitrobacter agilis Biochim. Biophys. Acta 637 18–27CrossRefGoogle Scholar
  62. Clark, C., and E. L. Schmidt. 1967 Growth response of Nitrosomonas europaea to amino acids J. Bacteriol. 93 1302–1309PubMedGoogle Scholar
  63. Cobley, J. B. 1976aEnergy-conserving reactions in phosphorylating electron-transport particles from Nitrobacter winogradskyi. Activation of nitrite oxidation by the electrical component of the proton motive force Biochem. J. 156 481–491PubMedGoogle Scholar
  64. Cobley, J. B. 1976bReduction of cytochromes by nitrite in electron-transport particles from Nitrobacter winogradskyi Biochem. J. 156 493–498PubMedGoogle Scholar
  65. Collins, M. J., D. M. Arciero, and A. B. Hooper. 1993 Optical spectropotentiometric resolution of the hemes of hydroxylamine oxidoreductase. Heme quantitation and pH dependence of EM J. Biol. Chem. 268 14655–14662PubMedGoogle Scholar
  66. Conrad, R. 1996 Metabolism of nitric oxide in soil and soil microorganisms and regulation of flux into the atmosphere In: J. C. Murrell and D. P. Kelly (Eds.) Microbiology of Atmospheric Trace Gases: Sources, Sinks and Global Change Processes NATO ASI Series Springer-Verlag Berlin Germany 167–203Google Scholar
  67. Crossmann, L. C., J. W. B. Moir, J. J. Enticknap, D. J. Richardson, and S. Spiro. 1997 Heterologous expression of heterotrophic nitrification genes Microbiology 143 3775–3783CrossRefGoogle Scholar
  68. Crutzen, P. J. 1979 The role of NO and NO2 in the chemistry of the troposphere and stratosphere Ann. Rev. Earth Planet. Sci. 74 443–472CrossRefGoogle Scholar
  69. Daims, H., P. H. Nielsen, J. L. Nielsen, S. Juretschko, and M. Wagner. 2000 Novel Nitrospira-like bacteria as dominant nitrite-oxidizers in biofilms from wastewater treatment plants: Diversity and in situ physiology Wat. Sci. Tech. 41 85–90Google Scholar
  70. Daims, H., J. L. Nielsen, P. H. Nielsen, K.-H. Schleifer, and M. Wagner. 2001 In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants Appl. Environ. Microbiol. 67(11) 5273–5284CrossRefGoogle Scholar
  71. De Boer, W., P. J. A. Klein Gunnewiek, M. Veenhuis, E. Bock, and H. J. Laanbroek. 1991 Nitrification at low pH by aggregated chemolithotrophic bacteria Appl. Environ. Microbiol. 57 3600–3604PubMedGoogle Scholar
  72. De Bruijn, P., A. A. van de Graaf, M. S. M. Jetten, L. A. Robertson, and J. G. Kuenen. 1995 Growth of Nitrosomonas europaea on hydroxylamine FEMS Microbiol. Lett. 125 179–184CrossRefGoogle Scholar
  73. Degrange, V., and R. Bardin. 1995 Detection and counting of Nitrobacter populations in soil by PCR Appl. Environ. Microbiol. 61 2093–2098PubMedGoogle Scholar
  74. DiSpirito, A. A., L. R. Taaffe, and A. B. Hooper. 1985 Localization and concentration of hydroxylamine oxidoreductase and cytochromes c552, c554, cm553, cm552, and a in Nitrosomonas europaea Biochim. Biophys. Acta 806 320–330CrossRefGoogle Scholar
  75. DiSpirito, A. A., J. D. Lipscomp, and A. B. Hooper. 1986 Cytochrome aa3 from Nitrosomonas europaea J. Bacteriol. 261 17048–17056Google Scholar
  76. Drozd, J. W. 1976 Energy coupling and respiration in Nitrosomonas europaea Arch. Microbiol. 101 257–262CrossRefGoogle Scholar
  77. Drozd, J. W. 1980 Respiration in ammonia-oxidizing chemoautotrophic bacteria In: R. Knowles (Ed.) Diversity of Bacterial Respiratory Systems CRC Press Boca Raton FL 2 87–111Google Scholar
  78. Dua, R. D., B. Bhandari, and D. J. D. Nicholas. 1979 Stable isotope studies on the oxidation of ammonia to hydroxylamine by Nitrosomonas europaea FEBS Lett. 106 401–404PubMedCrossRefGoogle Scholar
  79. Ehrich, S., D. Behrens, E. Lebedeva, W. Ludwig, and E. Bock. 1995 A new obligately chemolithoautotrophic, nitrite-oxidizing bacterium, Nitrospira moscoviensis sp. nov. and its phylogenetic relationship Arch. Microbiol. 164 16–23PubMedCrossRefGoogle Scholar
  80. Eigener, U., and E. Bock. 1975 Study on the regulation of oxidation and CO2 assimilation in intact Nitrobacter winogradskyi cells Arch. Microbiol. 102 241–246PubMedCrossRefGoogle Scholar
  81. Eighmy, T. T., and P. L. Bishop. 1989 Distribution and role of bacterial nitrifying populations in nitrogen removal in aquatic treatment systems Water Res. 23 947–955CrossRefGoogle Scholar
  82. El-Demerdash, M. E., and J. C. G. Ottow. 1983 Einfluss einer hohen Nitratdüngung auf Kinetik und Gaszusammensetzung der Denitrifikation in unterschiedlichen Böden Z. Pflanzenernährung und Bodenkunde 146 138–150CrossRefGoogle Scholar
  83. Engel, M. S., and M. Alexander. 1958 Growth and autotrophic metabolism of Nitrosomonas europaea J. Bacteriol. 76 217–222PubMedGoogle Scholar
  84. Ensign, S. A., M. R. Hyman, and D. J. Arp. 1993 In vitro activation of ammonia monooxygenase from Nitrosomonas by copper J. Bacteriol. 175 1971–1998PubMedGoogle Scholar
  85. Erickson, R. H., A. B. Hooper, and K. R. Terry. 1972 Solubilization and purification of cytochrome a, from Nitrosomonas Biochim. Biophys. Acta 283 155–166PubMedCrossRefGoogle Scholar
  86. Ferguson, S. 1982 Is a proton-pumping cytochrome oxidase essential for energy conservation in Nitrobacter? FEBS Lett. 146 239–243CrossRefGoogle Scholar
  87. Fliermanns, C. B., B. B. Bohlool, and E. L. Schmidt. 1974 Autecological study of the chemoautotroph Nitrobacter by immunofluorescence Appl. Environ. Microbiol. 27 124–129Google Scholar
  88. Focht, D. D., and W. Verstraete. 1977 Biochemical ecology of nitrification and denitrification Adv. Microbial Ecol. 1 135–214CrossRefGoogle Scholar
  89. Ford, P. C., D. A. Wink, and D. M. Stanbury. 1993 Autoxidation kinetics of aqueous nitric oxide FEBS Lett. 326 1–3PubMedCrossRefGoogle Scholar
  90. Freitag, A., M. Rudert, and E. Bock. 1987 Growth of Nitrobacter by dissimilatoric nitrate reduction FEMS Microbiol. Lett. 48 105–109CrossRefGoogle Scholar
  91. Freitag, A., and E. Bock. 1990 Energy conservation in Nitrobacter FEMS Microbiol. Lett. 66 157–162CrossRefGoogle Scholar
  92. Fukuoka, M., Y. Fukumori, and T. Yamanaka. 1987 Nitrobacter winogradskyi cytochrome a1c1 is an iron-sulfur molybdo-enzyme having hemes a and c J. Biochem. 102 525–530PubMedGoogle Scholar
  93. Galbally, I. E., and C. R. Roy. 1983 The fate of nitrogen compounds in the atmosphere Devel. Plant Soil Sci. 9 263–284Google Scholar
  94. Giannakis, C., D. J. Miller, and D. J. D. Nicholas. 1985 Comparative studies on redox proteins from ammonia oxidizing bacteria FEMS Microbiol. Lett. 30 81–85CrossRefGoogle Scholar
  95. Goreau, T. J., W. A. Kaplan, S. C. Wofsy, M. B. McElroy, F. W. Valois, and S. W. Watson. 1980 Production of NO2 and N2O by nitrifying bacteria at reduced concentrations of oxygen Appl. Environ. Microbiol. 40 526–532PubMedGoogle Scholar
  96. Groffmann, P. M. 1987 Nitrification and denitrification in soil: A comparison of enzyme assay, incubation and enumeration methods Plant Soil 97 445–450CrossRefGoogle Scholar
  97. Grundmann, G. L., M. Neyra, and P. Normand. 2000 High-resolution phylogenetic genetic analysis of NO2-oxidizing Nitrobacter species using the rrs-rrl IGS sequence and rrl genes Int. J. Syst. Microbiol. 50 1893–1898Google Scholar
  98. Hall, G. H. 1986 Nitrification in lakes In: J. I. Prosser (Ed.) Nitrification IRL Press Oxford UK 127–156Google Scholar
  99. Harms, H., H.-P. Koops, H. Martiny, and W. Wullenweber. 1981 D-Ribulose 1,5-biphosphate carboxylase and polhedral inclusions in Nitrosomonas spec Arch. Microbiol. 128 280–281CrossRefGoogle Scholar
