Virulence Strategies of Plant Pathogenic Bacteria

  • Barbara N. Kunkel
  • Zhongying Chen


Plant pathogenic bacteria, like bacterial pathogens that infect animals, must be able to evade or suppress general antimicrobial defenses and acquire nutrients and water from their hosts to successfully colonize and grow within host tissue. Plant pathogenic bacteria have adapted well to their hosts, which are structurally and physiologically quite different from animals. Since successful infection relies to a great extent on the ability of a pathogen to modulate the physiology of its host, plant pathogenic bacteria have evolved several unique virulence strategies in addition to virulence mechanisms also utilized by bacterial pathogens of animals.

One current area of intense research in the field of plant-pathogen interactions is the identification and characterization of pathogen virulence factors and the elucidation of their mode of action within the host. This chapter summarizes recent progress in this area of research, focusing on four Gram-negative bacterial pathogens...


Indole Acetic Acid Jasmonic Acid Plant Cell Wall Effector Protein Cell Wall Degrading Enzyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Abel, S., M. D. Nguyen, W. Chow, and A. Theologis. 1995 ASC4, a primary indoleactic acid-responsive gene encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis thaliana J. Biol. Chem. 270 19093–19099PubMedCrossRefGoogle Scholar
  2. Abramovitch, R. B., Y. J. Kim, S. Chen, M. B. Dickman, and G. B. Martin. 2003 Pseudomonas type III effector AvrPtoB induces plant disease susceptibility by inhibition of host programmed cell death EMBO J. 22 60–69PubMedCrossRefGoogle Scholar
  3. Agrios, G. N. 1997 Plant Pathology Academic Press San Diego CAGoogle Scholar
  4. Alfano, J. R., and A. Collmer. 1996 Bacterial pathogens in plants: Life up against the wall Plant Cell 8 1683–1698PubMedGoogle Scholar
  5. Alfano, J. R., A. O. Charkowski, W. I. Deng, J. L. Badel, T. Petnicki-Ocwieja, K. van Dijk, and A. Collmer. 2000 The Pseudomonas syringae Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type III secretion genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants Proc. Natl. Acad. Sci. USA 97 4856–4861PubMedCrossRefGoogle Scholar
  6. Ansari, M. M., and R. Sridhar. 2000 Some tryptophan pathways in the phytopathogen Xanthomonas oryzae pv. oryzae Folia Microbiol. (Praha) 45 531–537CrossRefGoogle Scholar
  7. Araud-Razou, I., J. Vasse, H. Montrozier, C. Etchebar, and A. Trigalet. 1998 Detection and visualization of the major acidic exopolysaccharide of Ralstonia solanacearum and its role in tomato root infection and vascular colonization Eur. J. Plant Pathol. 104 795–809CrossRefGoogle Scholar
  8. Axtell, M. J., and B. J. Staskawicz. 2003aInitiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4 Cell 112 369–377PubMedCrossRefGoogle Scholar
  9. Axtell, M. J., S. T. Chisholm, D. Dahlbeck, and B. J. Staskawicz. 2003bGenetic and molecular evidence that the Pseudomonas syringae type III effector protein AvrRpt2 is a cysteine protease Molec. Microbiol. 49 1537–1546CrossRefGoogle Scholar
  10. Badel, J. L., A. O. Charkowski, W. L. Deng, and A. Collmer. 2002 A gene in the Pseudomonas syringae pv. tomato Hrp pathogenicity island conserved effector locus, hopPtoA1, contributes to efficient formation of bacterial colonies in planta and is duplicated elsewhere in the genome Molec. Plant-Microbe Interact. 15 1014–1024CrossRefGoogle Scholar
  11. Badel, J. L., K. Nomura, S. Bandyopadhyay, R. Shimizu, A. Collmer, and S. Y. He. 2003 Pseudomonas syringae pv. tomato DC3000 HopPtoM (CEL ORF3) is important for lesion formation but not growth in tomato and is secreted and translocated by the Hrp type III secretion system in a chaperone-dependent manner Molec. Microbiol. 49 1239–1251CrossRefGoogle Scholar
  12. Barras, F., F. V. Gijsegem, and A. K. Chatterjee. 1994 Extracellular enzymes and pathogenesis of soft-rot Erwinia Ann. Rev. Phytopathol. 32 201–234CrossRefGoogle Scholar
  13. Bartel, B., and G. R. Fink. 1994 Differential regulation of an auxin-producing nitrilase gene family in Arabidopsis thaliana Proc. Natl. Acad. Sci. USA 91 6649–6653PubMedCrossRefGoogle Scholar
  14. Bauer, D. W., and A. Collmer. 1997 Molecular cloning, characterization and mutagenesis of a pel gene from Pseudomonas syringae pv. lachrymans encoding a member of the Erwinia chyrsanthemi PelADE family of pectate lyases Molec. Plant-Microbe Interact. 10 363–379Google Scholar
  15. Beattie, G. A., and S. E. Lindow. 1994 Epiphytic fitness of phytopathogenic bacteria: physiological adaptations for growth and survival Curr. Top. Microbiol. Immunol. 192 1–27PubMedCrossRefGoogle Scholar
  16. Becker, A., F. Katzen, A. Puhler, and L. Ielpi. 1998 Xanthan gum biosynthesis and application: a biochemical/genetic perspective Appl. Microbiol. Biotechnol. 50 145–152PubMedCrossRefGoogle Scholar
  17. Belkhadir, Y., Z. Nimchuk, D. A. Hubert, D. Mackey, and J. L. Dangl. 2004 Arabidopsis RIN4 negatively regulates disease resistance mediated by RPS2 and RPM1 downstream or independent of the NDR1 signal modulator and is not required for the virulence functions of bacterial type III effectors AvrRpt2 or AvrRpm1 Plant Cell 16 2822–2835PubMedCrossRefGoogle Scholar
