Acetogenic Prokaryotes

  • Harold L. Drake
  • Kirsten Küsel
  • Carola Matthies

Literature Cited

  1. Abrini, J., H. Naveau, and E.-J. Nyns. 1994 Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide Arch. Microbiol. 161 345–351CrossRefGoogle Scholar
  2. Adamse, A. D. 1980 New isolation of Clostridium aceticum (Wieringa) Ant. v. Leeuwenhoek 46 523–531CrossRefGoogle Scholar
  3. Adamse, A. D., and C. T. M. Velzeboer. 1982 Features of a Clostridium, strain CV-AA1, an obligatory anaerobic bacterium producing acetic acid from methanol Ant. v. Leeuwenhoek 48 305–313CrossRefGoogle Scholar
  4. Albers, B. E., and J. G. Ferry. 1994 A carbonic anhydrase from the archaeon Methanosarcina thermophila Proc. Natl. Acad. Sci. USA 91 6909–6913CrossRefGoogle Scholar
  5. Anderson, R. T., F. H. Chapelle, and D. R. Lovley. 1998 Evidence against hydrogen-based microbial ecosystems in basalt aquifers Science 281 976–977PubMedCrossRefGoogle Scholar
  6. Andreesen, J. R., G. Gottschalk, and H. G. Schlegel. 1970 Clostridium formicoaceticum nov. spec. isolation, description and distinction from C. aceticum and C. thermoaceticum Arch. Microbiol. 72 154–174Google Scholar
  7. Andreesen, J. R., A. Schaupp, C. Neurauter, A. Brown, and L. G. Ljungdahl. 1973 Fermentation of glucose, fructose, and xylose by Clostridium thermoaceticum: Effect of metals on growth yield, enzymes, and the synthesis of acetate from CO2 J. Bacteriol. 114 743–751PubMedGoogle Scholar
  8. Andreesen, J. R. 1994 Acetate via glycine: A different form of acetogenesis In: H. L. Drake (Ed.) Acetogenesis Chapman and Hall New York, NY 568–629CrossRefGoogle Scholar
  9. Anonymous. 2002 Chem. Week 164 33Google Scholar
  10. Arendsen, A. F., M. Q. Soliman, and S. W. Ragsdale. 1999 Nitrate-dependent regulation of acetate biosynthesis and nitrate respiration by Clostridium thermoaceticum J. Bacteriol. 181 1489–1495PubMedGoogle Scholar
  11. Aufurth, S., M. Madkour, F. Mayer, and V. Müller. 1998 Structure of the Na-driven flagellum from the homoacetogenic bacterium Acetobacterium woodii FEBS Lett. 434 325–328PubMedCrossRefGoogle Scholar
  12. Bache, R., and N. Pfennig. 1981 Selective isolation of Acetobacterium woodii on methoxylated aromatic acids and determination of growth yields Arch. Microbiol. 130 255–261CrossRefGoogle Scholar
  13. Bak, F., K. Finster, and F. Rothfuß. 1992 Formation of dimethylsulfide and methanethiol from methoxylated aromatic compounds and inorganic sulfide by newly isolated anaerobic bacteria Arch. Microbiol. 157 529–534Google Scholar
  14. Balch, W. E., S. Schoberth, R. S. Tanner, and R. S. Wolfe. 1977 Acetobacterium, a new genus of hydrogen-oxidizing, carbon dioxide-reducing, anaerobic bacteria Int. J. Sys. Bacteriol. 27 355–361CrossRefGoogle Scholar
  15. Balk, M., J. Weijma, M. W. Friedrich, and A. J. M. Stams. 2003 Methanol utilization by a novel thermophilic homoacetogenic bacterium, Moorella mulderi sp. nov., isolated from a bioreactor Arch. Microbiol. 179 315–320PubMedGoogle Scholar
  16. Banerjee, R., and S. W. Ragsdale. 2003 The many faces of vitamin B12: Catalysis by cobalamin-dependent enzymes Ann. Rev. Biochem. 72 209–247PubMedCrossRefGoogle Scholar
  17. Barik, S., S. Prieto, S. B. Harrison, E. C. Clausen, and J. L. Gaddy. 1988 Biological production of alcohols from coal through indirect liquefaction Appl. Biochem. Biotechnol. 18 363–378CrossRefGoogle Scholar
  18. Barker, H. A. 1944 On the role of carbon dioxide in the metabolism of Clostridium thermoaceticum Proc. Natl. Acad. Sci. USA 30 88–90PubMedCrossRefGoogle Scholar
  19. Barker, H. A., and M. D. Kamen. 1945 Carbon dioxide utilization in the synthesis of acetic acid by Clostridium thermoaceticum Proc. Natl. Acad. Sci. USA 31 219–225PubMedCrossRefGoogle Scholar
  20. Barlaz, M. A. 1997 Microbial studies of landfills and anaerobic refuse decomposition In: C. J. Hurst Manual of Environmental Microbiology ASM Press Washington, DC 541–557Google Scholar
  21. Baronofsky, J. J., W. J. A. Schreurs, and E. R. Kashket. 1984 Uncoupling by acetic acid limits growth of and acetogenesis by Clostridium thermoaceticum Appl. Environ. Microbiol. 48 1134–1139PubMedGoogle Scholar
  22. Beaty, P. S., and L. G. Ljungdahl. 1990 Thiosulfate reduction by Clostridium thermoaceticum and Clostridium thermoautotrophicum during growth on methanol Abstr. Ann. Meet. Am. Soc. Microbiol. Abstr. I-7 199Google Scholar
  23. Beaty, P. S., and L. G. Ljungdahl. 1991 Growth of Clostridium thermoaceticum on methanol, ethanol, propanol, and butanol in medium containing either thiosulfate or dimethylsulfoxide Abstr. Ann. Meet. Am. Soc. Microbiol. Abstr. K-131 236Google Scholar
  24. Berman, M. H., and A. C. Frazer. 1992 Importance of tetrahydrofolate and ATP in the anaerobic O-demethylation reaction for phenylmethylethers Appl. Environ. Microbiol. 58 925–931PubMedGoogle Scholar
  25. Bernalier, A., M. Lelait, V. Rochet, J.-P. Grivet, G. R. Gibson, and M. Durand. 1996a Acetogenesis from H2 and CO2 by methane-and non-methane-producing human colonic bacterial communities FEMS Microbiol. Ecol. 19 193–202CrossRefGoogle Scholar