  100. Hass, R., S. Veit, and T. F. Meyer. 1992 Silent pilin genes of Neisseria gonorrhoeae MS11 and the occurrence of related hypervariant sequences among other gonococcal isolates Molec. Microbiol. 6 197–208CrossRefGoogle Scholar
  101. Hausladen, A., C. T. Privalle, T. Keng, J. DeAngelo, and J. S. Stamler. 1996 Nitrosative stress: Activation of the transcription factor OxyR Cell 86 719–729PubMedCrossRefGoogle Scholar
  102. Head, I. M., W. D. Hiorns, T. M. Embley, A. J. McCarthy, and J. R. Saunders. 1993 The phylogeny of autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal RNA gene sequences J. Gen. Microbiol. 139 1147–1153PubMedCrossRefGoogle Scholar
  103. Henry, Y., C. Ducrocq, J.-C. Drapier, D. Servent, C. Pellat, and A. Guissani. 1991 Nitric oxide, a biological effector—electron paramagnetic resonance detection of nitrosyl-iron-protein complexes in whole cells Eur. Biophys. J. 20 1–15PubMedCrossRefGoogle Scholar
  104. Hiorns, W. D., R. C. Hastings, I. M. Head, G. R. Hall, A. J. McCarthy, J. R. Saunders, and R. W. Pickup. 1995 Amplification of 16S ribosomal RNA genes of autotrophic ammonia-oxidizing bacteria demonstrates the ubiquity of Nitrosospiras in the environment Microbiol. 141 2793–2800CrossRefGoogle Scholar
  105. Hochstein, L. I., and G. A. Tomlinson. 1988 The enzymes associated with denitrification Ann. Rev. Microbiol. 42 231–261CrossRefGoogle Scholar
  106. Hoffman, T., and H. Lees. 1953 The biochemistry of the nitrifying bacteria Biochem. J. 54 579–583Google Scholar
  107. Hollocher, T. C., M. E. Tate, and D. J. D. Nicholas. 1981 Oxidation of ammonia by Nitrosomonas europaea. Definitive 18O-tracer evidence that hydroxylamine formation involves a monooxygenase J. Biol. Chem. 256 10834–10836PubMedGoogle Scholar
  108. Hollocher, T. C., S. Kumar, and D. J. D. Nicholas. 1982 Respiration dependent proton translocation in Nitrosomonas europaea and its apparent absence in Nitrobacter agilis during inorganic oxidation J. Bacteriol. 149 1013–1020PubMedGoogle Scholar
  109. Hollocher, T. C. 1984 Source of the oxygen atoms of nitrate in the oxidation of nitrite by Nitrobacter agilis and evidence against a P-O-N anhydride mechanism in oxidative phosphorylation Arch. Biochem. Biophys. 233 721–727PubMedCrossRefGoogle Scholar
  110. Hommes, N. G., L. A. Sayavedra-Soto, and D. J. Arp. 1994 Sequence of hcy, a gene encoding cytochrome c-554 from Nitrosomonas europaea Gene 146 87–89PubMedCrossRefGoogle Scholar
  111. Hommes, N. G., L. A. Sayavedra-Soto, and D. J. Arp. 1996 Mutagenesis of hydroxylamine oxidoreductase in Nitrosomonas europaea by transformation and recombination J. Bacteriol. 178 3710–3714PubMedGoogle Scholar
  112. Hommes, N. G., L. A. Sayavedra-Soto, and D. J. Arp. 1998 Mutagenesis and expression of amo, which codes for ammonia monooxygenase in Nitrosomonas europaea J. Bacteriol. 180 3353–3359PubMedGoogle Scholar
  113. Hommes, N. G., L. A. Sayavedra-Soto, and D. J. Arp. 2001 Transcript analysis of multiple copies of amo (encoding ammonia monooxygenase) and hao (encoding hydroxylamine oxidoreductase) in Nitrosomonas europaea J. Bacteriol. 183 1096–1100PubMedCrossRefGoogle Scholar
  114. Hooper, A. B. 1968 A nitrite-reducing enzyme from Nitrosomonas europaea. Preliminary characterization with hydroxylamine as electron donor Biochim. Biophys. Acta 162 49–65PubMedCrossRefGoogle Scholar
  115. Hooper, A. B. 1969 Lag phase of ammonia oxidation of resting cells of Nitrosomonas europaea J. Bacteriol. 97 968–969PubMedGoogle Scholar
  116. Hooper, A. B., R. H. Erickson, and R. H. Terry. 1972 Electron transport systems in Nitrosomonas: Isolation of a membrane-envelope fraction J. Bacteriol. 110 430–438PubMedGoogle Scholar
  117. Hooper, A. B., and K. R. Terry. 1973 Specific inhibitors of ammonia oxidation in Nitrosomonas J. Bacteriol. 115 480–485PubMedGoogle Scholar
  118. Hooper, A. B., and K. R. Terry. 1974 Photoinactivation of ammonia oxidation in Nitrosomonas J. Bacteriol. 119 899–906PubMedGoogle Scholar
  119. Hooper, A. B., and K. R. Terry. 1977 Hydroxylamine oxidoreductase from Nitrosomonas: Inactivation by hydrogen-peroxide Biochemistry 16 455–459PubMedCrossRefGoogle Scholar
  120. Hooper, A. B., P. C. Maxwell, and K. R. Terry. 1978 Hydroxylamine oxidoreductase from Nitrosomonas europaea: Absorption spectra and content of heme and metal Biochemistry 17 2984–2989PubMedCrossRefGoogle Scholar
  121. Hooper, A. B., and K. R. Terry. 1979 Hydroxylamine oxidoreductase of Nitrosomonas: Production of nitric oxide from hydroxylamine Biochim. Biophys. Acta 571 12–20PubMedCrossRefGoogle Scholar
  122. Hooper, A. B., and C. Balny. 1982 Reaction of oxygen with hydroxylamine oxidoreductase of Nitrosomonas FEBS Lett. 144 299–303PubMedCrossRefGoogle Scholar
  123. Hooper, A. B. 1984aAmmonia oxidation and energy transduction in the nitrifying bacteria In: W. R. Strohl and O. H. Tuovinen (Eds.) Microbial Chemoautotrophy Ohio State University Press Columbus OH 133–167Google Scholar
  124. Hooper, A. B., A. A. DiSpirito, T. C. Olson, K. A. Andersson, W. Cunningham, and L. R. Taaffe. 1984bGeneration of the proton gradient by a periplasmic dehydrogenase In: R. L. Crawford and R. S. Hanson (Eds.) Microbial Growth on C1 Compounds American Society for Microbiology Washington DC 53–58Google Scholar
  125. Hooper, A. B., and A. A. DiSpirito. 1985 In bacteria which grow on simple reductants generation of a proton gradient involves extracytoplasmic oxidation of substrate Microbiol. Rev. 49 140–157PubMedGoogle Scholar
  126. Hooper, A. B. 1989 Biochemistry of the nitrifying lithoautotrophic bacteria In: H. G. Schlegel and B. Bowien (Eds.) Autotrophic Bacteria Science Tech Madison WI 239–265Google Scholar
  127. Hooper, A. B., T. Vannelli, D. J. Bergmann, and D. M. Arciero. 1997 Enzymology of the oxidation of ammonia to nitrite by bacteria Ant. v. Leeuwenhoek 71 59–67CrossRefGoogle Scholar
  128. Hoppert, M., T. J. Mahony, F. Mayer, and D. J. Miller. 1995 Quaterny structure of the hydroxylamine oxidoreduktase from Nitrosomonas europaea Arch. Microbiol. 163 300–306CrossRefGoogle Scholar
  129. Horz, H. P., J. H. Rotthauwe, T. Lukow, and W. Liesack. 2000 Identification of major subgroups of ammonia-oxidizing bacteria in environmental samples by T-RFLP analysis of amoA PCR products J. Microbiol. Meth. 39 197–204CrossRefGoogle Scholar
  130. Hovanec, T. A., L. T. Taylor, A. Blakis, and E. F. Delong. 1998 Nitrospira-like bacteria associated with nitrite oxidation in freshwater aquaria Appl. Environ. Microbiol. 64 258–264PubMedGoogle Scholar
  131. Huber, D. M., H. L. Warren, D. W. Nelson, and C. Y. Tsai. 1977 Nitrification inhibitors—new tools for food production BioScience 27 523–529CrossRefGoogle Scholar
  132. Huie, R. E. 1994 The reaction kinetics of NO2 Toxicology 89 193–216PubMedCrossRefGoogle Scholar
  133. Hyman, M. R., and P. M. Wood. 1983 Methane oxidation by Nitrosomonas europaea Biochem. J. 212 31–37PubMedGoogle Scholar
  134. Hyman, M. R., and P. M. Wood. 1984aBromocarbon oxidation by Nitrosomonas europaea In: R. L. Crawford and R. S. Hanson (Eds.) Microbial Growth on C1 Compounds American Society for Microbiology Washington DC 49–52Google Scholar
  135. Hyman, M. R., and P. M. Wood. 1984bEthylene oxidation by Nitrosomonas europaea Arch. Microbiol. 137 155–158CrossRefGoogle Scholar
  136. Hyman, M. R., and P. M. Wood. 1985aSuicidal inactivation and labeling of ammonia mono-oxygenase by acetylene Biochem. J. 227 719–725PubMedGoogle Scholar