  18. Bellemann, P., and K. Geider. 1992 Localization of transposon insertions in pathogenicity mutants of Erwinia amylovora and their biochemical characterization J. Gen. Microbiol. 138 931–940PubMedCrossRefGoogle Scholar
  19. Bender, C. L., F. Alarcon-Chaidez, and D. C. Gross. 1999 Pseudomonas syringae phytotoxins: Mode of action, regulation and biosynthesis by peptide and polyketide synthetases Microbiol. Molec. Biol. Rev. 63 266–292Google Scholar
  20. Bender, C. L., and B. K. Scholz-Schroeder. 2004 New insights into the biosynthesis, mode of action, and regulation of syringomycin, syringopeptin and coronatine In: J. L. Ramos (Ed.) The Pseudomonads Kluwer Academic Press Dordrecht The Netherlands 125–158CrossRefGoogle Scholar
  21. Bent, A. F., R. W. Innes, J. R. Ecker, and B. J. Staskawicz. 1992 Disease development in ethylene-insensitive Arabidopsis thaliana infected with virulent and avirulent Pseudomonas and Xanthamonas pathogens Molec. Plant-Microbe Interact. 5 372–378CrossRefGoogle Scholar
  22. Bernhard, F., D. L. Coplin, and K. Geider. 1993 A gene cluster for amylovoran synthesis in Erwinia amylovora: Characterization and relationship to cps genes in Erwinia stewartii Molec. Gen. Genet. 239 158–168PubMedGoogle Scholar
  23. Birch, R. G. 2001 Xanthomonas albilineans and the antipathogenesis approach to disease control Molec. Plant. Pathol. 2 1–11CrossRefGoogle Scholar
  24. Bleecker, A. B., and H. Kende. 2000 Ethylene: A gaseous signal molecule in plants Ann. Rev. Cell Dev. Biol. 16 1–18CrossRefGoogle Scholar
  25. Blocker, A., P. Gounon, E. Larquet, K. Niebuhr, V. Cabiaux, C. Parsot, and P. Sansonetti. 1999 The tripartite type III secreton of Shigella flexneri inserts IpaB and IpaC into host membranes J. Cell Biol. 147 683–693PubMedCrossRefGoogle Scholar
  26. Boch, J., V. Joardar, L. Gao, T. L. Robertson, M. Lim, and B. N. Kunkel. 2002 Identification of Pseudomonas syringae pv. tomato genes induced during infection of Arabidopsis thaliana Molec. Microbiol. 44 73–88CrossRefGoogle Scholar
  27. Bonas, U., and T. Lahaye. 2002 Plant disease resistance triggered by pathogen-derived molecules: Refined models of specific recognition Curr. Opin. Microbiol. 5 44–50PubMedCrossRefGoogle Scholar
  28. Boyd, A., and A. M. Chakrabarty. 1995 Pseudomonas aeruginosa biofilms: Role of the alginate exopolysaccharide J. Indust. Microbiol. 15 162–168CrossRefGoogle Scholar
  29. Bretz, J. R., N. M. Mock, J. C. Charity, S. Zeyad, C. J. Baker, and S. W. Hutcheson. 2003 A translocated protein tyrosine phosphatase of Pseudomonas syringae pv. tomato DC3000 modulates plant defence response to infection Molec. Microbiol. 49 389–400CrossRefGoogle Scholar
  30. Brooks, D. M., G. Hernandez-Guzman, A. P. Kloek, F. Alarcon-Chaidez, A. Sreedharan, V. Rangaswamy, A. Penaloza-Vazquez, C. L. Bender, and B. N. Kunkel. 2004 Identification and characterization of a well-defined series of coronatine biosynthetic mutants of Pseudomonas syringae pv. tomato strain DC3000 Molec. Plant-Microbe Interact. 16 162–174CrossRefGoogle Scholar
  31. Brooks, D. M., C. L. Bender, and B. N. Kunkel The Pseudomonas syringae phytotoxin coronatine is required to overcome salicylic acid-mediated defenses in Arabidopsis thaliana. Submitted.Google Scholar
  32. Broughton, W. J., S. Jabbouri, and X. Perret. 2000 Keys to symbiotic harmony J. Bacteriol. 182 5641–5652PubMedCrossRefGoogle Scholar
  33. Brown, I. R., J. W. Mansfield, S. Taira, E. Roine, and M. Romantschuk. 2001 Immunocytochemical localization of HrpA and HrpZ supports a role for the Hrp pilus in the transfer of effector proteins from Pseudomonas syringae pv. tomato across the host plant cell wall Molec. Plant-Microbe Interact. 14 394–404CrossRefGoogle Scholar
  34. Buell, C. R., V. Joardar, M. Lindeberg, J. Selengut, I. T. Paulsen, M. L. Gwinn, R. J. Dodson, R. T. Deboy, A. S. Durkin, J. F. Kolonay, R. Madupu, S. Daugherty, L. Brinkac, M. J. Beanan, D. H. Haft, W. C. Nelson, T. Davidsen, N. Zafar, L. Zhou, J. Liu, Q. Yuan, H. Khouri, N. Fedorova, B. Tran, D. Russell, K. Berry, T. Utterback, S. E. Van Aken, T. V. Feldblyum, M. D'Ascenzo, W. L. Deng, A. R. Ramos, J. R. Alfano, S. Cartinhour, A. K. Chatterjee, T. P. Delaney, S. G. Lazarowitz, G. B. Martin, D. J. Schneider, X. Tang, C. L. Bender, O. White, C. M. Fraser, and A. Collmer. 2003 The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000 Proc. Natl. Acad. Sci. USA 100 10181–10186PubMedCrossRefGoogle Scholar
  35. Buttner, D., and U. Bonas. 2002 Getting across—bacterial type III effector proteins on their way to the plant cell EMBO J. 21 5313–5322PubMedCrossRefGoogle Scholar
  36. Buttner, D., D. Nennstiel, B. Klusener, and U. Bonas. 2002 Functional analysis of HrpF, a putative type III translocon protein from Xanthomonas campestris pv. vesicatoria J. Bacteriol. 184 2389–2398PubMedCrossRefGoogle Scholar
  37. Buttner, D., and U. Bonas. 2003 Common infection strategies of plant and animal pathogenic bacteria Curr. Opin. Plant Biol. 6 312–319PubMedCrossRefGoogle Scholar
  38. Buttner, D., L. Noel, F. Thieme, and U. Bonas. 2003 Genomic approaches in Xanthomonas campestris pv. vesicatoria allow fishing for virulence genes J. Biotechnol. 106 203–214PubMedCrossRefGoogle Scholar