  26. Bernalier, A., V. Rochet, M. Leclerc, J. Doré, and P. Pochart. 1996b Diversity of H2/CO2-utilizing acetogenic bacteria from feces of non-methane-producing humans Curr. Microbiol. 33 94–99PubMedCrossRefGoogle Scholar
  27. Bernalier, A., A. Willems, M. Leclerc, V. Rochet, and M. D. Collins. 1996c Ruminococcus hydrogenotrophicus sp. nov., a new H2/CO2-utilizing acetogenic bacterium isolated from human feces Arch. Microbiol. 166 176–183PubMedCrossRefGoogle Scholar
  28. Boga, H., and A. Brune. 2003 Hydrogen-dependent oxygen reduction by homoacetogenic bacteria isolated from termite guts Appl. Environ. Microbiol. 69 779–786PubMedCrossRefGoogle Scholar
  29. Boga, H. I., W. Ludwig, and A. Brune. 2003 Sporomusa aerivorans sp. nov., an oxygen-reducing homoacetogenic bacterium from a soil-feeding termite Int. J. Syst. Evol. Microbiol. 53 1397–1404PubMedCrossRefGoogle Scholar
  30. Bogdahn, M., J. R. Andreesen, and D. Kleiner. 1983 Pathways and regulation of N2, ammonium and glutamate assimilation by Clostridium formicoaceticum Arch. Microbiol. 134 167–169CrossRefGoogle Scholar
  31. Bomar, M., H. Hippe, and B. Schink. 1991 Lithotrophic growth and hydrogen metabolism by Clostridium magnum FEMS Microbiol. Lett. 83 347–350CrossRefGoogle Scholar
  32. Boone, D. R. 1991 Ecology of methanogenesis In: J. E. Rogers and W. B. Whitman Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes American Society for Microbiology Washington, DC 57–70Google Scholar
  33. Braker, G., J. Zhou, L. Lu, A. H. Devol, and J. M. Tiedje. 2000 Nitrite reductase genes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in Pacific Northwest marine sediment communities Appl. Environ. Microbiol. 66 2096–2104PubMedCrossRefGoogle Scholar
  34. Bramlett, M. R., X. Tan, and P. A. Lindahl. 2003 Inactivation of acetyl-CoA synthase/carbon monoxide dehydrogenase by copper J. Am. Chem. Soc. 125 9316–9317PubMedCrossRefGoogle Scholar
  35. Brauman, A., M. D. Kane, M. Labat, and J. A. Breznak. 1992 Genesis of acetate and methane by gut bacteria of nutritionally diverse termites Science 257 1384–1387PubMedCrossRefGoogle Scholar
  36. Braun, K., S. Schoberth, and G. Gottschalk. 1979 Enumeration of bacteria forming acetate from H2 and CO2 in anaerobic habitats Arch. Microbiol. 120 201–204PubMedCrossRefGoogle Scholar
  37. Braun, K., and G. Gottschalk. 1981 Effect of molecular hydrogen and carbon dioxide on chemo-organotrophic growth of Acetobacterium woodii and Clostridium aceticum Arch. Microbiol. 128 294–298PubMedCrossRefGoogle Scholar
  38. Braun, M., F. Mayer, and G. Gottschalk. 1981 Clostridium aceticum (Wieringa), a microorganism producing acetic acid from molecular hydrogen and carbon dioxide Arch. Microbiol. 128 288–293PubMedCrossRefGoogle Scholar
  39. Braun, M., and G. Gottschalk. 1982 Acetobacterium wieringae sp. nov., a new species producing acetic acid from molecular hydrogen and carbon dioxide Zbl. Bakt. Hyg. I. Abt. Orig. C3 368–376Google Scholar
  40. Braus-Stromeyer, S. A., C. Wagner, and H. L. Drake. 1996 Expression and localization of CO2-fixing enzymes during autotrophic growth by the acetogen Acetogenium kivuii Abstr. Ann. Meet. Am. Soc. for Microbiol. Abstr. K-162 563Google Scholar
  41. Braus-Stromeyer, S. A., G. Schnappauf, G. H. Braus, A. S. Gößner, and H. L. Drake. 1997 Carbonic anhydrase in Acetobacterium woodii and other acetogenic bacteria J. Bacteriol. 179 7197–7200PubMedGoogle Scholar
  42. Breznak, J. A., and J. M. Switzer. 1986 Acetate synthesis from H2 plus CO2 by termite gut microbes Appl. Environ. Microbiol. 52 623–630PubMedGoogle Scholar
  43. Breznak, J. A., J. M. Switzer, and H.-J. Seitz. 1988 Sporomusa termitida sp. nov., an H2/CO2-utilizing acetogen isolated from termites Arch. Microbiol. 150 282–288CrossRefGoogle Scholar
  44. Breznak, J. A., and M. D. Kane. 1990 Microbial H2/CO2 acetogenesis in animal guts: Nature and nutritional significance FEMS Microbiol. Rev. 87 309–314CrossRefGoogle Scholar
  45. Breznak, J. A., and J. Switzer Blum. 1991 Mixotrophy in the termite gut acetogen, Sporomusa termitida Arch. Microbiol. 156 105–110CrossRefGoogle Scholar
  46. Breznak, J. A. 1992 The genus Sporomusa In: A. Balows, H. G. Truper, M. Dworkin, W. Harder, and K.-H. Schleifer The Prokaryotes, 2nd ed Springer New York, NY 2016–2021Google Scholar
  47. Breznak, J. A. 1994 Acetogenesis from carbon dioxide in termite guts In: H. L. Drake (Ed.) Acetogenesis Chapmann and Hall New York, NY 303–330CrossRefGoogle Scholar
  48. Brock, T. D. 1989 Evolutionary relationships of the autotrophic bacteria In: H. G. Schlegel and B. Bowien Autotrophic Bacteria Science Tech Publishers Madison, WI 499–512Google Scholar
  49. Brulla, W. J., and M. P. Bryant. 1989 Growth of the syntrophic anaerobic acetogen, strain PA-1, with glucose or succinate as energy source Appl. Environ. Microbiol. 55 1289–1290PubMedGoogle Scholar
  50. Brumm, P. J. 1988 Fermentation of single and mixed substrates by the parent and an acid-tolerant, mutant strain of Clostridium thermoaceticum Biotechnol. Bioengin. 32 444–450CrossRefGoogle Scholar