  137. Hyman, M. R., A. W. Sansome-Smith, J. H. Shears, and R. M. Wood. 1985bA kinetic study of benzene oxidation to phenol by whole cells of Nitrosomonas europaea and evidence for further oxidation to hydroquinone Arch. Microbiol. 43 302–306CrossRefGoogle Scholar
  138. Hyman, M. R., I. B. Murton, and D. J. Arp. 1988 Interaction of ammonia monooxygenase from Nitrosomonas europaea with alkanes, alkenes, and alkynes Appl. Environ. Microbiol. 54 3187–3190PubMedGoogle Scholar
  139. Hyman, M. R., and D. J. Arp. 1992 14C2H2-and 14CO2-labelling studies of the de novo synthesis of polypeptides by Nitrosomonas europaea during recovery from acetylene and light inactivation of ammonia monooxygenase J. Biol. Chem. 267 1534–1545PubMedGoogle Scholar
  140. Hyman, M. R., C. L. Page, and D. J. Arp. 1994 Oxidation of methyl fluoride and dimethyl ether by ammonia monooxygenase in Nitrosomonas eutropha Appl. Environ. Microbiol. 60 3033–3035PubMedGoogle Scholar
  141. Hyman, M. R., and D. J. Arp. 1995 Effects of ammonia on the de novo synthesis of polypeptides in cells of Nitrosomonas europaea denied ammonia as an energy source J. Bacteriol. 177 4974–4979PubMedGoogle Scholar
  142. Hynes, R. K., and R. Knowles. 1978 Inhibition by acetylene of ammonia oxidation in Nitrosomonas europaea FEMS Microbiol. Lett. 4 319–321CrossRefGoogle Scholar
  143. Igarashi, N., H. Moriyama, T. Fujiwara, Y. Fukumori, and N. Tanaka. 1997 The 2.8 A structure of hydroxylamine oxidoreductase from a nitrifying chemoautotrophic bacterium, Nitrosomonas europaea Nat. Struct. Biol. 4 276–284PubMedCrossRefGoogle Scholar
  144. Ingledew, W. J., and P. J. Halling. 1976 Paramagnetic centers of the nitrite oxidizing bacterium Nitrobacter FEBS Lett. 67 90–93PubMedCrossRefGoogle Scholar
  145. Jetten, M. S. M., S. Logemann, G. Muyzer, L. A. Robertson, S. de Vries, M. C. M. van Loosdrecht, and J. G. Kuenen. 1997 Novel principles in the microbial conversion of nitrogen compounds Ant. v. Leeuwenhoek 71 75–93CrossRefGoogle Scholar
  146. Jetten, M., M. Wagner, J. Fuerst, M. van Loosdrecht, G. Kuenen, and M. Strous. 2001 Microbiology and application of the anaerobic ammonium oxidation (“anamox”) process Curr. Opin. Biotechnol. 12 283–288PubMedCrossRefGoogle Scholar
  147. Jlang, Q. Q., and L. R. Bakken. 1999 Nitrous oxide production and methane oxidation by different ammonia-oxidizing bacteria Appl. Environ. Microbiol. 65 2679–2684Google Scholar
  148. Johnston, H. 1972 Newly recognized vital nitrogen cycle Proc. Natl. Acad. Sci. USA 69 2369–2372PubMedCrossRefGoogle Scholar
  149. Johnstone, B. H., and R. D. Jones. 1988 Physiological effects of long energy-source deprivation on the survival of a marine chemolithtrophic ammonium-oxidizing bacterium Marine Ecol. Prog. Ser. 49 295–303CrossRefGoogle Scholar
  150. Jones, R. D., and R. Y. Morita. 1983 Methane oxidation by Nitrosococcus oceanus and Nitrosomonas europaea Appl. Environ. Microbiol. 45 401–410PubMedGoogle Scholar
  151. Jones, R. D., and R. Y. Morita. 1985 Survival of an marine ammonium oxidizer under energy source deprivation Marine Ecol. Prog. Ser. 26 175–179CrossRefGoogle Scholar
  152. Jones, R. D., R. Y. Morita, H.-P. Koops, and S. W. Watson. 1988 A new marine ammonium-oxidizing bacterium, Nitrosomonas cryotolerans sp. nov Can. J. Microbiol. 34 1122–1128CrossRefGoogle Scholar
  153. Juretschko, S., G. Timmermann, M. Schmid, K.-H. Schleifer, A. Pommerening-Röser, H.-P. Koops, and M. Wagner. 1998 Combined molecular and conventional analysis of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations Appl. Environ. Microbiol. 64 3042–3051PubMedGoogle Scholar
  154. Keener, W. K., and D. J. Arp. 1993 Kinetic studies of ammonia monooxygenase inhibition in Nitrosomonas europaea by hydrocarbons and halogenated hydrocarbons in an optimized whole-cell assay Appl. Environ. Microbiol. 59 2501–2510PubMedGoogle Scholar
  155. Keener, W. K., and D. J. Arp. 1994 Transformation of aromatic compounds by Nitrosomonas europaea Appl. Environ. Microbiol. 60 1914–1920PubMedGoogle Scholar
  156. Keeny, D. R. 1986 Inhibition of nitrification in soil In: J. J. Prosser (Ed.) Nitrification IRL Press Oxford UK 99–115Google Scholar
  157. Kester, R. A., W. de Boer, and H. J. Laanbroek. 1996 Short exposure to acetylene to distinguish between nitrifier and denitrifier nitrous oxide production in soil and sediment samples FEMS Microbiol. Ecol. 20 111–120Google Scholar
  158. Kester, R. A., M. E. Meijer, and J. A. Libochant. 1997aContribution of nitrification and denitrification to the NO and N2O emissions of an acid forest soil, a river sediment and a fertilized grassland soil Soil Biol. Biochem. 29 1655–1664CrossRefGoogle Scholar
  159. Kester, R. A., W. de Boer, and H. J. Laanbroek. 1997bProduction of NO and N2O by pure cultures of nitrifying and denitrifying bacteria during changes in aeration Appl. Environ. Microbiol. 63 3872–3877PubMedGoogle Scholar
  160. Kiesow, L. 1964 On the assimilation of energy from inorganic sources in autotrophic forms of life Proc. Natl. Acad. Sci. USA 52 980–988PubMedCrossRefGoogle Scholar
  161. Killham, K. 1986 Heterotrophic nitrification In: J. I. Prosser (Ed.) Nitrification IRL Press Oxford UK 117–126Google Scholar
  162. Killham, K. 1987 A new perfusion system for measurement and characterization of potential rates of soil nitrification Plant Soil 97 267–272CrossRefGoogle Scholar
  163. Kirstein, K. O., E. Bock, D. J. Miller, and D. J. D. Nicholas. 1986 Membrane-bound b-type cytochromes in Nitrobacter FEMS Microbiol. Lett. 36 63–67CrossRefGoogle Scholar
  164. Kirstein, K., and E. Bock. 1993 Close genetic relationship between Nitrobacter hamburgensis nitrite oxidoreductase and Escherichia coli nitrate reductases Arch. Microbiol. 160 447–453PubMedCrossRefGoogle Scholar
  165. Kleiner, D. 1985 Bacterial ammonium transport FEMS Microbiol. Rev. 32 87–100CrossRefGoogle Scholar
  166. Klotz, M. G., J. Alzerreca, and M. L. Norton. 1997 A gene encoding a membrane protein exists upstream of the amo A/amo B genes in ammonia oxidizing bacteria: A third member of the amo operon? FEMS Microbiol. Lett. 150 65–73PubMedCrossRefGoogle Scholar
  167. Klotz, M. G., and J. M. Norton. 1998 Multiple copies of ammonia monooxygenase (amo) operons have evolved under biased AT/GC mutational pressure in ammonia-oxidizing autotrophic bacteria FEMS Microbiol. Lett. 168 303–311PubMedCrossRefGoogle Scholar
  168. Kluyver, A. J., and H. J. K. Donker. 1926 Die Einheit der Biochemie Chem. Zelle und Gewebe. 13 134–190Google Scholar
  169. Koops, H.-P., H. Harms, and H. Wehrmann. 1976 Isolation of a moderate halophilic ammonia-oxidizing bacterium, Nitrosococcus mobilis nov. sp Arch. Microbiol. 10 277–282CrossRefGoogle Scholar
  170. Koops, H. P., and H. Harms. 1985 Deoxyribonucleic acid homologies among 96 strains of ammonia-oxidizing bacteria Arch. Microbiol. 141(3) 214–218CrossRefGoogle Scholar
  171. Koops, H.-P., B. Böttcher, U. C. Möller, A. Pommerening-Röser, and G. Stehr. 1990 Description of a new species of Nitrosococcus Arch. Microbiol. 154 244–248CrossRefGoogle Scholar
  172. Koops, H.-P., B. Böttcher, U. C. Möller, A. Pommerening-Röser, and G. Stehr. 1991 Classification of eight new species of ammonia-oxidizing bacteria: Nitrosomonas communis sp. nov., Nitrosomonas ureae sp. nov., Nitrosomonas aestuarii sp. nov., Nitrosomonas marina sp. nov., Nitrosomonas nitrosa sp. nov., Nitrosomonas eutropha sp. nov., Nitrosomonas oligotropha sp. nov., and Nitrosomonas halophila sp. nov J. Gen. Microbiol. 137 1689–1699CrossRefGoogle Scholar