  39. Carpita, N. C., and M. McCann. 2000 The cell wall In: B. B. Buchanan, W. Gruissem, and R. L. Jones (Eds.) Biochemistry and Molecular Biology of Plants American Society of Plant Physiologists Rockville MD 52–108Google Scholar
  40. Casper-Lindley, C., D. Dahlbeck, E. T. Clark, and B. J. Staskawicz. 2002 Direct biochemical evidence for type III secretion-dependent translocation of the AvrBs2 effector protein into plant cells Proc. Natl. Acad. Sci. USA 99 8336–8341PubMedCrossRefGoogle Scholar
  41. Chan, J. W. Y. F., and P. H. Goodwin. 1999 The molecular genetics of virulence of Xanthomonas campestris—trafficking harpins, Avr proteins, and death Biotechnol. Adv. 17 489–508PubMedCrossRefGoogle Scholar
  42. Charity, J. C., K. Pak, C. F. Delwiche, and S. W. Hutcheson. 2003 Novel exchangeable effector loci associated with the Pseudomonas syringae hrp pathogenicity island: evidence for integron-like assembly from transposed gene cassettes Molec. Plant-Microbe Interact. 16 495–507CrossRefGoogle Scholar
  43. Charkowski, A. O., J. R. Alfano, G. Preston, J. Yuan, S. Y. He, and A. Collmer. 1998 The Pseudomonas syringae pv. tomato HrpW protein has domains similar to harpins and pectate lyases and can elicit the plant hypersensitive response and bind to pectate J. Bacteriol. 180 5211–5217PubMedGoogle Scholar
  44. Chen, Z., A. P. Kloek, J. Boch, F. Katagiri, and B. N. Kunkel. 2000 The Pseudomonas syringae avrRpt2 gene product promotes pathogen virulence from inside plant cells Molec. Plant-Microbe Interact. 13 1312–1321CrossRefGoogle Scholar
  45. Chen, Z., A. P. Kloek, A. Cuzick, W. Moeder, D. Tang, R. W. Innes, D. F. Klessig, J. McDowell, and B. N. Kunkel. 2004 The Pseudomonas syringae type III effector AvrRpt2 functions down stream or independently of SA to promote virulence on Arabidopsis Plant J. 37 494–504PubMedCrossRefGoogle Scholar
  46. Collmer, A., J. L. Badel, A. O. Charkowski, W. L. Deng, D. E. Fouts, A. R. Ramos, A. H. Rehm, D. M. Anderson, O. Schneewind, K. van Dijk, and J. R., Alfano. 2000 Pseudomonas syringae Hrp type III secretion system and effector proteins Proc. Natl. Acad. Sci. USA 97 8770–8777PubMedCrossRefGoogle Scholar
  47. Collmer, A., M. Lindeberg, T. Petnicki-Ocwieja, D. J. Schneider, and J. R. Alfano. 2002 Genomic mining type III secretion system effectors in Pseudomonas syringae yields new picks for all TTSS prospectors Trends Microbiol. 10 462–469PubMedCrossRefGoogle Scholar
  48. Cornelis, G. R., and F. van Gijsegem. 2000 Assembly and function of type III secretory systems Ann. Rev. Microbiol. 54 735–774CrossRefGoogle Scholar
  49. Cornelis, G. R. 2002 Yersinia type III secretion: Send in the effectors J. Cell Biol. 158 401–408PubMedCrossRefGoogle Scholar
  50. Dangl, J. L., and J. D. Jones. 2001 Plant pathogens and integrated defence responses to infection Nature 411 826–833PubMedCrossRefGoogle Scholar
  51. da Silva, A. C., J. A. Ferro, F. C. Reinach, C. S. Farah, L. R. Furlan, R. B. Quaggio, C. B. Monteiro-Vitorello, M. A. van Sluys, N. F. Almeida, L. M. Alves, A. M. do Amaral, M. C. Bertolini, L. E. Camargo, G. Camarotte, F. Cannavan, J. Cardozo, F. Chambergo, L. P. Ciapina, R. M. Cicarelli, L. L. Coutinho, J. R. Cursino-Santos, H. El-Dorry, J. B. Faria, A. J. Ferreira, R. C. Ferreira, M. I. Ferro, E. F. Formighieri, M. C. Franco, C. C. Greggio, A. Gruber, A. M. Katsuyama, L. T. Kishi, R. P. Leite, E. G. Lemos, M. V. Lemos, E. C. Locali, M. A. Machado, A. M. Madeira, N. M. Martinez-Rossi, E. C. Martins, J. Meidanis, C. F. Menck, C. Y. Miyaki, D. H. Moon, L. M. Moreira, M. T. Novo, V. K. Okura, M. C. Oliveira, V. R. Oliveira, H. A. Pereira, A. Rossi, J. A. Sena, C. Sila, R. F. de Souza, L. A. Spinola, M. A. Takita, R. E. Tamura, E. C. Teixeira, R. I. Tezza, M. Trindade dos Santos, D. Truffi, S. M. Tsai, F. F. White, J. C. Setubal, and J. P. Kitajima. 2002 Comparison of the genomes of two Xanthomonas pathogens with differing host specificities Nature 417 459–463PubMedCrossRefGoogle Scholar
  52. Davies, P. J. 1995 Plant Hormones: Physiology, Biochemistry, and Molecular Biology Kluwer Academic Publishers Dordrecht The NetherlandsGoogle Scholar
  53. Denny, T. P., and S. R. Baek. 1991 Genetic evidence that extracellular polysaccharide is a virulence factor of Pseudomonas solanacearum Molec. Plant-Microbe Interact. 4 198–206CrossRefGoogle Scholar
  54. Denny, T. P. 1995 Involvement of bacterial polysaccharides in plant pathogenesis Ann. Rev. Phytopathol. 33 173–197CrossRefGoogle Scholar
  55. Dixon, R. A. 2001 Natural products and plant disease resistance Nature 411 843–847PubMedCrossRefGoogle Scholar
  56. Dow, J. M., L. Crossman, K. Findlay, Y. Q. He, J. X. Feng, and J. L. Tang. 2003 Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is required for full virulence to plants Proc. Natl. Acad. Sci. USA 100 10995–11000PubMedCrossRefGoogle Scholar
  57. Eastgate, J. A. 2000 Erwinia amylovora: The molecular basis of fireblight disease Molec. Plant Pathol. 1 325–329CrossRefGoogle Scholar