  51. Brune, A., D. Emerson, and J. A. Breznak. 1995 The termite gut microflora as an oxygen sink: Microelectrode determination of oxygen and pH gradients in guts of lower and higher termites Appl. Environ. Microbiol. 61 2681–2687PubMedGoogle Scholar
  52. Brune, A., P. Frenzel, and H. Cypionka. 2000 Life at the oxic-anoxic interface: Microbial activities and adaptations FEMS Microbiol. Rev. 24 691–710PubMedGoogle Scholar
  53. Bryant, M. P. 1979 Microbial methane production—theoretical aspects J. Anim. Sci. 48 193–201Google Scholar
  54. Budavari, S. (Ed.). 1989 The Merck Index, 18th ed Merck Rahway, NJ 792Google Scholar
  55. Busche, R. M. 1991 Extractive fermentation of acetic acid: Economic tradeoff between yield of Clostridium and concentration of Acetobacter Appl. Biochem. Biotechnol. 28/29 605–621CrossRefGoogle Scholar
  56. Buschhorn, H., P. Dürre, and G. Gottschalk. 1989 Production and utilization of ethanol by the homoacetogen Acetobacterium woodii Appl. Environ. Microbiol. 55 1835–1840PubMedGoogle Scholar
  57. Byrer, D. E., F. A. Rainey, and J. Wiegel. 2000 Novel strains of Moorella thermoacetica form unusually heat-resistant spores Arch. Microbiol. 174 334–339PubMedCrossRefGoogle Scholar
  58. Cato, E. P., W. L. George, and S. M. Finegold. 1986 Genus Clostridium Prazmowski 1880 In: P. H. A. Sneath (Ed.) Bergey’s Manual of Systematic Bacteriology Williams and Wilkins Baltimore, MD 2 1141–1200Google Scholar
  59. Causey, T. B., S. Zhou, K. T. Shanmugam, and L. O. Ingram. 2003 Engineering the metabolism of Escherichia coli W3110 for the conversion of sugar to redox-neutral and oxidized products: Homoacetate production Proc. Natl. Acad. Sci. USA 100 825–832PubMedCrossRefGoogle Scholar
  60. Chaucheyras, F., G. Fonty, G. Bertin, and P. Gouet. 1995 In vitro H2 utilization by a ruminal acetogenic bacterium cultivated alone or in association with an archaea methanogen is stimulated by a probiotic strain of Saccharomyces cerevisiae Appl. Environ. Microbiol. 61 3466–3467PubMedGoogle Scholar
  61. Cheryan, M., and S. Parekh. 1992 Acetate and calcium magnesium acetate (CMA) production with mutant strains of Clostridium thermoaceticum ATCC 49707 Abstr. Ann. Meet. Am. Soc. Microbiol. Abstr. O-39 315Google Scholar
  62. Cheryan, M., S. Parekh, M. Shah, and K. Witjitra. 1997 Production of acetic acid by Clostridium thermoaceticum Adv. Appl. Microbiol. 43 1–33PubMedCrossRefGoogle Scholar
  63. Chidthaisong, A., B. Rosenstock, and R. Conrad. 1999 Measurement of monosaccharides and conversion of glucose to acetate in anoxic rice field soil Appl. Environ. Microbiol. 65 2350–2355PubMedGoogle Scholar
  64. Chin, K.-J., and R. Conrad. 1995 Intermediary metabolism in methanogenic paddy soil and the influence of temperature FEMS Microbiol. Ecol. 18 85–102CrossRefGoogle Scholar
  65. Christiansen, N., and B. K. Ahring. 1996 Desulfitobacterium hafniense sp. nov., an anaerobic reductively dechloronating bacterium Int J. Syst. Bacteriol. 46 442–448CrossRefGoogle Scholar
  66. Clark, J. E., and L. G. Ljungdahl. 1984 Purification and properties of 5,10-methylenetetrahydrofolate reductase, an iron-sulfur flavoprotein from Clostridium formicoaceticum J. Biol. Chem. 259 10845–10849PubMedGoogle Scholar
  67. Cleveland, L. R. 1925 The effect of oxygenation and starvation on the symbiosis between the termite, Termopsis, and its intestinal flagellates Biol. Bull. 48 309–326CrossRefGoogle Scholar
  68. Collins, M. D., P. A. Lawson, A. Willems, J. J. Cordoba, J. Fernandez-Garayzabal, P. Garcia, J. Cai, H. Hippe, and J. A. E. Farrow. 1994 The phylogeny of the genus Clostridium: Proposal of five new genera and eleven new species combinations Int. J. Syst. Bacteriol. 44 812–826PubMedCrossRefGoogle Scholar
  69. Conrad, R., F. Bak, H. J. Seitz, B. Thebrath, H. P. Mayer, and H. Schütz. 1989 Hydrogen turnover by psychrotrophic homoacetogenic and mesophilic methanogenic bacteria in anoxic paddy soil and lake sediment FEMS Microbiol. Ecol. 62 285–294CrossRefGoogle Scholar
  70. Conrad, R. 1993 Mechanisms controlling methane emission from wetland rice fields In: R. S. Oremalnd (Ed.) The Biogeochemistry of Global Change: Radiative Trace Gases Chapman and Hall New York, NY 317–335CrossRefGoogle Scholar
  71. Conrad, R. 1996 Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO) Microbiol. Rev. 60 609–640PubMedGoogle Scholar
  72. Cord-Ruwisch, R., and B. Ollivier. 1986 Interspecific hydrogen transfer during methanol degradation by Sporomusa acidovorans and hydrogenophilic anaerobes Arch. Microbiol. 144 163–165CrossRefGoogle Scholar
  73. Cord-Ruwisch, R., H.-J. Seitz, and R. Conrad. 1988 The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor Arch. Microbiol. 149 350–357CrossRefGoogle Scholar
  74. Cunningham, D. P., and L. L. Lundie Jr. 1993 Precipitation of cadmium by Clostridium thermoaceticum Appl. Environ. Microbiol. 59 7–14PubMedGoogle Scholar
  75. Cypionka, H. 2000 Oxygen respiration by Desulfovibrio species Ann. Rev. Microbiol. 54 827–848CrossRefGoogle Scholar
  76. Daniel, S. L., T. Hsu, S. I. Dean, and H. L. Drake. 1990 Characterization of the H2-and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui J. Bacteriol. 172 4464–4471PubMedGoogle Scholar