  173. Koops, H.-P., and U. C. Möller. 1992 The lithotrophic ammonia-oxidizing bacteria In: A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer (Eds.) [{} The Prokaryotes (2nd ed.)] Springer New York NY 2626–2637Google Scholar
  174. Koschorreck, M., E. Moore, and R. Conrad. 1996 Oxidation of nitric oxide by a new heterotrophic Pseudomonas sp Arch. Microbiol. 166 23–31PubMedCrossRefGoogle Scholar
  175. Kowalchuk, G. A., J. R. Stephen, W. de Boer, J. I. Prosser, T. M. Embley, and J. W. Woldendorp. 1997 Analysis of ammonia-oxidizing bacteria of the β subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments Appl. Environ. Microbiol. 63 1489–1497PubMedGoogle Scholar
  176. Krüger, B., O. Meyer, M. Nagel, J. R. Andreesen, M. Meincke, E. Bock, S. Blümle, and W. G. Zumft. 1987 Evidence for the presence of bactopterin in the eubacterial molybdoenzymes nicotinic acid dehydrogenase, nitrite oxidoreductase, and respiratory nitrate reductase FEMS Microbiol. Lett. 48 225–227CrossRefGoogle Scholar
  177. Krümmel, A., and H. Harms. 1982 Effect of organic matter on growth and cell yield of ammonia-oxidizing bacteria Arch. Microbiol. 133 50–54CrossRefGoogle Scholar
  178. Kuenen, J. G., and L. A. Robertson. 1987 Ecology of nitrification and denitrificationM In: J. A. Cole and S. Ferguson (Eds.) The Nitrogen and sulfur cycles Cambridge University Press Cambridge UK 162–218Google Scholar
  179. Kumar, S., and D. J. D. Nicholas. 1982 A proton motive force-dependent adenosine-5′ triphosphate synthesis in spheroplasts of Nitrosomonas europaea FEMS Microbiol. Lett. 14 21–25Google Scholar
  180. Kumar, S., D. J. D. Nicholas, and E. H. Williams. 1983 Definitive 15N NMR evidence that water serves as a source of “O” during nitrite oxidation by Nitrobacter agilis FEMS Microbiol. Lett. 152 71–74Google Scholar
  181. Kurokawa, T., Y. Fukumori, and T. Yamanaka. 1987 Purification of a flavoprotein having NADPH-cytochrome c reductase and transhydrogenase activities from Nitrobacter winogradskyi and its molecular and enzymatic properties Arch. Microbiol. 148 95–99CrossRefGoogle Scholar
  182. Kusian, B., R. Bednarski, M. Husemann, and B. Bowien. 1995 Characterization of the duplicate ribulose-1,5-bisphosphate carboxylase genes and cbb promoters of Alcaligenes eutrophus J. Bacteriol. 177 4442–4450PubMedGoogle Scholar
  183. Lees, H. 1952 The biochemistry of the nitrifying organisms. The ammonia-oxidizing systems of Nitrosomonas Biochem. J. 52 134–139PubMedGoogle Scholar
  184. Lewis, R. S., and W. M. Deen. 1994 Kinetics of the reaction of nitric oxide with oxygen in aqueous solutions Chem. Res. Toxicol. 7 568–574PubMedCrossRefGoogle Scholar
  185. Lipschultz, R., O. C. Zafiriou, S. C. Wofsy, M. B. McElroy, E. W. Valois, and S. W. Watson. 1981 Production of NO and N2O by soil nitrifying bacteria Nature 294 641–643CrossRefGoogle Scholar
  186. Lipscomb, J. D., and A. B. Hooper. 1982aResolution of multiple heme centers of hydroxylamine oxidoreductase from Nitrosomonas. 1: Electron paramagnetic resonance spectroscopy Biochemistry 21 3965–3972PubMedCrossRefGoogle Scholar
  187. Lipscomb, J. D., K. K. Andersson, E. Münck, T. A. Kent, and A. B. Hooper. 1982bResolution of multiple heme centers of hydroxylamine oxidoreductase from Nitrosomonas. 2: Mössbauer spectroscopy Biochemistry 21 3973–3976PubMedCrossRefGoogle Scholar
  188. Loveless, J. E., and H. A. Painter. 1968 The influence of metal ion concentrations and pH value on the growth of a Nitrosomonas strain isolated from activated sludge J. Gen. Microbiol. 52 1–14CrossRefGoogle Scholar
  189. Lu, W. P., and D. P. Kelly. 1988 Chemolithotrophic ATP synthesis and NAD(P) reduction in Thiobacillus tepidarius and Thiobacillus versutus Arch. Microbiol. 130 250–254Google Scholar
  190. Mahony, T. J., and D. J. Miller. 1998 Linkage of genes encoding enolase (eno) and CTP synthase (pyr G) in the beta-subdivision proteobacterium Nitrsomonas europaea FEMS Micrbiol. Lett. 165 153–157Google Scholar
  191. Mancinelli, R. L., and C. P. McKay. 1983 Effects of nitric oxide and nitrogen dioxide on bacterial growth Appl. Environ. Microbiol. 46 198–202PubMedGoogle Scholar
  192. Mansch, R., and E. Bock. 1998 Biodeterioration of natural stone with special reference to nitrifying bacteria Biodegradation 9 47–64PubMedCrossRefGoogle Scholar
  193. Matin, A. 1978 Organic nutrition of chemoorganotrophic bacteria Ann. Rev. Microbiol. 32 433–468CrossRefGoogle Scholar
  194. Matulewich, V. A., P. F. Strom, and M. S. Finstein. 1975 Length of incubation for enumerating nitrifying bacteria present in various environments Appl. Environ. Microbiol. 29 265–268Google Scholar
  195. McCaig, A. E., T. M. Embley, and J. I. Prosser. 1994 Molecular analysis of enrichment cultures of marine ammonia oxidizers FEMS Microbiol. Lett. 120 363–368PubMedCrossRefGoogle Scholar
  196. McTavish, H., J. Fuchs, and A. B. Hooper. 1993 Sequence of the gene for ammonia monooxygenase of Nitrosomonas europaea J. Bacteriol. 175 2436–2444PubMedGoogle Scholar
  197. Meincke, M., E. Krieg, and E. Bock. 1989 Nitrosovibrio s the dominant ammonia oxidizing bacteria in building stones Appl. Environ. Microbiol. 56 2108–2110Google Scholar
  198. Meincke, M., E. Bock, D. Kastrau, and P. M. H. Kroneck. 1992 Nitrite oxidoreductase from Nitrobacter hamburgensis: Redox centers and their catalytic role Arch. Microbiol. 158 127–131CrossRefGoogle Scholar
  199. Miller, D. J., and P. M. Wood. 1982 Characterization of the c-type cytochromes of Nitrosomonas europaea with the aid of fluorescent gels Biochem. J. 207 511–517PubMedGoogle Scholar
  200. Miller, D. J., and P. M. Wood. 1983 Two membrane-bound b-type cytochromes in Nitrosomonas europaea FEMS Microbiol. Lett. 20 323–326CrossRefGoogle Scholar
  201. Miller, D. J., and D. J. D. Nicholas. 1985 Further characterization of the soluble cytochrome oxidase/nitrite reductase from Nitrosomonas europaea J. Gen. Microbiol. 131 2851–2854Google Scholar
  202. Miller, L. G., M. D. Coutlakis, R. S. Oremland, and B. B. Ward. 1993 Selective inhibition of ammonium oxidation and nitrification-linked N2O Appl. Environ. Microbiol. 59 2457–2464PubMedGoogle Scholar
  203. Mitchell, P. D. 1975 Protonmotive redox mechanism of the cytochrome bc1 complex in the respiratory chain: Protonmotive ubiquinone cycle FEBS Lett. 56 1–6PubMedCrossRefGoogle Scholar
  204. Mobarry, B. K., M. Wagner, V. Urbain, B. E. Rittmann, and D. A. Stahl. 1996 Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria [published erratum appears in Appl. Environ. Microbiol. Feb. 1997;63(2), 815] Appl. Environ. Microbiol. 62 2156–2162PubMedGoogle Scholar
  205. Moir, J. W. B., L. C. Crossmann, S. Spiro, and D. J. Richardson. 1996aThe purification of ammonia monooxygenase from Paracoccus denitrificans FEBS Lett. 387 71–74PubMedCrossRefGoogle Scholar
  206. Moir, J. W. B., J.-M. Wehrfritz, S. Spiro, and D. J. Richardson. 1996bThe biochemical characterisation of a novel non-haem-iron hydroxylamine oxidase from Paracoccus denitrificans GB17 Biochem. J. 319 823–827PubMedGoogle Scholar
  207. Morgenroth, E., A. Obermayer, E. Arnold, A. Brühl, M. Wagner, and P. A. Wilderer. 2000 Effect of long-term idle periods on the performance of sequencing batch reactors Wat. Sci. Tech. 41 105–113Google Scholar