  58. Espinosa, A., M. Guo, V. C. Tam, Z. Q. Fu, and J. R. Alfano. 2003 The Pseudomonas syringae type III-secreted protein HopPtoD2 possesses protein tyrosine phosphatase activity and suppresses programmed cell death in plants Molec. Microbiol. 49 377–387CrossRefGoogle Scholar
  59. Farmer, E. E., E. Almeras, and V. Krishnamurthy. 2003 Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory Curr. Opin. Plant Biol. 6 372–378PubMedCrossRefGoogle Scholar
  60. Felix, G., J. D. Duran, S. Volko, and T. Boller. 1999 Plants have a sensitive perception system for the most conserved domain of bacterial flagellin Plant J. 18 265–276PubMedCrossRefGoogle Scholar
  61. Fett, W. F., S. F. Osman, and M. F. Dunn. 1987 Auxin production by plant-pathogenic Pseudomonads and Xanthomonads Appl. Env. Microbiol. 53 1839–1845Google Scholar
  62. Feys, B. J., C. E. Benedetti, C. N. Penfold, and J. G. Turner. 1994 Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen Plant Cell 6 751–759PubMedGoogle Scholar
  63. Fouts, D. E., R. B. Abramovitch, J. R. Alfano, A. M. Baldo, C. R. Buell, S. Cartinhour, A. K. Chatterjee, M. D’Ascenzo, M. L. Gwinn, S. G. Lazarowitz, N. C. Lin, G. B. Martin, A. H. Rehm, D. J. Schneider, K. van Dijk, X. Tang, and A. Collmer. 2002 Genomewide identification of Pseudomonas syringae pv. tomato DC3000 promoters controlled by the HrpL alternative sigma factor Proc. Natl. Acad. Sci. USA 99 2275–2280PubMedCrossRefGoogle Scholar
  64. Freebairn, H. T., and I. W. Buddenhagen. 1964 Ethylene production by Pseudomonas solanacearum Nature 202 313–314PubMedCrossRefGoogle Scholar
  65. Galan, J. E., and A. Collmer. 1999 Type III secretion machines: Bacterial devices for protein delivery into host cells Science 284 1322–1328PubMedCrossRefGoogle Scholar
  66. Gazzarrini, S., and P. McCourt. 2003 Cross-talk in plant hormone signalling: What Arabidopsis mutants are telling us Ann. Bot. 91 605–612PubMedCrossRefGoogle Scholar
  67. Gelvin, S. B. 2003 Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool Microbiol. Molec. Biol. Rev. 67 16–37CrossRefGoogle Scholar
  68. Genin, S., and C. Boucher. 2002 Ralstonia solanacearum: Secrets of a major pathogen unveiled by analysis of its genome Molec. Plant Pathol. 3 111–118CrossRefGoogle Scholar
  69. Glazebrook, J., E. E. Rogers, and F. M. Ausubel. 1997 Use of Arabidopsis for genetic dissection of plant defense responses Ann. Rev. Genet. 31 547–569PubMedCrossRefGoogle Scholar
  70. Glazebrook, J. 2001 Genes controlling expression of defense responses in Arabidopsis—2001 status Curr. Opin. Plant Biol. 4 301–308PubMedCrossRefGoogle Scholar
  71. Glickmann, E., L. Gardan, S. Jacquet, S. Hussain, M. Elasri, A. Petit, and Y. Dessaux. 1998 Auxin production is a common feature of most pathovars of Pseudomonas syringae Molec. Plant-Microbe Interact. 11 156–162CrossRefGoogle Scholar
  72. Gomez-Gomez, L., and T. Boller. 2002 Flagellin perception: A paradigm for innate immunity Trends Plant Sci. 7 251–256PubMedCrossRefGoogle Scholar
  73. Greenberg, J. T., and B. A. Vinatzer. 2003 Identifying type III effectors of plant pathogens and analyzing their interaction with plant cells Curr. Opin. Microbiol. 6 20–28PubMedCrossRefGoogle Scholar
  74. Guttman, D. S., and J. T. Greenberg. 2001 Functional analysis of the type III effectors AvrRpt2 and AvrRpm1 of Pseudomonas syringae with the use of a single-copy genomic integration system Molec. Plant-Microbe Interact. 14 145–155CrossRefGoogle Scholar
  75. Guttman, D. S., B. A. Vinatzer, S. F. Sarkar, M. V. Ranall, G. Kettler, and J. T. Greenberg. 2002 A functional screen for the type III (Hrp) secretome of the plant pathogen Pseudomonas syringae Science 295 1722–1726PubMedCrossRefGoogle Scholar
  76. Hammond-Kosack, K., and J. D. G. Jones. 1996 Resistance gene-dependent plant defense responses Plant Cell 8 1773–1791PubMedGoogle Scholar
  77. Hammond-Kosack, K., and J. D. G. Jones. 2000 Responses to plant pathogens In: B. B. Buchanan, W. Gruissem, and R. L. Jones (Eds.) Biochemistry and Molecular Biology of Plants American Society of Plant Physiologists Rockville MD 1102–1156Google Scholar
  78. Hauck, P., R. Thilmony, and S. Y. He. 2003 A Pseudomonas syringae type III effector suppresses cell wall-based extracellular defense in susceptible Arabidopsis plants Proc. Natl. Acad. Sci. USA 100 8577–8582PubMedCrossRefGoogle Scholar
  79. He, S. Y., and Q. Jin. 2003 The Hrp pilus: Learning from flagella Curr. Opin. Microbiol. 6 15–19PubMedCrossRefGoogle Scholar
  80. Heath, M. 2000 Nonhost resistance and nonspecific plant defenses Curr. Opin. Plant Biol. 3 315–319PubMedCrossRefGoogle Scholar
  81. Hirsch, J., L. Deslandes, D. X. Feng, C. Balague, and Y. Marco. 2002 Delayed symptom development in ein2-1, an Arabidopsis ethylene-insensitive mutant, in response to bacterial wilt caused by Ralstonia solanacearum Phytopathology 92 1142–1148PubMedCrossRefGoogle Scholar
  82. Hoffman, T., J. S. Schmidt, X. Zheng, and A. F. Bent. 1999 Isolation of ethylene-insensitive soybean mutants that are altered in pathogen susceptibility and gene-for-gene disease resistance Plant Physiol. 119 935–949PubMedCrossRefGoogle Scholar
  83. Hotson, A., R. Chosed, H. Shu, K. Orth, and M. B. Mudgett. 2003 Xanthomonas type III effector XopD targets SUMO-conjugated proteins in planta Molec. Microbiol. 50 377–389CrossRefGoogle Scholar