  77. Daniel, S. L., E. S. Keith, H. Yang, Y.-S. Lin, and H. L. Drake. 1991 Utilization of methoxylated aromatic compounds by the acetogen Clostridium thermoaceticum: Expression and specificity of the CO-dependent O-demethylating activity Biochem. Biophys. Res. Commun. 180 416–422PubMedCrossRefGoogle Scholar
  78. Daniel, S. L., and H. L. Drake. 1993 Oxalate-and glyoxylate-dependent growth and acetogenesis by Clostridium thermoaceticum Appl. Environ. Microbiol. 59 3062–3069PubMedGoogle Scholar
  79. Daniel, S. L., C. Pilsl, and H. L. Drake. 2004 Oxalate metabolism by the acetogenic bacterium Moorella thermoacetica FEMS Microbiol. Lett. 231 39–43PubMedCrossRefGoogle Scholar
  80. Darnault, C., A. Volberg, E. J. Kim, P. Legrand, X. Vernède, P. A. Lindahl, and J. C. Fontecilla-Camps. 2003 Ni-Zn-[Fe4-S4] and Ni-Ni-[Fe4-S4] clusters in closed and open α subunits of acetylCoA synthase/carbon monoxide dehydrogenase Nature Struct. Biol. 10 271–279PubMedCrossRefGoogle Scholar
  81. Das, A., J. Hugenholtz, H. van Halbeek, and L. G. Ljungdahl. 1989 Structure and function of a menaquinone involved in electron transport in membranes of Clostridium thermoautotrophicum and Clostridium thermoaceticum J. Bacteriol. 171 5823–5829PubMedGoogle Scholar
  82. Das, A., D. M. Ivey, and L. G. Ljungdahl. 1997 Purification and reconstitution into proteoliposomes of the F1F0 ATP synthase from the obligately anaerobic Gram-positive bacterium Clostridium thermoautotrophicum J. Bacteriol. 179 1714–1720PubMedGoogle Scholar
  83. Das, A., and L. G. Ljungdahl. 2000 Acetogenesis and acetogenic bacteria In: J. Lederberg (Ed.) Encyclopedia of Microbiology, 2nd ed Academic Press San Diego, CA 1 18–27Google Scholar
  84. Das, A., E. D. Coulter, D. M. Kurtz Jr., and L. G. Ljungdahl. 2001 Five-gene cluster in Clostridium thermoaceticum consisting of two divergent operons encoding rubredoxin oxidoreductase—rubredoxin and rubrerythrin-type flavodoxin—high-molecular-weight rubredoxin J. Bacteriol. 183 1560–1567PubMedCrossRefGoogle Scholar
  85. Das, A., and L. G. Ljungdahl. 2003 Electron transport systems in acetogens In: L. G. Ljungdahl, M. Adams, L. Barton, J. G. Ferry, and M. Johnson Biochemistry and Physiology of Anaerobic Bacteria Springer-Verlag New York, NY 191–204CrossRefGoogle Scholar
  86. Davidova, I. A., and A. J. M. Stams. 1996 Sulfate reduction with methanol by a thermophilic consortium obtained from a methanogenic reactor Appl. Microbiol. Biotechnol. 46 297–302CrossRefGoogle Scholar
  87. Davydova-Charakhch’yan, I. A., A. N. Mileeva, L. L. Mityushina, and S. S. Belyaev. 1992 Acetogenic bacteria from oil fields of Tataria and western Siberia Mikrobiologiya 61 306–315Google Scholar
  88. Dehning, I., M. Stieb, and B. Schink. 1989 Sporomusa malonica sp. nov., a homoacetogenic bacterium growing by decarboxylation of malonate or succinate Arch. Microbiol. 151 421–426CrossRefGoogle Scholar
  89. DeWeerd, K. A., A. Saxena, D. P. Nagle Jr., and J. M. Suflita. 1988 Metabolism of the 18O-methoxy substituent of 3-methoxybenzoic acid and other unlabeled methoxybenzoic acids by anaerobic bacteria Appl. Environ. Microbiol. 54 1237–1242PubMedGoogle Scholar
  90. Diekert, G., and R. K. Thauer. 1978 Carbon monoxide oxidation by Clostridium thermoaceticum and Clostridium formicoaceticum J. Bacteriol. 136 597–606PubMedGoogle Scholar
  91. Diekert, G., and M. Ritter. 1983 Purification of the nickel protein carbon monoxide dehydrogenase of Clostridium thermoaceticum FEBS Lett. 151 41–44PubMedCrossRefGoogle Scholar
  92. Diekert, G., M. Hansch, and R. Conrad. 1984 Acetate synthesis from 2 CO2 in acetogenic bacteria: Is carbon monoxide an intermediate? Arch. Microbiol. 138 224–228CrossRefGoogle Scholar
  93. Diekert, G., E. Schrader, W. Harder. 1986 Energetics of CO formation and CO oxidation in cell suspensions of Acetobacterium woodii Arch. Microbiol. 144 386–392CrossRefGoogle Scholar
  94. Diekert, G. 1992 The acetogenic bacteria In: A. Balows, H. G. Truper, M. Dworkin, W. Harder, and K.-H. Schleifer The Prokaryotes, 2nd ed Springer-Verlag New York, NY 517–533Google Scholar
  95. Diekert, G., and G. Wohlfarth. 1994a Energetics of acetogenesis from C1 units In: H. L. Drake (Ed.) Acetogenesis Chapman and Hall New York, NY 157–179CrossRefGoogle Scholar
  96. Diekert, G., and G. Wohlfarth. 1994b Metabolism of homoacetogens Ant. v. Leeuwenhoek 66 209–221CrossRefGoogle Scholar
  97. Dobrindt, U., and M. Blaut. 1996 Purification and characterization of a membrane-bound hydrogenase from Sporomusa sphaeroides involved in energy-transducing electron transport Arch. Microbiol. 165 141–147PubMedCrossRefGoogle Scholar
  98. Dolfing, J. 1988 Acetogenesis In: A. J. B. Zehnder (Ed.) Biology of Anaerobic Microorganisms Wiley New York, NY 417–468Google Scholar
  99. Doré, J., and M. P. Bryant. 1990 Metabolism of one-carbon compounds by the ruminal acetogen Syntrophococcus sucromutans Appl. Environ. Microbiol. 56 984–989PubMedGoogle Scholar