  208. Mulder, J., N. van Breemen, W. Rasmussen, and C. T. Driscoll. 1989 Aluminium chemistry of acidic sandy soils affected by atmospheric depositions in the Netherlands and Denmark In: T. E. Lewis (Ed.) Environmental Chemistry and Toxicology of Aluminium Lewis Publishing Chelsea MI 171–194Google Scholar
  209. Mulder, A., A. A. van de Graaf, L. A. Robertson, and J. G. Kuenen. 1995 Anaerobic ammonia oxidation discovered in a denitrifying fluidized bed reactor FEMS Microbiol. Lett. 16 177–184CrossRefGoogle Scholar
  210. Nicholas, D. J. D., and O. T. G. Jones. 1960 Oxidation of hydroxylamine in cell-free extracts of Nitrosomonas europaea Nature 185 512–514CrossRefGoogle Scholar
  211. Nielsen, L. P. 1992 Denitrification in sediment determined from nitrogen isotope pairing FEMS Microbiol. Ecol. 86 357–362CrossRefGoogle Scholar
  212. Norton, J. M., J. M. Low, and M. G. Klotz. 1996 The gene encoding ammonia monooxygenase subunit A exists in three nearly identical copies in Nitrosospira sp. NpAv FEMS Microbiol. Lett. 139 181–188PubMedGoogle Scholar
  213. O’Kelley, J. C., G. E. Becker, and A. Nason. 1970 Characterization of the particulate nitrite oxidase and its component activities from the chemoautotroph Nitrobacter agilis Biochim. Biophys. Acta 205 409–425PubMedCrossRefGoogle Scholar
  214. Olson, T. C., and A. B. Hooper. 1983 Energy coupling in the bacterial oxidation of small molecules: An extracytoplasmic dehydrogenase in Nitrosomonas FEMS Microbiol. Lett. 19 47–50CrossRefGoogle Scholar
  215. O’Neil, J. G., and J. F. Wilkinson. 1977 Oxidation of ammonia by methane-oxidizing bacteria and the effect of ammonia on methane oxidation J. Gen. Microbiol. 100 407–412CrossRefGoogle Scholar
  216. Orso, S., M. Gouy, E. Navarro, and P. Normand. 1994 Molecular phylogenetic analysis of Nitrobacter spp Int. J. Syst. Bacteriol. 44 83–86PubMedCrossRefGoogle Scholar
  217. Painter, H. A. 1988 Nitrification in the treatment of sewage and waste-waters In: J. I. Prosser (Ed.) Nitrification IRL Press Oxford UK 185–211Google Scholar
  218. Papen, H., R. von Berg, I. Hinkel, B. Thoene, and H. Rennenberg. 1989 Heterotrophic nitrification by Alcaligenes faecalis: NO2-, NO3-, N2O, and NO production in exponentially growing cultures Appl. Environ. Microbiol. 55 2068–2072PubMedGoogle Scholar
  219. Pinck, C., C. Coeur, P. Potier, and E. Bock. 2001 Polyclonal antibodies recognizing the AmoB protein of ammonia oxidizers of the beta-subclass of the class Proteobacteria Appl. Environ. Microbiol. 67 118–124PubMedCrossRefGoogle Scholar
  220. Pires, M., M. J. Rossi, and D. S. Ross. 1994 Kinetic and mechanistic aspects of the NO oxidation by O2 in aqueous phase Int. J. Chem. Kin. 26 1207–1227CrossRefGoogle Scholar
  221. Pommerening-Röser, A., G. Rath, and H.-P. Koops. 1996 Phylogenetic diversity within the genus Nitrosomonas Syst. Appl. Microbiol. 19 344–351CrossRefGoogle Scholar
  222. Poth, M., and D. D. Focht. 1985 14N kinetic analysis of N2O production by Nitrosomonas europaea: An examination of nitrifier denitrification Appl. Environ. Microbiol. 49 1134–1141PubMedGoogle Scholar
  223. Poth, M. 1986 Dinitrogen production from nitrite by a Nitrosomonas isolate Appl. Environ. Microbiol. 52 957–959PubMedGoogle Scholar
  224. Prince, R. C., C. Larroque, and A. B. Hooper. 1983 Resolution of the hemes of hydroxylamine oxidoreductase by redox potentiometry and optical spectroscopy FEBS Lett. 163 25–27PubMedCrossRefGoogle Scholar
  225. Prosser, J. I. 1989 Autotrophic nitrification in bacteria In: A. H. Rose and D. W. Tempest (Eds.) Advances in Microbial Physiology Academic Press London 30 125–181Google Scholar
  226. Purkhold, U., A. Pommerening-Röser, S. Juretschko, M. C. Schmid, H.-P. Koops, and M. Wagner. 2000 Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: Implications for molecular diversity surveys Appl. Environ. Microbiol. 66 5368–5382PubMedCrossRefGoogle Scholar
  227. Ralt, D., R. F. Gomez, and S. R. Tannerbaum. 1981 Conversion of acetohydroxamate and hydroxylamine to nitrite by intestinal microorganisms Eur. J. Appl. Microbiol. Biotechnol. 12 226–230CrossRefGoogle Scholar
  228. Rees, M., and A. Nason. 1966 Incorporation of atmospheric oxygen into nitrite formed during ammonia oxidation by Nitrosomonas europaea Biochim. Biophys. Acta 1(13) 398–401PubMedCrossRefGoogle Scholar
  229. Remde, A., and R. Conrad. 1990 Production of nitric oxide by Nitrosomonas europaea by reduction of nitrite Arch. Microbiol. 154 187–191CrossRefGoogle Scholar
  230. Robertson, L. A., and J. G. Kuenen. 1983 Thiosphaera pantotropha gen. nov. sp. nov., a new facultative anaerobic, facultative autotrophic sulfur bacterium J. Gen. Microbiol. 129 2847–2855Google Scholar
  231. Robertson, L. A., and J. G. Kuenen. 1984 Aerobic denitrificationL A controversy revived Arch. Microbiol. 139 351–354CrossRefGoogle Scholar
  232. Robertson, L. A., and J. G. Kuenen. 1988 Heterotrophic nitrification in Thiosphaera pantotropha—oxygen uptake and enzyme studies J. Gen. Microbiol. 134 857–863Google Scholar
  233. Robertson, L. A., R. Cornelisse, P. de Vos, R. Hadioetomo, and J. G. Kuenen. 1989 Aerobic denitrification in various heterotrophic nitrifiers Ant. v. Leeuwenhoek 56 289–300CrossRefGoogle Scholar
  234. Robertson, L. A., and J. G. Kuenen. 1990 Combined heterotrophic nitrification and aerobic denitrification in Thiosphaera pantotropha and other bacteria Ant. v. Leeuwenhoek 57 139–152CrossRefGoogle Scholar
  235. Rotthauwe, J. H., W. de Boer, and W. Liesack. 1995 Comparative analysis of gene sequences encoding ammonia monooxygenase of Nitrosospira sp. AHB1 and Nitrosolobus multiformis C-71 FEMS Microbiol. Lett. 133 131–135PubMedCrossRefGoogle Scholar
  236. Rotthauwe, J.-H., K.-P. Witzel, and W. Liesack. 1997 The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations Appl. Environ. Microbiol. 63 4704–4712PubMedGoogle Scholar
  237. Sayavedra-Soto, L. A., N. G. Hommes, and D. J. Arp. 1994 Characterization of the gene encoding hydroxylamine oxidoreductase in Nitrosomonas europaea J. Bacteriol. 176 504–510PubMedGoogle Scholar
  238. Sayavedra-Soto, L. A., N. G. Hommes, S. A. Russell, and D. J. Arp. 1996 Induction of ammonia monooxygenase and hydroxylamine oxidoreductase mRNAs by ammonium in Nitrosomonas europaea Molec. Microbiol. 20 541–548CrossRefGoogle Scholar
  239. Schimel, J. P. M., K. Firestone, and K. S. Killham. 1984 Identification of heterotrophic nitrification in a Sierran forest soil Appl. Environ. Microbiol. 48 802–806PubMedGoogle Scholar
  240. Schmid, M., U. Twachtmann, M. Klein, M. Strous, S. Juretschko, M. Jetten, J. W. Metzger, K.-H. Schleifer, and M. Wagner. 2000 Molecular evidence for a genus-level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation System. Appl. Microbiol. 23 93–106CrossRefGoogle Scholar
  241. Schmid, M., S. Schmitz-Esser, M. Jetten, and M. Wagner. 2001 16S-23S rDNA intergenic spacer and 23S rDNA of anaerobic ammonium oxidizers: Implications for phylogeny and in situ detection Environ. Microbiol. 3 450–459PubMedCrossRefGoogle Scholar
  242. Schmidt, E. L. 1982 Nitrification in soil In: Stevenson, F. J. Nitrogen in Agricultural Soils ASA-CSSA-SSSA Madison WI 253–288Google Scholar
  243. Schmidt, I., and E. Bock. 1997 Anaerobic ammonia oxidation with nitrogen dioxide by Nitrosomonas eutropha Arch. Microbiol. 167 106–111CrossRefGoogle Scholar