  84. Huang, Q., and C. Allen. 1997 An exo-poly-alpha-D-galacturonosidase, PehB, is required for wild-type virulence of Ralstonia solanacearum J. Bacteriol. 179 7369–7378PubMedGoogle Scholar
  85. Huang, Q., and C. Allen. 2000 Polygalacturonases are required for rapid colonization and full virulence of Ralstonia solanacearum on tomato plants Physiol. Molec. Plant Pathol. 57 77–83CrossRefGoogle Scholar
  86. Hull, A. K., R. Vij, and J. L. Celenza. 2000 Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis Proc. Natl. Acad. Sci. USA 97 2379–2384PubMedCrossRefGoogle Scholar
  87. Hutchison, M. L., and D. C. Gross. 1997 Lipopeptide phytotoxins produced by Pseudomonas syringae pv. syringae: Comparison of the biosurfactant and ion channel-forming activities of syringopeptin and syringomycin Molec. Plant-Microbe Interact. 10 347–354CrossRefGoogle Scholar
  88. Innes, R. W., A. F. Bent, B. N. Kunkel, S. R. Bisgrove, and B. J. Staskawicz. 1993 Molecular analysis of avirulence gene avrRpt2 and identification of a putative regulatory sequence common to all known Pseudomonas syringae avirulence genes J. Bacteriol. 175 4859–4869PubMedGoogle Scholar
  89. Jackson, R. W., E. Athanassopoulos, G. Tsiamis, J. W. Mansfield, A. Sesma, D. L. Arnold, M. J. Gibbon, J. Murillo, J. D. Taylor, and A. Vivian. 1999 Identification of a pathogenicity island, which contains genes for virulence and avirulence, on a large native plasmid in the bean pathogen Pseudomonas syringae pathovar phaseolicola Proc. Natl. Acad. Sci. USA 96 10875–10880PubMedCrossRefGoogle Scholar
  90. Jakobek, J. L., and P. B. Lindgren. 1993 Generalized induction of defense responses in bean is not correlated with the induction of the hypersensitive reaction Plant Cell 5 49–56PubMedGoogle Scholar
  91. Jamir, Y., M. Guo, H. S. Oh, T. Petnicki-Ocwieja, S. Chen, X. Tang, M. B. Dickman, A. Collmer, and J. R. Alfano. 2004 Identification of Pseudomonas syringae type III effectors that can suppress programmed cell death in plants and yeast Plant J. 37 554–565PubMedCrossRefGoogle Scholar
  92. Jin, Q., and S. Y. He. 2001 Role of the Hrp pilus in type III protein secretion in Pseudomonas syringae Science 294 2556–2558PubMedCrossRefGoogle Scholar
  93. Jin, Q., R. Thilmony, J. Zwiesler-Vollick, and S. Y. He. 2003 Type III protein secretion in Pseudomonas syringae Microb. Infect. 5 301–310CrossRefGoogle Scholar
  94. Kao, C. C., E. Barlow, and L. Sequeira. 1992 Extracellular polysaccharide is required for wild-type virulence of Pseudomonas solanacearum J. Bacteriol. 174 1068–1071PubMedGoogle Scholar
  95. Katzen, F., D. U. Ferreiro, C. G. Oddo, M. V. Ielmini, A. Becker, A. Puhler, and L. Ielpi. 1998 Xanthomonas campestris pv. campestris gum mutants: Effects on xanthan biosynthesis and plant virulence J. Bacteriol. 180 1607–1617PubMedGoogle Scholar
  96. Kloek, A. P., M. L. Verbsky, S. B. Sharma, J. E. Schoelz, J. Vogel, D. F. Klessig, and B. N. Kunkel. 2001 Resistance to Pseudomonas syringae conferred by an Arabidopsis thaliana coronatine-insensitive (coi1) mutation occurs through two distinct mechanisms Plant J. 26 509–522PubMedCrossRefGoogle Scholar
  97. Kubori, T., Y. Matsushima, D. Nakamura, J. Uralil, M. Lara-Tejero, A. Sukhan, J. E. Galan, and S. I. Aizawa. 1998 Supramolecular structure of the Salmonella typhimurium type III protein secretion system Science 280 602–605PubMedCrossRefGoogle Scholar
  98. Kunkel, B. N. 1996 A useful weed put to work: genetic analysis of disease resistance in Arabidopsis thaliana Trends Genet. 12 63–69PubMedCrossRefGoogle Scholar
  99. Kunkel, B. N., and D. M. Brooks. 2002 Cross talk between signaling pathways in pathogen defense Curr. Opin. Plant Biol. 5 325–331PubMedCrossRefGoogle Scholar
  100. Kunkel, B. N., J. Agnew, J. J. Collins, J. Cohen, and Z. Chen. 2004 Molecular genetic analysis of AvrRpt2 activity in promoting virulence of Pseudomonas syringae In: S. Tsuyumu, J. Leach, T. Shiraishi, and T. Wolpert (Eds.) Genomic and Genetic Analysis of Plant Parasitism and Defense The American Phytopathological Society Press Saint Paul MN 92–102Google Scholar
  101. Laurie-Berry, N., V. Joardar, I. H. Street, and B. N. Kunkel. The Arabidopsis thaliana Jasmonate Insensitive 1 gene defines a branch of the jasmonate signaling pathway required for suppression of salicylic acid-dependent defenses during infection by Pseudomonas syringae.Google Scholar
  102. Lavie, M., E. Shillington, C. Eguiluz, N. Grimsley, and C. Boucher. 2002 PopP1, a new member of the YopJ/AvrRxv family of type III effector proteins, acts as a host-specificity factor and modulates aggressiveness of Ralstonia solanacearum Molec. Plant-Microbe Interact. 15 1058–1068CrossRefGoogle Scholar
  103. Lee, J., B. Klusener, G. Tsiamis, C. Stevens, C. Neyt, A. P. Tampakaki, N. J. Panopoulos, J. Noller, E. W. Weiler, G. R. Cornelis, J. W. Mansfield, and T. Nurnberger. 2001 HrpZ(Psph) from the plant pathogen Pseudomonas syringae pv. phaseolicola binds to lipid bilayers and forms an ion-conducting pore in vitro Proc. Natl. Acad. Sci. USA 98 289–294PubMedGoogle Scholar