  100. Doré, J., P. Pochart, A. Bernalier, I. Goderel, B. Morvan, and J. C. Rambaud. 1995 Enumeration of H2-utilizing methanogenic archaea, acetogenic and sulfate-reducing bacteria from human feces FEMS Microbiol. Ecol. 17 279–284CrossRefGoogle Scholar
  101. Dorn, M., J. R. Andreesen, and G. Gottschalk. 1978 Fermentation of fumarate and L-malate by Clostridium formicoaceticum J. Bacteriol. 133 26–32PubMedGoogle Scholar
  102. Dörner, C., and B. Schink. 1991 Fermentation of mandelate to benzoate and acetate by a homoacetogenic bacterium Arch. Microbiol. 156 302–306CrossRefGoogle Scholar
  103. Doukov, T. I., T. M. Iverson, J. Sevavalli, S. W. Ragsdale, and C. L. Drennan. 2002 Ni-Fe-Cu center in a bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase Science 298 567–572PubMedCrossRefGoogle Scholar
  104. Drake, H. L., S.-I. Hu, and H. G. Wood. 1980 Purification of carbon monoxide dehydrogenase, a nickel enzyme from Clostridium thermoaceticum J. Biol. Chem. 255 7174–7180PubMedGoogle Scholar
  105. Drake, H. L., S.-I. Hu, and H. G. Wood. 1981a Purification of five components from Clostridium thermoaceticum which catalyze synthesis of acetate from pyruvate and methyltetrahydrofolate: Properties of phosphotransacetylase J. Biol. Chem. 255 7174–7180Google Scholar
  106. Drake, H. L., S.-I. Hu, and H. G. Wood. 1981b The synthesis of acetate from carbon monoxide plus methyltetrahydrofolate and the involvement of the nickel enzyme, CO dehydrogenase Abstr. Ann. Meet. Am. Soc. Microbiol. Abstr. K-42 144Google Scholar
  107. Drake, H. L. 1982 Demonstration of hydrogenase in extracts of the homoacetate-fermenting bacterium Clostridium thermoaceticum J. Bacteriol. 150 702–709PubMedGoogle Scholar
  108. Drake, H. L. 1992 Acetogenesis and acetogenic bacteria In: J. Lederberg (Ed.) Encyclopedia of Microbiology Academic Press San Diego, CA 1 1–15Google Scholar
  109. Drake, H. L. 1993 CO2, reductant, and the autrophic acetyl-CoA pathway: Alternative origins and destinations In: C. Murrell and D. P. Kelly Microbial Growth on C1 Compounds Intercept Ltd Andover, UK 493–507Google Scholar
  110. Drake, H. L. 1994 Acetogenesis, Acetogenic Bacteria, and the Acetyl-CoA “Wood/Ljungdahl” Pathway: Past and Current Perspectives In: H. L. Drake (Ed.) Acetogenesis Chapman and Hall New York, NY 3–60CrossRefGoogle Scholar
  111. Drake, H. L., S. L. Daniel, K. Küsel, C. Matthies, C. Kuhner, and S. Braus-Stromeyer. 1997 Acetogenic bacteria: What are the in situ consequences of their diverse metabolic versatilities? BioFactors 6 13–24PubMedCrossRefGoogle Scholar
  112. Drake, H. L., K. Küsel, and C. Matthies. 2002 Ecological consequences of the phylogenetic and physiological diversities of acetogens Ant. v. Leeuwenhoek 81 203–213CrossRefGoogle Scholar
  113. Drake, H. L., and K. Küsel. 2003 How the diverse physiological potentials of acetogens determine their in situ realities In: L. G. Ljungdahl, M. Adams, L. Barton, J. G. Ferry, and M. Johnson Biochemistry and Physiology of Anaerobic Bacteria Springer-Verlag New York, NY 171–190CrossRefGoogle Scholar
  114. Drake, H. L., and S. L. Daniel. 2004 Physiology of the thermophilic acetogen Moorella thermoacetica Res. Microbiol. 155(6) 422–36CrossRefGoogle Scholar
  115. Drake, H. L., and K. Küsel. 2005 Acetogenic clostridia In: P. Dürre (ed.) Handbook on Clostridia CRC Press Boca Raton, FL 920Google Scholar
  116. Drent, W. J., and J. C. Gottschal. 1991 Fermentation of inulin by a new strain of Clostridium thermoautotrophicum isolated from dahlia tubers FEMS Microbiol. Lett. 78 285–292CrossRefGoogle Scholar
  117. Dumitru, R., H. Palencia, S. D. Schroeder, B. A. DeMontigny, J. M. Takacs, M. E. Rasche, J. L. Miner, and S. W. Ragsdale. 2003 Targeting methanopterin biosynthesis to inhibit methanogenesis Appl. Environ. Microbiol. 69 7236–7241PubMedCrossRefGoogle Scholar
  118. Ebert, A., and A. Brune. 1997 Hydrogen concentration profiles at the oxic-anoxic interface: A microsensor study of the hindgut of the wood-feeding lower termite Reticulitermes flavipes (Kollar) Appl. Environ. Microbiol. 63 4039–4046PubMedGoogle Scholar
  119. Eck, R., and H. Simon. 1994a Preparation of both enantiomers of malic and citramalic acid and other hydroxysuccinic acid derivatives by stereospecific hydrations of cis and trans 2-butene-1,4-dioic acids with resting cells of Clostridium formicoaceticum Tetrahedron 50 13641–13654CrossRefGoogle Scholar
  120. Eck, R., and H. Simon. 1994b Preparation of (S)-2-substituted succinates by stereospecific reductions of fumarate and derivatives with resting cells of Clostridium formicoaceticum Tetrahedron 50 13631–13640CrossRefGoogle Scholar
  121. Eden, G., and G. Fuchs. 1982 Total synthesis of acetyl coenzyme A involved in autotrophic CO2 fixation in Acetobacterium woodii Arch. Microbiol. 133 66–74CrossRefGoogle Scholar
  122. Eden, G., and G. Fuchs. 1983 Autotrophic CO2 fixation in Acetobacterium woodii II: Demonstration of enzymes involved Arch. Microbiol. 135 68–73CrossRefGoogle Scholar
  123. Egli, C., T. Tschan, R. Scholtz, A. M. Cook, and T. Leisinger. 1988 Transformation of tetrachloromethane to dichloromethane and carbon dioxide by Acetobacterium woodii Appl. Environ. Microbiol. 54 2819–2824PubMedGoogle Scholar