  244. Schmidt, I., and E. Bock. 1998 Anaerobic ammonia oxidation by cell-free extracts of Nitrosomonas eutropha Ant. v. Leeuwenhoek 73 271–278CrossRefGoogle Scholar
  245. Schmidt, I., E. Bock, and M. S. M. Jetten. 2001aAmmonia oxidation by Nitrosomonas eutropha with NO2 as oxidant is not inhibited by acetylene Microbiology 147 2247–2253PubMedGoogle Scholar
  246. Schmidt, I., D. Zart, and E. Bock. 2001bEffects of gaseous NO2 on cells of Nitrosomonas eutropha previously incapable of using ammonia as an energy source Ant. v. Leeuwenhoek 79 39–47CrossRefGoogle Scholar
  247. Seewaldt, E., K.-H. Schleifer, E. Bock, and E. Stackebrandt. 1982 The close phylogenetic relationship of Nitrobacter and Rhodopseudomonas palustris Arch. Microbiol. 131 287–290CrossRefGoogle Scholar
  248. Sela, S., D. Yogev, S. Razin, and H. Bercovier. 1989 Duplication of the tuf gene: A new insight into the phylogeny of eubacteria J. Bacteriol. 177 581–584Google Scholar
  249. Sewell, D. L., M. I. H. Aleem, and D. F. Wilson. 1972 The oxidation-reduction potentials and rates of oxidation of the cytochromes of Nitrobacter agilis Arch. Biochem. Biophys. 153 312–319PubMedCrossRefGoogle Scholar
  250. Sewell, D. L., and M. I. H. Aleem. 1979 NADH-linked oxidative phosphorylation in Nitrobacter agilis Curr. Microbiol. 2 35–37CrossRefGoogle Scholar
  251. Shank, J. L., J. H. Silliker, and J. H. Harper. 1962 The effect of nitric oxide on bacteria Appl. Microbiol. 10 185–189PubMedGoogle Scholar
  252. Shears, J. H., and P. M. Wood. 1985 Spectroscopic evidence for a photosensitive oxygenated state of ammonia monooxygenase Biochem. J. 226 499–507PubMedGoogle Scholar
  253. Slangen, J. H. G., and P. Kerkhoff. 1984 Nitrification inhibitors in agriculture and horticulture: A literature review Fertilizer Res. 5 1–76CrossRefGoogle Scholar
  254. Smith, A. J., and D. S. Hoare. 1968 Acetate assimilation by Nitrobacter agilis in relation to its “obligate autotrophy” J. Bacteriol. 95 844–855PubMedGoogle Scholar
  255. Sone, N., Y. Yanagita, K. Hon-nami, Y. Fukumori, and T. Yamanaka. 1983 Proton-pump activity of Nitrobacter agilis and Thermus thermophilus cytochrome c oxidase FEBS Lett. 155 150–155CrossRefGoogle Scholar
  256. Sone, N. 1986 Measurement of proton pump activity of the thermophilic bacterium PS 3 and Nitrobacter agilis at the cytochrome oxidase level using total membranes and heptyl-thioglycoside J. Biochem. 100 1465–1476PubMedGoogle Scholar
  257. Sorokin, D. Y., G. Myzer, T. Brinkhoff, J. G. Kuenen, and M. S. M. Jetten. 1998 Isolation and characterization of a novel facultatively alkaliphilic Nitrobacter species, N. alkalicus sp. nov Arch. Microbiol. 170 345–352PubMedCrossRefGoogle Scholar
  258. Sorokin, D. Y., T. Tourova, M. Schmid, M. Wagner, H. P. Koops, J. G. Kuenen, and M. Jetten. 2001 Isolation and properties of obligately chemolithoautotrophic and extremely alkalitolerant ammonia oxidizing bacteria from Mongolian soda lakes Arch. Microbiol. 176 170–177PubMedCrossRefGoogle Scholar
  259. Spieck, E., M. Meincke, and E. Bock. 1992 Taxonomic diversity of Nitrosovibrio strains isolated from building sandstone FEMS Microbiol. Ecol. 102 21–26CrossRefGoogle Scholar
  260. Spieck, E., J. Aamand, S. Bartosch, and E. Bock. 1996 Immunocytochemical detection and location of the membrane-bound nitrite oxidoreductase in cells of Nitrobacter and Nitrospira FEMS Microbiol. Lett. 139 71–76CrossRefGoogle Scholar
  261. Spiller, H., E. Dietsch, and E. Kessler. 1976 Intracellular appearance of nitrite and nitrate in nitrogen-starved cells of Ankistrodesmus braunii Planta 129 175–181CrossRefGoogle Scholar
  262. Stammler, J. S., D. J. Simon, V. Osborne, M. E. Mullins, O. Jaraki, T. Michel, D. J. Singel, and J. Loscalzo. 1992 S-nitrosylation of proteins with nitric oxide: Synthesis and characterization of biologically active compounds Proc. Natl. Acad. Sci. USA 82 7738–7742Google Scholar
  263. Stams, A. J. M., E. M. Flameling, and E. C. L. Marnette. 1990 The importance of autotrophic versus heterotrophic oxidation of atmospheric ammonium in forest ecosystems with acid soil FEMS Microbiol. Ecol. 74 337–344CrossRefGoogle Scholar
  264. Stams, A. J. M., H. W. G. Booltink, I. J. Lutke-Schipholt, B. Beemsterboer, J. R. W. Woittiez, and N. Van Breemen. 1991 A field study on the fate of 15N-ammonium to demonstrate nitrification of atmospheric ammonium in an acid forest soil Biogeochemistry 13 241–255CrossRefGoogle Scholar
  265. Stehr, G., B. Böttcher, P. Dittberner, G. Rath, and H.-P. Koops. 1995 The ammonia-oxidizing nitrifying population of the river Elbe estuary FEMS Microbiol. Ecol. 17 177–186CrossRefGoogle Scholar
  266. Stein, L. Y., D. J. Arp, and M. R. Hyman. 1997 Regulation of the synthesis and activity of ammonia monooxygenase in Nitrosomonas europaea by altering pH to affect NH3 availability Appl. Environ. Microbiol. 63 4588–4592PubMedGoogle Scholar
  267. Stein, L. Y., and D. J. Arp. 1998aAmmonium limitation results in the loss of ammonia oxidizing activity in Nitrosmonas europaea Appl. Environ. Microbiol. 64 1514–1521PubMedGoogle Scholar
  268. Stein, L. Y., and D. J. Arp. 1998bLoss of ammonia monooxygenase activity in Nitrosomonas europaea upon exposure to nitrite Appl. Environ. Microbiol. 64 4098–4102PubMedGoogle Scholar
  269. Stein, L. Y., L. A. Sayavedra-Soto, N. G. Hommes, and D. J. Arp. 2000 Differential regulation of amoA and amoB gene copies in Nitrosomonas europaea FEMS Microbiol. Lett. 192 163–168PubMedCrossRefGoogle Scholar
  270. Steinmüller, W., and E. Bock. 1976 Growth of Nitrobacter in the presence of organic matter. I. Mixotrophic growth Arch Microbiol. 108 299–304PubMedCrossRefGoogle Scholar
  271. Stephen, J. R., A. E. McCaig, Z. Smith, J. I. Prosser, and T. M. Embley. 1996 Molecular diversity of soil and marine 16S rRNA gene sequences related to β-subgroup ammonia-oxidizing bacteria Appl. Environ. Microbiol. 62 4147–4154PubMedGoogle Scholar
  272. Stephen, J. R., G. A. Kowalchuk, M. A. V. Bruns, A. E. McCaig, C. J. Phillips, T. M. Embley, and J. I. Prosser. 1998 Analysis of beta-subgroup proteobacterial ammonia oxidizer populations in soil by denaturing gradient gel electrophoresis analysis and hierarchical phylogenetic probing Appl. Environ. Microbiol. 64 2958–2965PubMedGoogle Scholar
  273. Steudler, P. A., R. D. Jones, M. S. Castro, J. M. Mellilo, and D. L. Lewis. 1996 Microbial controles of methane oxidation in temperate forest and agriculture soils NATO ASI Ser. Ser. I 39 69–84Google Scholar
  274. Strecker, M., E. Sickinger, R. S. English, J. M. Shively, and E. Bock. 1994 Calvin cycle genes in Nitrobacter vulgaris T3 FEMS Microbiol. Lett. 120 45–50CrossRefGoogle Scholar
  275. Strous, M., J. A. Fuerst, E. H. M. Kramer, S. Logemann, V. Muyzer, K. T. van de Pas-Schoonen, R. Webb, J. G. Kuenen, and M. S. M. Jetten. 1999 Missing lithotroph identified as new planctomycete Nature 400 446–449PubMedCrossRefGoogle Scholar
  276. Stüven, R., M. Vollmer, and E. Bock. 1992 The impact of organic matter on NO formation by Nitrosomonas europaea Arch. Microbiol. 158 439–443CrossRefGoogle Scholar
  277. Stüven, R., and E. Bock. 2001 Nitrification and denitrification as a source for NO and NO2 production in high-strength wastewater Water Res. 35(8) 1905–1914CrossRefGoogle Scholar
  278. Sundermeyer, H., and E. Bock. 1981 Energy metabolism of autotrophically and heterotrophically grown cells of Nitrobacter winogradskyi Arch. Microbiol. 130 250–254CrossRefGoogle Scholar