  104. Leister, R. T., F. M. Ausubel, and F. Katagiri. 1996 Molecular recognition of pathogen attack occurs inside of plant cells in plant disease resistance specified by the Arabidopsis genes RPS2 and RPM1 Proc. Natl. Acad. Sci. USA 93 15497–15502PubMedCrossRefGoogle Scholar
  105. Levi, C., and R. D. Durbin. 1986 The isolation and properties of a tabtoxin-hydrolysing aminopeptidase from the periplasm of Pseudomonas syringae pv. tabaci Physiol. Molec. Plant Pathol. 28 345–352CrossRefGoogle Scholar
  106. Lim, M. T., and B. N. Kunkel. 2004 The Pseudomonas syringae type III effector AvrRpt2 promotes virulence independently of RIN4, a predicted virulence target in Arabidopsis thaliana Plant J. 40 790–798PubMedCrossRefGoogle Scholar
  107. Lindgren, P. B., R. C. Peet, and N. J. Panopoulos. 1986 Gene cluster of Pseudomonas syringae pv. “phaseolicola” controls pathogenicity of bean plants and hypersensitivity on nonhost plants J. Bacteriol. 168 512–522PubMedGoogle Scholar
  108. Lund, S. T., R. E. Stall, and H. J. Klee. 1998 Ethylene regulates the susceptible response to pathogen infection in tomato Plant Cell 10 371–382PubMedGoogle Scholar
  109. Mackey, D., B. F. Holt, A. Wiig, and J. L. Dangl. 2002 RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis Cell 108 743–754PubMedCrossRefGoogle Scholar
  110. Mackey, D., Y. Belkhadir, J. M. Alonso, J. R. Ecker, and J. L. Dangl. 2003 Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance Cell 112 379–389PubMedCrossRefGoogle Scholar
  111. Marois, E., G. V. D. Ackerveken, and U. Bonas. 2002 The Xanthomonas type III effector protein AvrBs3 modulates plant gene expression and induces cell hypertrophy in the susceptible host Molec. Plant-Microbe Interact. 15 637–646CrossRefGoogle Scholar
  112. Martin, G. B., A. J. Bogdanove, and G. Sessa. 2003 Understanding the functions of plant disease resistance proteins Ann. Rev. Plant Biol. 54 23–61CrossRefGoogle Scholar
  113. Metzger, M., P. Bellemann, P. Bugert, and K. Geider. 1994 Genetics of galactose metabolism of Erwinia amylovora and its influence on polysaccharide synthesis and virulence of the fire blight pathogen J. Bacteriol. 176 450–459PubMedGoogle Scholar
  114. Mitchell, R. E., and R. L. Bieleski. 1977 Involvement of phaseolotoxin in halo blight [Pseudomonas phaseolicola] of beans: Transport and conversion to functional toxin Plant Physiol. 60 723–729PubMedCrossRefGoogle Scholar
  115. Moore, R. E., W. P. Niemczura, O. C. H. Kwok, and S. S. Patil. 1984 Inhibitors of ornithine carbamoyltransferase from Pseudomonas syringae pv. phaseolicola Tetrahedr. Lett. 25 3931–3934CrossRefGoogle Scholar
  116. Nawrath, C., and J. Metraux. 1999 Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation Plant Cell 11 1393–1404PubMedGoogle Scholar
  117. Nimchuk, Z., E. Marios, S. Kjemtrup, R. T. Leister, F. Katagiri, and J. L. Dangl. 2000 Eukaryotic fatty acylation drives plasma membrane targeting and enhances function of several type III effector proteins from Pseudomonas syringae Cell 101 353–363PubMedCrossRefGoogle Scholar
  118. Nimchuk, Z., L. Rohmer, J. H. Chang, and J. L. Dangl. 2001 Knowing the dancer from the dance: R-gene products and their interactions with other proteins from host and pathogen Curr. Opin. Plant Biol. 4 288–294PubMedCrossRefGoogle Scholar
  119. Niyogi, K. K., R. L. Last, G. R. Fink, and B. Keith. 1993 Suppressors of trp1 fluorescence identify a new Arabidopsis gene, TRP4, encoding the anthranilate synthase β subunit Plant Cell 5 1101–1027Google Scholar
  120. Noel, L., F. Thieme, D. Nennstiel, and U. Bonas. 2001 cDNA-AFLP analysis unravels a genome-wide hrpG-regulon in the plant pathogen Xanthomonas campestris pv. vesicatoria Molec. Microbiol. 41 1271–1281CrossRefGoogle Scholar
  121. Noel, L., F. Thieme, D. Nennstiel, and U. Bonas. 2002 Two novel type III-secreted proteins of Xanthomonas campestris pv. vesicatoria are encoded within the hrp pathogenicity island J. Bacteriol. 184 1340–1348PubMedCrossRefGoogle Scholar
  122. O’Donnell, P. J., E. A. Schmelz, P. Moussatche, S. T. Lund, J. B. Jones, and H. J. Klee. 2003 Susceptible to intolerance: A range of hormonal actions in a susceptible Arabidopsis pathogen response Plant J. 33 245–257PubMedCrossRefGoogle Scholar
  123. Orth, K., Z. Xu, M. B. Mudgett, Z. Q. Bao, L. E. Palmer, J. B. Bliska, W. F. Mangel, B. Staskawicz, and J. E. Dixon. 2000 Disruption of signaling by Yersinia effector YopJ, a ubiquitin-like protein protease Science 290 1594–1597PubMedCrossRefGoogle Scholar
  124. Osman, S. F., W. F. Fett, and M. L. Fishman. 1986 Exopolysaccharides of the phytopathogen Pseudomonas syringae pv. glycinea J. Bacteriol. 166 66–71PubMedGoogle Scholar
  125. Petnicki-Ocwieja, T., D. J. Schneider, V. C. Tam, S. T. Chancey, L. Shan, Y. Jamir, L. M. Schechter, M. D. Janes, C. R. Buell, X. Tang, A. Collmer, and J. R. Alfano. 2002 Genomewide identification of proteins secreted by the Hrp type III protein secretion system of Pseudomonas syringae pv. tomato DC3000 Proc. Natl. Acad. Sci. USA 99 7652–7657PubMedCrossRefGoogle Scholar
  126. Phelps, R. H., and L. Sequeira. 1968 Auxin biosynthesis in a host-parasite complex In: F. Wightman, and G. Setterfield (Eds.) Biochemistry and Physiology of Plant Growth Substances Ringe Ottawa Canada 197–212Google Scholar