  124. Eichler, B., and B. Schink. 1984 Oxidation of primary aliphatic alcohols by Acetobacterium carbinolicum sp. nov., a homoacetogenic anaerobe Arch. Microbiol. 140 147–152CrossRefGoogle Scholar
  125. El Ghazzawi, E. 1967 Neuisolierung von Clostridium formicoaceticum Wieringa und stoffwechselphysiologische Untersuchungen Arch. Mikrobiol. 57 1–19CrossRefGoogle Scholar
  126. Emde, R., and B. Schink. 1987 Fermentation of triacetin and glycerol by Acetobacterium sp.: No energy is conserved by acetate excretion Arch. Microbiol. 149 142–148CrossRefGoogle Scholar
  127. Ezaki, T., N. Li, Y. Hashimoto, H. Miura, and H. Yamamoto. 1994 16S ribosomal DNA sequences of anaerobic cocci and proposal of Ruminococcus hansenii comb. nov. and Ruminococcus productus comb. nov Int. J. Syst. Bacteriol. 44 130–136PubMedCrossRefGoogle Scholar
  128. Ferry, J. G. 1994 CO Dehydrogenase in Methanogens In: H. L. Drake (Ed.) Acetogenesis Chapman and Hall New York, NY 539–556CrossRefGoogle Scholar
  129. Fischer, F., R. Lieske, and K. Winzer. 1932 Biologische Gasreaktionen. II: Über die Bildung von Essigsäure bei der biologischen Umsetzung von Kohlenoxyd und Kohlensäure mit Wasserstoff zu Methan Biochem. Zeitschr. 245 2–12Google Scholar
  130. Fontaine, F. E., W. H. Peterson, E. McCoy, M. J. Johnson, and G. J. Ritter. 1942 A new type of glucose fermentation by Clostridium thermoaceticum n. sp J. Bacteriol. 43 701–715PubMedGoogle Scholar
  131. Frank, C., U. Schwarz, C. Matthies, and H. L. Drake. 1998 Metabolism of aromatic aldehydes as co-substrates by the acetogen Clostridium formicoaceticum Arch. Microbiol. 170 427–434PubMedCrossRefGoogle Scholar
  132. Frazer, A. C., and L. Y. Young. 1985 A Gram-negative anaerobic bacterium that utilizes O-methyl substituents of aromatic acids Appl. Environ. Microbiol. 49 1345–1347PubMedGoogle Scholar
  133. Frazer, A. C. 1994 O-demethylation and other transformations of aromatic compounds by acetogenic bacteria In: H. L. Drake (Ed.) Acetogenesis Chapman and Hall New York, NY 445–483CrossRefGoogle Scholar
  134. Freedman, D. L., and J. M. Gosset. 1991 Biodegradation of dichloromethane and its utilization as a growth substrate under methanogenic conditions Appl. Environ. Microbiol. 57 2847–2857PubMedGoogle Scholar
  135. Frings, J., and B. Schink. 1994a Fermentation of phenoxyethanol to phenol and acetate by a homoacetogenic bacterium Arch. Microbiol. 162 199–204PubMedCrossRefGoogle Scholar
  136. Frings, J., C. Wondrak, and B. Schink. 1994b Fermentative degradation of triethanolamine by a homoacetogenic bacterium Arch. Microbiol. 162 103–107PubMedCrossRefGoogle Scholar
  137. Fröstl, J. M., C. Seifritz, and H. L. Drake. 1996 Effect of nitrate on the autotrophic metabolism of the acetogens Clostridium thermoautotrophicum and Clostridium thermoaceticum J. Bacteriol. 178 4597–4603PubMedGoogle Scholar
  138. Fuchs, G., U. Schnitker, and R. K. Thauer. 1974 Carbon monoxide oxidation by growing cultures of Clostridium pasteurianum Eur. J. Biochem. 49 111–115PubMedCrossRefGoogle Scholar
  139. Fuchs, G. 1986 CO2 fixation in acetogenic bacteria: Variations on a theme FEMS Microbiol. Rev. 39 181–213CrossRefGoogle Scholar
  140. Fuchs, G. 1989 Alternative pathways of autotrophic CO2 fixation In: H. G. Schlegel and B. Bowien Autotrophic Bacteria Science Tech Publishers Madison, WI 365–382Google Scholar
  141. Fuchs, G. 1990 Alternatives to the Calvin cycle and the Krebs cycle in anaerobic bacteria: Pathways with carbonylation chemistry In: G. Hauska and R. Thauer The Molecular Basis of Bacterial Metabolism Springer-Verlag Berlin, Germany 13–20CrossRefGoogle Scholar
  142. Fuchs, G. 1994 Variations of the acetyl-CoA pathway in diversely related microorganisms that are not acetogens In: H. L. Drake (Ed.) Acetogenesis Chapman and Hall New York, NY 507–520CrossRefGoogle Scholar
  143. Furdui, C., and S. W. Ragsdale. 2000 The role of pyruvate ferredoxin oxidoreductase in pyruvate synthesis during autotrophic growth by the Wood-Ljungdahl pathway J. Biol. Chem. 275 28494–28499PubMedCrossRefGoogle Scholar
  144. Gaston, L. W., and E. R. Stadtman. 1963 Fermentation of ethylene glycol by Clostridium glycolicum sp. n J. Bacteriol. 85 356–362PubMedGoogle Scholar
  145. Geerligs, G., H. C. Aldrich, W. Harder, and G. Diekert. 1987 Isolation and characterization of a carbon monoxide utilizing strain of the acetogen Peptostreptococcus productus Arch. Microbiol. 148 305–313CrossRefGoogle Scholar
  146. Geerligs, G., P. Schönheit, and G. Diekert. 1989 Sodium dependent acetate formation from CO2 in Peptostreptococcus productus (strain Marburg) FEMS Microbiol. Lett. 57 253–258Google Scholar
  147. Gilbert, B., and P. Frenzel. 1995 Methanotrophic bacteria in the rhizosphere of rice microcosms and their effect on porewater methane concentration and methane emission Biol. Fertil. Soils 20 93–100CrossRefGoogle Scholar
  148. Gößner, A., S. L. Daniel, and H. L. Drake. 1994 Acetogenesis coupled to the oxidation of aromatic aldehyde groups Arch. Microbiol. 161 126–131CrossRefGoogle Scholar