  279. Sundermeyer-Klinger, H., V. Meyer, B. Warninghoff, and E. Bock. 1984 Membrane-bound nitrite oxidoreductase of Nitrobacter: Evidence for a nitrate reductase system Arch. Microbiol. 140 153–158CrossRefGoogle Scholar
  280. Suwa, Y., T. Sumino, and K. Noto. 1997 Phylogenetic relationships of activated sluge isolates of ammonia oxidizers with different sensitivities to ammonium sulfate J. Gen. Appl. Microbiol. 43 373–379PubMedCrossRefGoogle Scholar
  281. Suzuki, I., U. Dular, and S.-C. Kwok. 1970 Cell-free ammonia oxidation by Nitrosomonas europaea extracts: Effects of polyamines, Mg2+ and albumin Biochem. Biophys. Res. Commun. 39 950–955PubMedCrossRefGoogle Scholar
  282. Suzuki, I., U. Dular, and S.-C. Kwok. 1974 Ammonia or ammonium ion as substrate for oxidation by Nitrosomonas cells and extracts J. Bacteriol. 120 556–558PubMedGoogle Scholar
  283. Suzuki, I., S.-C. Kwok, and U. Dular. 1976 Competitive inhibition of ammonia oxidation in Nitrosomonas europaea by methane, carbon monoxide or methanol FEBS Lett. 72 117–120PubMedCrossRefGoogle Scholar
  284. Suzuki, I., and S.-C. Kwok. 1981aA partial resolution and reconstitution of the ammonia-oxidizing system of Nitrosomonas europaea: Rrole of cytochrome c554 Can. J. Biochem. 59 484–488PubMedCrossRefGoogle Scholar
  285. Suzuki, I., S.-C. Kwok, U. Dular, and D. C. Y. Tsang. 1981bCell-free ammonia oxidizing system of Nitrosomonas europaea: General conditions and properties Can. J. Biochem. 59 477–483PubMedCrossRefGoogle Scholar
  286. Takahashi, R., T. Ohmori, K. Watanabe, and T. Tokuyama. 1993 Phosphoenolpyruvate carboxylase of ammonia oxidizing chemoautotrophic bacterium Nitrosomonas europaea ATCC 25978 J. Ferm. Bioeng. 76 232–234CrossRefGoogle Scholar
  287. Tanaka, Y., Y. Fukumori, and T. Yamanaka. 1982 The complete amino acid sequence of Nitrobacter agilis cytochrome c550 Biochim. Biophys. Acta 707 14–20PubMedCrossRefGoogle Scholar
  288. Tanaka, Y., Y. Fukumori, and T. Yamanaka. 1983 Purification of cytochrome a1c1 from Nitrobacter agilis and characterization of nitrite oxidation system of the bacterium Arch. Microbiol. 135 265–271CrossRefGoogle Scholar
  289. Tappe, W., C. Tomaschewski, S. Rittershaus, and J. Groeneweg. 1996 Cultivation of nitrifying bacteria in the retentostat, a simple fermenter with internal biomass retention FEMS Microbiol. Ecol. 19 47–52CrossRefGoogle Scholar
  290. Teske, A., E. Alm, J. M. Regan, S. Toze, B. E. Rittmann, and D. A. Stahl. 1994 Evolutionary relationship among ammonia-and nitrite oxidizing bacteria J. Bacteriol. 176 6623–6630PubMedGoogle Scholar
  291. Teske, A., C. Wawer, G. Muyzer, and N. B. Ramsing. 1996 Distribution of sulfate-reducing bacteria in a stratified fjord (Mariager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments Appl. Environ. Microbiol. 62 1405–1415PubMedGoogle Scholar
  292. Tomlinson, T. G., A. G. Boon, and C. N. A. Trotman. 1966 Inhibition of nitrification in the activated sludge process of sewage disposal J. Appl. Bacteriol. 29 266–291PubMedCrossRefGoogle Scholar
  293. Tronson, D. A., G. A. F. Ritchie, and D. J. D. Nicholas. 1973 Purification of c-type cytochromes from Nitrosomonas europaea Biochim. Biophys. Acta 310 331–343PubMedCrossRefGoogle Scholar
  294. Tsang, D. C. Y., and I. Suzuki. 1982 Cytochrome c554 as a possible electron donor in the hydroxylation of ammonia and carbon monoxide in Nitrosomonas europaea Can. J. Biochem. 60 1018–1024PubMedCrossRefGoogle Scholar
  295. Tsong, T. Y., and R. D. Astumian. 1987 Electroconformational coupling Progr. Biophys. Molec. Biol. 50 1–45CrossRefGoogle Scholar
  296. Tubulekas, I., and D. Hughes. 1993 Growth and translation elongation rate are sensitive to the concentration of EF-Tu Molec. Microbiol. 8 761–770CrossRefGoogle Scholar
  297. Utåker, J. B., L. Bakken, Q. Q. Jiang, and I. F. Nes. 1995 Phylogenetic analysis of seven new isolates of ammonia-oxidizing bacteria based on 16S rRNA gene sequences Syst. Appl. Microbiol. 18 549–559CrossRefGoogle Scholar
  298. Utåker, J. B., and I. F. Nes. 1998 A qualitative evaluation of the published oligonucleotides specific for the 16S rRNA gene sequences of the ammonia-oxidizing bacteria Syst. Appl. Microbiol. 21 72–88PubMedCrossRefGoogle Scholar
  299. Van de Dijk, S. J., and S. R. Troelstra. 1980 Heterotrophic nitrification in a heath soil demonstrated by an in-situ method Plant Soil 57 11–21CrossRefGoogle Scholar
  300. Van de Graaf, A. A., A. Mulder, P. De Bruijn, M. S. M. Jetten, L. A. Robertson, and J. G. Kuenen. 1995 Anaerobic oxidation of ammonium is a biologically mediated process Appl. Environ. Microbiol. 61 1246–1251PubMedGoogle Scholar
  301. Van de Graaf, A. A., P. De Bruijn, L. A. Robertson, and J. G. Kuenen. 1996 Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor Microbiology 142 2187–2196CrossRefGoogle Scholar
  302. Van de Graaf, A. A., P. De Bruijn, L. A. Robertson, M. S. M. Jetten, and J. G. Kuenen. 1997 Metabolic pathway of anaerobic ammonium oxidation on the basis of 15N studies in a fluidized bed reactor Microbiology 143 2415–2421CrossRefGoogle Scholar
  303. Vanelli, T., M. Logan, M. Arciero, and A. B. Hooper. 1990 Degradation of halogenated aliphatic compounds by ammonia-oxidizing bacterium Nitrosomonas europaea Appl. Environ. Microbiol. 56 1169–1171Google Scholar
  304. Vanelli, T., D. J. Bergmann, D. M. Arciero, and A. B. Hooper. 1996 Mechanism of N-oxidation and electron transfer in the ammonia-oxidizing autotrophs In: M. E. Lidstrom and F. R. Tabita (Eds.) Proceedings of the 8th International Symposium on Microbial Growth on C1 Compounds Kluwer Academic Publishers Dordrecht The Netherlands 80–87CrossRefGoogle Scholar
  305. Van Niel, E. W. J., L. A. Robertson, and J. G. Kuenen. 1987 Heterotrophic nitrification in denitrifying bacteria Proc. 4th Eur. Cong. Biotechnol. 3 363Google Scholar
  306. Van Niel, E. W. J., P. A. M. Arts, B. J. Wesselink, L. A. Robertson, and J. G. Kuenen. 1993 Competition between heterotrophic and autotrophic nitrifiers for ammonia in chemostat cultures FEMS Microbiol. Ecol. 102 109–118CrossRefGoogle Scholar
  307. Voysey, P. A., and P. M. Wood. 1987 Methanol and formaldehyde oxidation by an autotrophic nitrifying bacterium J. Gen. Microbiol. 133 283–290Google Scholar
  308. Voytek, M. A., and B. B. Ward. 1995 Detection of ammonium-oxidizing bacteria of the beta-subclass of the class Proteobacteria in aquatic samples with the PCR Appl. Environ. Microbiol. 61 1444–1450PubMedGoogle Scholar
  309. Wagner, M., G. Rath, R. Amann, H.-P. Koops, and K.-H. Schleifer. 1995 In situ identification of ammonia-oxidizing bacteria Syst. Appl. Microbiol. 18 251–264CrossRefGoogle Scholar
  310. Wagner, M., G. Rath, H.-P. Koops, J. Flood, and R. Amann. 1996 In situ analysis of nitrifying bacteria in sewage treatment plants Water Sci. Tech. 34(1–2) 237–244Google Scholar
  311. Wang, W. C., Y. L. Yung, A. L. Lacis, T. M. Mo, and J. E. Hanson. 1976 Greenhouse effects due to man-made perturbations of trace gases Science 194 685–689PubMedCrossRefGoogle Scholar
  312. Ward, B. B. 1987 Kinetic studies on ammonia and methane oxidation by Nitrosococcus oceanus Arch. Microbiol. 147 126–133CrossRefGoogle Scholar
  313. Watson, S. W. 1965 Characteristics of a marine nitrifying bacterium, Nitrosocystis oceanus sp. n Limnol. Oceanogr. 10(Suppl.) R274–R289Google Scholar