  127. Pignocchi, C., and C. H. Foyer. 2003 Apoplastic ascorbate metabolism and its role in the regulation of cell signalling Curr. Opin. Plant Biol. 6 379–389PubMedCrossRefGoogle Scholar
  128. Ponciano, G., H. Ishihara, S. Tsuyumu, and J. E. Leach. 2003 Bacterial effectors in plant disease and defense: Keys to durable resistance? Plant Dis. 87 1272–1282CrossRefGoogle Scholar
  129. Quirino, B. F., and A. F. Bent. 2003 Deciphering host resistance and pathogen virulence: The Arabidopsis/Pseudomonas interaction as a model Molec. Plant Pathol. 4 517–530CrossRefGoogle Scholar
  130. Reymond, P., and E. E. Farmer. 1998 Jasmonate and salicylate as global signals for defense gene expression Curr. Opin. Plant Biol. 1 404–411PubMedCrossRefGoogle Scholar
  131. Rezzonico, E., N. Flury, F. Meins Jr., and R. Beffa. 1998 Transcriptional down-regulation by abscisic acid of pathogenesis-related beta-1,3-glucanase genes in tobacco cell cultures Plant Physiol. 117 585–592PubMedCrossRefGoogle Scholar
  132. Ritter, C., and J. L. Dangl. 1996 Interference between two specific pathogen recognition events mediated by distinct plant disease resistance genes Plant Cell 8 251–257PubMedGoogle Scholar
  133. Robinette, D., and A. G. Matthysse. 1990 Inhibition by Agrobacterium tumefaciens and Pseudomonas savastanoi of development of the hypersensitive response elicited by Pseudomonas syringae pv. phaseolicola J. Bacteriol. 172 5742–5749PubMedGoogle Scholar
  134. Rossier, O., G. van den Ackerveken, and U. Bonas. 2000 HrpB2 and HrpF from Xanthomonas are type III-secreted proteins and essential for pathogenicity and recognition by the host plant Molec. Microbiol. 38 828–838CrossRefGoogle Scholar
  135. Ryals, J. A., U. H. Neuenschwander, M. G. Willits, A. Molina, H. Steiner, and M. D. Hunt. 1996 Systemic acquired resistance Plant Cell 8 1809–1819PubMedGoogle Scholar
  136. Saile, E., J. A. McGarvey, M. A. Schell, and T. P. Denny. 1997 Role of extracellular polysaccharide and endoglucanase in root invasion and colonization of tomato plants by Ralstonia solanacearum Phytopathology 87 1264–1271PubMedCrossRefGoogle Scholar
  137. Salanoubat, M., S. Genin, F. Artiguenave, J. Gouzy, S. Mangenot, M. Arlat, A. Billault, P. Brottier, J. C. Camus, L. Cattolico, M. Chandler, N. Choisne, C. Claudel-Renard, S. Cunnac, N. Demange, C. Gaspin, M. Lavie, A. Moisan, C. Robert, W. Saurin, T. Schiex, P. Siguier, P. Thebault, M. Whalen, P. Wincker, M. Levy, J. Weissenbach, C. A. Boucher. 2002 Genome sequence of the plant pathogen Ralstonia solanacearum Nature 415 497–502PubMedCrossRefGoogle Scholar
  138. Sandkvist, M. 2001 Biology of type II secretion Molec. Microbiol. 40 271–283CrossRefGoogle Scholar
  139. Sasaki, Y., E. Asamizu, D. Shibata, Y. Nakamura, T. Kaneko, K. Awai, M. Amagai, C. Kuwata, T. Tsugane, T. Masuda, H. Shimada, K. Takamiya, H. Ohta, and S. Tabata. 2001 Monitoring of methyl jasmonate-responsive genes in Arabidopsis by cDNA macroarray: Self-activation of jasmonic acid biosynthesis and crosstalk with other phytohormone signaling pathways DNA Res. 8 153–161PubMedCrossRefGoogle Scholar
  140. Schell, M. A., D. P. Roberts, and T. P. Denny. 1988 Analysis of the Pseudomonas solanacearum polygalacturonase encoded by pglA and its involvement in phytopathogenicity J. Bacteriol. 170 4501–4508PubMedGoogle Scholar
  141. Scholz-Schroeder, B. K., M. L. Hutchison, I. Grgurina, and D. C. Gross. 2001 The contribution of syringopeptin and syringomycin to virulence of Pseudomonas syringae pv. syringae strain B301D on the basis of sypA and syrB1 biosynthesis mutant analysis Molec. Plant-Microbe Interact. 14 336–348CrossRefGoogle Scholar
  142. Schroth, M. N., D. C. Hildebrand, and M. P. Starr. 1981 Phytopathogenic members of the genus Pseudomonas In: M. P. Starr, H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel (Eds.) The Prokaryotes Springer Berlin Germany 701–718Google Scholar
  143. Shan, L., V. K. Thara, G. B. Martin, J. M. Zhou, and X. Tang. 2000 The Pseudomonas AvrPto protein is differentially recognized by tomato and tobacco and is localized to the plant plasma membrane Plant Cell 12 2323–2338PubMedGoogle Scholar
  144. Shao, F., P. M. Merritt, Z. Bao, R. W. Innes, and J. E. Dixon. 2002 A Yersinia effector and a Pseudomonas avirulence protein define a family of cysteine proteases functioning in bacterial pathogenesis Cell 109 575–588PubMedCrossRefGoogle Scholar
  145. Shao, F., C. Golstein, J. Ade, M. Stoutemyer, J. E. Dixon, and R. W. Innes. 2003 Cleavage of Arabidopsis PBS1 by a bacterial type III effector Science 301 1230–1233PubMedCrossRefGoogle Scholar
  146. Shinshi, H., D. Mohnen, and F. J. Meins. 1987 Regulation of a plant pathogenesis-related enzyme: Inhibition of chitinase and chitinase mRNA accumulation in cultured tobacco tissues by auxin and cytokinin Proc. Natl. Acad. Sci. USA 84 89–93PubMedCrossRefGoogle Scholar
  147. Staskawicz, B. J. 2001 Genetics of plant-pathogen interactions specifying plant disease resistance Plant Physiol. 125 73–76PubMedCrossRefGoogle Scholar
  148. Staskawicz, B. J., M. B. Mudgett, J. L. Dangl, and J. E. Galan. 2001 Common and contrasting themes of plant and animal diseases Science 292 2285–1189PubMedCrossRefGoogle Scholar