  149. Gößner, A., and H. L. Drake. 1997 Characterization of a new thermophilic acetogen (PT-1) isolated from aggregated Kansas prairie soil Abstr. Ann. Meet. Am. Soc. Microbiol. Abstr. N-122 401Google Scholar
  150. Gößner, A. S., K. Kuesel, R. Devereux, and H. L. Drake. 1998 Occurrence of thermophilic acetogens in Egyptian soils Abstr. Ann. Meet. Am. Soc. Microbiol. Abstr. N-1 366Google Scholar
  151. Gößner, A., R. Devereux, N. Ohnemüller, G. Acker, E. Stackebrandt, and H. L. Drake. 1999 Thermicanus aegyptius gen. nov., sp. nov., isolated from oxic soil, a facultative microaerophile that grows commensally with the thermophilic acetogen Moorella thermoacetica Appl. Environ. Microbiol. 65 5124–5133PubMedGoogle Scholar
  152. Gottschalk, G., and M. Braun. 1981 Revival of the name Clostridium aceticum Int. J. Syst. Bacteriol. 31 476CrossRefGoogle Scholar
  153. Graber, J. R., and J. Breznak. 2004a Physiology and nutrition of Treponema primitia, an H2-CO2-acetogenic spirochete from termite hindguts Appl. Environ. Microbiol. 70 1307–1314PubMedCrossRefGoogle Scholar
  154. Graber, J. R., J. R. Leadbetter, and J. Breznak. 2004b Description of Treponema azotonutricium sp. nov., and Treponema primitia sp. nov., the first spirochetes isolated from termite guts Appl. Environ. Microbiol. 70 1315–1320PubMedCrossRefGoogle Scholar
  155. Grahame, D. A. 2003 Acetate C-C bond formation and decomposition in the anaerobic world: The structure of a central enzyme and its key active-site metal cluster Trends Biochem. Sci. 28 221–224PubMedCrossRefGoogle Scholar
  156. Greening, R. C., and J. A. Z. Leedle. 1989 Enrichment and isolation of Acetitomaculum ruminis, gen. nov., sp. nov.: Acetogenic bacteria from the bovine rumen Arch. Microbiol. 151 399–406PubMedCrossRefGoogle Scholar
  157. Grethlein, A. J., R. M. Worden, M. K. Jain, and R. Datta. 1991 Evidence for production of n-butanol from carbon monoxide by Butyribacterium methylotrophicum J. Ferment. Bioengin. 72 58–60CrossRefGoogle Scholar
  158. Grethlein, A. J., and M. K. Jain. 1992 Bioprocessing of coal-derived synthesis gases by anaerobic bacteria TIBTECH 10 418–423CrossRefGoogle Scholar
  159. Großkopf, R., S. Stubner, and W. Liesack. 1998 Novel euryarchaeotal lineages detected on rice roots and in the anoxic bulk soil of flooded rice microcosms Appl. Environ. Microbiol. 64 4983–4989Google Scholar
  160. Gunsalus, R. P., J. A. Romesser, and R. S. Wolfe. 1978 Preparation of coenzyme M analogs and their activity in the methyl-coenzyme M reductase in Methanobacterium thermoautotrophicum Biochemistry 17 2374–2377PubMedCrossRefGoogle Scholar
  161. Günther, H., K. Walter, P. Köhler, and H. Simon. 2000 On a new artificial mediator accepting NADP(H) oxidoreductase from Clostridium thermoaceticum J. Biotechnol. 83 253–267PubMedCrossRefGoogle Scholar
  162. Häggblom, M. M., M. H. Berman, A. C. Frazer, and L. Y. Young. 1993 Anaerobic O-demethylation of chlorinated guaiacols by Acetobacterium woodii and Eubacterium limosum Biodegradation 4 107–114CrossRefGoogle Scholar
  163. Hall, I. C., and E. O’Toole. 1935 Intestinal florain newborn infants with a description of a new patogenic anaerobe, Bacillus difficilis Am. J. Dis. Child. 49 390–402Google Scholar
  164. Hansen, B., M. Bokranz, P. Schönheit, and A. Kröger. 1988 ATP formation coupled to caffeate reduction by H2 in Acetobacterium woodii Nzva16 Arch. Microbiol. 150 447–451CrossRefGoogle Scholar
  165. Harriott, O. T., and A. C. Frazer. 1997 Enumeration of acetogens by a colorimetric most-probable-number assay Appl. Environ. Microbiol. 63 296–300PubMedGoogle Scholar
  166. Hashsham, S. A., and D. L. Freedman. 1999 Enhanced biotransformation of carbon tetrachloride by Acetobacterium woodii upon addition of hydroxocobalamin and fructose Appl. Environ. Microbiol. 65 4537–4542PubMedGoogle Scholar
  167. Hattori, S., Y. Kamagata, S. Hanada, and H. Shoun. 2000 Thermoacetogenium phaeum gen. nov., sp. nov., a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium Int. J. Syst. Evol. Microbiol. 50 1601–1609PubMedCrossRefGoogle Scholar
  168. Haveman, S. A., and K. Pedersen. 2002 Distribution of culturable microorganisms in Fennoscandian Shield groundwater FEMS Microbiol. Ecol. 39 129–137PubMedCrossRefGoogle Scholar
  169. Heijthuijsen, J. H. F. G., and T. A. Hansen. 1986 Interspecies hydrogen transfer in co-cultures of methanol-utilizing acidogens and sulfate-reducing or methanogenic bacteria FEMS Microbiol. Ecol. 38 57–64CrossRefGoogle Scholar
  170. Heijthuijsen, J. H. F. G., and T. A. Hansen. 1989 Selection of sulphur sources for the growth of Butyribacterium methylotrophicum and Acetobacterium woodii Appl. Microbiol. Biotechnol. 32 186–192CrossRefGoogle Scholar
  171. Heinonen, J. K., and H. L. Drake. 1988 Comparative assessment of inorganic pyrophosphate and pyrophosphatase levels of Escherichia coli, Clostridium pasteurianum, and Clostridium thermoaceticum FEMS Microbiol. Lett. 52 205–208CrossRefGoogle Scholar
  172. Heise, R., V. Müller, and G. Gottschalk. 1989 Sodium dependence of acetate formation by the acetogenic bacterium Acetobacterium woodii J. Bacteriol. 171 5473–5478PubMedGoogle Scholar