  314. Watson, S. W. 1971aTaxonomic considerations of the family Nitrobacteraceae Buchanan: Requests for opinions Int. J. Syst. Bacteriol. 21 254–270CrossRefGoogle Scholar
  315. Watson, S. W., and J. B. Waterbury. 1971bCharacteristics of two marine nitrite oxidizing bacteria, Nitrospina gracilis nov. gen. nov. sp. and Nitrococcus mobilis nov. gen. nov. sp Arch. Mikrobiol. 77 203–230CrossRefGoogle Scholar
  316. Watson, S. W., L. B. Graham, C. C. Remsen, and F. W. Valois. 1971cA lobular, ammonia-oxidizing bacterium, Nitrosolobus multiformis nov. gen. nov. sp Arch. Mikrobiol. 76 183–303PubMedCrossRefGoogle Scholar
  317. Watson, S. W., E. Bock, E. W. Valois, J. B. Waterbury, and U. Schlosser. 1986 Nitrospira marina gen. nov. sp. nov.: A chemolithotrophic nitrite-oxidizing bacterium Arch. Microbiol. 144 1–7CrossRefGoogle Scholar
  318. Watson, S. W., E. Bock, H. Harms, H.-P. Koops, and A. B. Hooper. 1989 Nitrifying bacteria In: R. G. E. Murray, D. J. Brenner, M. P. Bryant, J. G. Holt, N. R. Krieg, J. W. Moulder, N. Pfennig, P. H. A. Sneath, J. T. Staley, and S. Williams (Eds.) [{} Bergey’s Manual of Systematic Bacteriology] 3. Williams and Wilkins Baltimore MD 1808–1834Google Scholar
  319. Wehrfritz, J.-M., A. Reilly, S. Spiro, and D. J. Richardson. 1993 Purification of hydroxylamine oxidoreductase from Thiosphera pantotropha. Identification of electron acceptors that couple heterotrophic nitrification to aerobic denitrification FEBS Lett. 335 246–250PubMedCrossRefGoogle Scholar
  320. Wetzstein, H. G., and R. J. Ferguson. 1985 Respiration-dependent proton translocation and the mechanism of proton motive force generation in Nitrobacter winogradskyi FEMS Microbiol. Lett. 30 87–92CrossRefGoogle Scholar
  321. Wheelis, M. 1984 Energy conservation and pyridine nucleotide reduction in chemoautotrophic bacteria: A thermodynamic analysis Arch. Microbiol. 138 166–169CrossRefGoogle Scholar
  322. Williams, E. J., G. L. Hutchinson, and F. C. Fehsenfeld. 1992 NOx and N2O emissions from soil Global Biogeochem. Cycles 6 351–388CrossRefGoogle Scholar
  323. Wink, D. A., K. S. Kasprzak, C. M. Maragos, R. K. Elespuru, M. Misra, T. M. Dunams, T. A. Cebula, W. H. Koch, A. W. Andrews, J. S. Allen, and L. K. Keefer. 1991 DNA deaminating ability and genotoxicity of nitric oxide and its progenitors Science 254 1001–1003PubMedCrossRefGoogle Scholar
  324. Wink, D. A., J. F. Darbyshire, R. W. Nims, J. E. Saavedra, and P. C. Ford. 1993 Reactions of the bioregulatory agent nitric oxide in oxygenated aqueous media: Determination of kinetics for oxidation and nitrosation by intermediates generated in the NO/O2 reaction Chem. Res. Toxicol. 6 23–27PubMedCrossRefGoogle Scholar
  325. Winogradsky, S. 1892 Archives des Sciences Biologique. Contributions à la morphologie des organismes de la nitrification St. Petersbourg 1 88–137Google Scholar
  326. Woese, C. R., W. G. Weisburg, B. J. Paster, C. M. Hahn, R. S. Tanner, N. R. Krieg, H.-P. Koops, H. Harms, and E. Stackebrandt. 1984 The phylogeny of purple bacteria: The beta subdivision Syst. Appl. Microbiol. 5 327–336CrossRefGoogle Scholar
  327. Woese, C. R., W. G. Weisburg, C. M. Hahn, B. J. Paster, L. B. Zablen, B. J. Lewis, T. J. Macke, W. Ludwig, and E. Stackebrandt. 1985 The phylogeny of purple bacteria: The gamma subdivision Syst. Appl. Microbiol. 6 25–33CrossRefGoogle Scholar
  328. Wood, P. M. 1978 Periplasmic location of the terminal reductase in nitrite respiration FEBS Lett. 92 214–218PubMedCrossRefGoogle Scholar
  329. Wood, P. M. 1986 Nitrification as a bacterial energy source In: J. I. Prosser (Ed.) Nitrification IRL Press Oxford UK 63–78Google Scholar
  330. Wood, P. M. 1988aChemolithotrophy In: C. Anthony (Ed.) Bacterial Energy Transduction Academic Press London UK 183–230Google Scholar
  331. Wood, P. M. 1988bMonooxygenase and free radical mechanism for biological ammonia oxidation In: J. A. Cole and S. Ferguson (Eds.) The nitrogen and Sulfur Cycles: 42nd Symposium of the Society of General Microbiology Cambridge University Press Cambridge UK 219–243Google Scholar
  332. Wullenweber, M., H.-P. Koops, and H. Martiny. 1978 Der Einfluß von Nitrit auf den Verlauf des Wachstums von Nitrosomonas Stamm Nm1 Mitt. Inst. Allg. Bot. Hamburg 16 159–164Google Scholar
  333. Xu, B., U. Fortkamp, and S.-O. Enfors. 1995 Continuous measurement of NOaq during denitrification by immobilized Pseudomonas stutzeri Biotechnol. Biotech. 9 659–664Google Scholar
  334. Yamagata, A., J. Kato, R. Hirota, A. Kuroda, T. Ikeda, N. Takiguchi, and H. Ohtake. 1999 Isolation and characterization of two cryptic plasmids in the ammonia-oxidizing bacterium Nitrosomonas sp. strain ENI-11 J. Bacteriol. 181 3375–3381PubMedGoogle Scholar
  335. Yamanaka, T., and M. Shinra. 1974 Cytochrome c552 and cytochrome c554 derived from Nitrosomonas europaea: Purification, properties, and their function in hydroxylamine oxidation J. Biochem. 75 1265–1273PubMedGoogle Scholar
  336. Yamanaka, T., K. Fugii, and Y. Kamita. 1979 Subunits of cytochrome a-type terminal oxidase derived from Thiobacillus novellus and Nitrobacter agilis J. Biochem. 86 821–824PubMedGoogle Scholar
  337. Yamanaka, T., Y. Kamita, and Y. Fukumori. 1981 Molecular and enzymatic properties of “cytochrome aa3 type” terminal oxidase derived from Nitrobacter agilis J. Biochem. 89 265–273PubMedGoogle Scholar
  338. Yamanaka, T., Y. Tanaka, and Y. Fukumori. 1982 Nitrobacter agilis cytochrome c550: Isolation, physicochemical and enzymatic properties and primary structure Plant Cell Physiol. 23 441–449Google Scholar
  339. Yamanaka, T., and Y. Fukumori. 1988 The nitrite oxidizing system of Nitrobacter winogradskyi FEMS Microbiol. Rev. 54 259–270CrossRefGoogle Scholar
  340. Yoshida, T., and M. Alexander. 1964 Hydroxylamine formation by Nitrosomonas europaea Can. J. Microbiol. 10 923–926PubMedCrossRefGoogle Scholar
  341. Yoshinari, T. 1985 Nitrite and nitrous oxide production by Methylosinus trichosporium Can. J. Microbiol. 31 139–144PubMedCrossRefGoogle Scholar
  342. Zahn, J. A., C. Duncan, and A. A. DiSpirito. 1994 Oxidation of hydroxylamine by cytochrome P-460 of the obligate methylotroph Methylococcus capsulatus Bath. J. Bacteriol. 176 5879–5887Google Scholar
  343. Zart, D., I. Schmidt, and E. Bock. 1996 Neue Wege vom Ammonium zum Stickstoff In: H. Lemmer, T. Griebe, and H.-K. Flemming (Eds.) Ökologie der Abwasserorganismen Springer-Verlag Berlin Germany 183–192CrossRefGoogle Scholar
  344. Zart, D., and E. Bock. 1998 High rate of aerobic nitrification and denitrification by Nitrosomonas eutropha grown in a fermentor with complete biomass retention in the presence of gaseous NO2 or NO Arch. Microbiol. 169 282–286PubMedCrossRefGoogle Scholar
  345. Zart, D., R. Stüven, and E. Bock. 1999 Nitrification and denitrification—microbial fundamentals and consequences for application In: H.-J. Rehm, G. Reed, A. Pühler, and P. J. W. Stadler (Eds.) Biotechnology: A Multi-volume Comprehensive Treatise, 2nd revised ed 11a Wiley-VCH Weinheim Germany New York NY 55–64Google Scholar
  346. Zart, D., I. Schmidt, and E. Bock. 2000 Significance of gaseous NO for ammonia oxidation by Nitrosomonas eutropha Ant. v. Leeuwenhoek 77 49–55CrossRefGoogle Scholar
  347. Zumft, W. G. 1993 The biological role of nitric oxide in bacteria Arch. Microbiol. 160 253–264PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Eberhard Bock
  • Michael Wagner

There are no affiliations available

Personalised recommendations