  149. Szurek, B., E. Marois, U. Bonas, and G. van den Ackerveken. 2001 Eukaryotic features of the Xanthomonas type III effector AvrBs3: Protein domains involved in transcriptional activation and the interaction with nuclear import receptors from pepper Plant J. 26 523–534PubMedCrossRefGoogle Scholar
  150. Szurek, B., O. Rossier, G. Hause, and U. Bonas. 2002 Type III-dependent translocation of the Xanthomonas AvrBs3 protein into the plant cell Molec. Microbiol. 46 13–23CrossRefGoogle Scholar
  151. Tao, Y., Z. Xie, W. Chen, J. Glazebrook, H. S. Chang, B. Han, T. Zhu, G. Zou, and F. Katagiri. 2003 Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae Plant Cell 15 317–330PubMedCrossRefGoogle Scholar
  152. Thomas, M. D., P. J. Langston-Unkefer, T. F. Uchytil, and R. D. Durbin. 1983 Inhibition of glutamine synthetase from pea by tabtoxinine-beta-lactam Pisum sativum, Pseudomonas syringae pv. tabaci pathogen Plant Physiol. 71 912–915PubMedCrossRefGoogle Scholar
  153. Thomma, B. P., I. A. Penninckx, W. F. Broekaert, and B. P. Cammue. 2001 The complexity of disease signaling in Arabidopsis Curr. Opin. Immunol. 13 63–68PubMedCrossRefGoogle Scholar
  154. Thordal-Christensen, H. 2003 Fresh insights into processes of nonhost resistance Curr. Opin. Plant Biol. 6 351–357PubMedCrossRefGoogle Scholar
  155. Toshima, H., Y. Niwayama, H. Nagata, F. Greulich, and A. Ichihara. 1993 Inhibitory effect of coronamic acid derivatives on senescence in cut carnation flowers Biosci. Biotechnol. Biochem. 57 1394–1395CrossRefGoogle Scholar
  156. Toth, I. K., K. S. Bell, M. C. Holeva, and P. R. J. Birch. 2003 Soft rot erwiniae: From genes to genomes Molec. Plant Pathol. 4 17–30CrossRefGoogle Scholar
  157. Tsiamis, G., J. W. Mansfield, R. Hockenhull, R. W. Jackson, A. Sesma, E. Athanassopoulos, M. A. Bennett, C. Stevens, A. Vivian, J. D. Taylor, and J. Murillo. 2000 Cultivar-specific avirulence and virulence functions assigned to avrPphF in Pseudomonas syringae pv. phaseolicola, the cause of bean halo-blight disease EMBO J. 19 3204–3214PubMedCrossRefGoogle Scholar
  158. Wasternack, C., and B. Parthier. 1997 Jasmonate-signaled plant gene expression Trends Plant Sci. 2 302–307CrossRefGoogle Scholar
  159. Weber, H. 2002 Fatty acid-derived signals in plants Trends Plant Sci. 7 217–224PubMedCrossRefGoogle Scholar
  160. Weiler, E. W., T. M. Kutchan, T. Gorba, W. Brodschelm, U. Niesel, and F. Bublitz. 1994 The Pseudomonas phytotoxin coronatine mimics octadecanoid signalling molecules of higher plants FEBS Lett. 345 9–13PubMedCrossRefGoogle Scholar
  161. Weingart, H., and B. Volksch. 1997 Ethylene production by Pseudomonas syringae pathovars in vitro and in planta Appl. Env. Microbiol. 63 156–161Google Scholar
  162. Weingart, H., H. Ullrich, K. Geider, and B. Volksch. 2001 The role of ethylene production in virulence of Pseudomonas syringae pvs. glycinea and phaseolicola Phytopathology 91 511–518PubMedCrossRefGoogle Scholar
  163. Wichmann, G., and J. Bergelson. 2004 Effector genes of Xanthomonas axonopodis pv. vesicatoria promote transmission and enhance other fitness traits in the field Genetics 166 693–706PubMedCrossRefGoogle Scholar
  164. Wildermuth, M. C., J. Dewdney, G. Wu, and F. M. Ausubel. 2001 Isochorismate synthase is required to synthesize salicylic acid for plant defense Nature. 414 562–565PubMedCrossRefGoogle Scholar
  165. Xiao, Y., and S. W. Hutcheson. 1994aA single promoter sequence recognized by a newly identified alternate sigma factor directs expression of pathogenicity and host range determinants in Pseudomonas syringae J. Bacteriol. 176 3089–3091PubMedGoogle Scholar
  166. Xiao, Y., S. Heu, J. Yi, Y. Lu, and S. W. Hutcheson. 1994bIdentification of a putative alternate sigma factor and characterization of a multicomponent regulatory cascade controlling the expression of Pseudomonas syringae pv. syringae Pss61 hrp and hrmA genes J. Bacteriol. 176 1025–1036PubMedGoogle Scholar
  167. Yamada, T. 1993 The role of auxin in plant-disease development Ann. Rev. Phytopathol. 31 253–273CrossRefGoogle Scholar
  168. Yu, J., A. Penaloza-Vazquez, A. M. Chakrabarty, and C. L. Bender. 1999 Involvement of the exopolysaccharide alginate in the virulence and epiphytic fitness of Pseudomonas syringae pv. syringae Molec. Microbiol. 33 712–720CrossRefGoogle Scholar
  169. Zhao, J., and R. L. Last. 1996 Coordinate regulation of the tryptophan biosynthetic pathway and indolic phytoalexin accumulation in Arabidopsis Plant Cell 8 2235–2244PubMedGoogle Scholar
  170. Zhao, Y., R. Thilmony, C. L. Bender, A. Schaller, S. Y. He, and G. A. Howe. 2003 Virulence systems of Pseudomonas syringae pv. tomato promote bacterial speck disease in tomato by targeting the jasmonate signaling pathway Plant J. 36 485–499PubMedCrossRefGoogle Scholar
  171. Zwiesler-Vollick, J., A. Plovanich-Jones, K. Nomura, S. Bandyopadhyay, V. Joardar, B. N. Kunkel, and S. Y. He. 2002 Identification of novel hrp-regulated genes through functional genomic analysis of the Pseudomonas syringae pv. tomato DC3000 genome Molec. Microbiol. 45 1207–1218CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Barbara N. Kunkel
  • Zhongying Chen

There are no affiliations available

Personalised recommendations