  173. Heise, R., J. Reidlinger, V. Müller, and G. Gottschalk. 1991 A sodium-stimulated ATP synthase in the acetogenic bacterium Acetobacterium woodii FEBS Lett. 295 119–122PubMedCrossRefGoogle Scholar
  174. Heise, R., V. Müller, and G. Gottschalk. 1992 Presence of a sodium-translocating ATPase in membrane vesicles of the homoacetogenic bacterium Acetobacterium woodii Eur. J. Biochem. 206 553–557PubMedCrossRefGoogle Scholar
  175. Heise, R., V. Müller, and G. Gottschalk. 1993 Acetogenesis and ATP synthesis in Acetobacterium woodii are coupled via a transmembrane primary sodium ion gradient FEMS Microbiol. Lett. 112 261–268CrossRefGoogle Scholar
  176. Hermann, M., M.-R. Popoff, and M. Sebald. 1987 Sporomusa paucivorans sp. nov., a methylotrophic bacterium that forms acetic acid from hydrogen and carbon dioxide Int. J. Sys. Bacteriol. 37 93–101CrossRefGoogle Scholar
  177. Hines, M. E., R. S. Evans, B. R. Sharak Genthner, S. G. Willis, S. Friedman, J. N. Rooney-Varga, and R. Devereux. 1999 Molecular phylogenetic and biogeochemical studies of sulfate-reducing bacteria in the rhizosphere of Spartina alterniflora Appl. Environ. Microbiol. 65 2209–2216PubMedGoogle Scholar
  178. Hippe, H., J. R. Andreesen, and G. Gottschalk. 1992 The genus Clostridium—nonmedical In: A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer The Prokaryotes, 2nd ed Springer New York, NY 1800–1866Google Scholar
  179. Hoehler, T. M., D. B. Albert, M. J. Alperin, and C. S. Martens. 1999 Acetogenesis from CO2 in an anoxic marine sediment Limnol. Oceanogr. 44 662–667CrossRefGoogle Scholar
  180. Holdeman, L. V., E. P. Cato, and W. E. C. Moore. 1977 Anaerobe Laboratory Manual, 4th ed Anaerobe Laboratory, Virginia Polytechnic Institute and State University Blacksburg, VI 1–156Google Scholar
  181. Holdeman-Moore, L. V., J. L. Johnson, and W. E. C. Moore. 1986 Genus Peptostreptococcus Kluyver and Van Niel 1936 In: P. H. A. Sneath (Ed.) Bergey’s Manual of Systematic Bacteriology Williams and Wilkins Baltimore, MD 2 1083–1092Google Scholar
  182. Holliger, C., and G. Schraa. 1994 Physiological meaning and potential for application of reductive dechlorination by anaerobic bacteria FEMS Microbiol. Rev. 15 297–305PubMedCrossRefGoogle Scholar
  183. Hsu, T., S. L. Daniel, M. F. Lux, and H. L. Drake. 1990a Biotransformations of carboxylated aromatic compounds by the acetogen Clostridium thermoaceticum: Generation of growth-supportive CO2 equivalents under CO2-limited conditions J. Bacteriol. 172 212–217PubMedGoogle Scholar
  184. Hsu, T., M. F. Lux, and H. L. Drake. 1990b Expression of an aromatic-dependent decarboxylase which provides growth-essential CO2 equivalents for the acetogenic (Wood) pathway of Clostridium thermoaceticum J. Bacteriol. 172 5901–5907PubMedGoogle Scholar
  185. Hu, S.-I., H. L. Drake, and H. G. Wood. 1982 Synthesis of acetyl coenzyme A from carbon monoxide, methyltetrahydrofolate, and coenzyme A by enzymes from Clostridium thermoaceticum J. Bacteriol. 149 440–448PubMedGoogle Scholar
  186. Hu, S.-I., E. Pezacka, and H. G. Wood. 1984 Acetate synthesis from carbon monoxide by Clostridium thermoaceticum: Purification of the corrinoid protein J. Biol. Chem. 259 8892–8897PubMedGoogle Scholar
  187. Huang, S., P. A. Lindahl, C. Wang, G. N. Bennett, F. B. Rudolph, and J. B. Hughes. 2000 2,4,6-trinitrotoluene reduction by carbon monoxide dehydrogenase from Clostridium thermoaceticum Appl. Environ. Microbiol. 66 1474–1478PubMedCrossRefGoogle Scholar
  188. Hugenholtz, J., D. M. Ivey, and L. G. Ljungdahl. 1987 Carbon monoxide-driven electron transport in Clostridium thermoautotrophicum membranes J. Bacteriol. 169 5845–5847PubMedGoogle Scholar
  189. Hugenholtz, J., and L. G. Ljungdahl. 1989 Electron transport and electrochemical proton gradient in membrane vesicles of Clostridium thermoautotrophicum J. Bacteriol. 171 2873–2875PubMedGoogle Scholar
  190. Hugenholtz, J., and L. G. Ljungdahl. 1990 Amino acid transport in membrane vesicles of Clostridium thermoautotrophicum FEMS Microbiol. Lett. 69 117–122CrossRefGoogle Scholar
  191. Hungate, R. E. 1943 Quantitative analyses on the cellulose fermentation by termite protozoa Ann. Entomol. Soc. Am. 36 730–739Google Scholar
  192. Hungate, R. E. 1966 The Rumen and its Microbes Academic Press New York, NYGoogle Scholar
  193. Hungate, R. E. 1969 A roll tube method for cultivation of strict anaerobes In: J. R. Norris and D. W. Ribbons Methods in Microbiology Academic Press New York, NY 3B 117–132Google Scholar
  194. Hungate, R. E. 1976 The rumen fermentation In: H. G. Schlegel, G. Gottschalk, and N. Pfennig Microbial Production and Utilization of Gases Goltze Göttingen, Germany 119–124Google Scholar
  195. Ibba, M., and G. H. Fynn. 1991 Two stage methanogenesis of glucose by Acetogenium kivui and acetoclastic methanogenic sp Biotechnol. Lett. 13 671–676CrossRefGoogle Scholar
  196. Imkamp, F., and V. Müller. 2002 Chemiosmotic energy conservation with Na+ as the coupling ion during hydrogen-dependent caffeate reduction by Acetobacterium woodii J. Bacteriol. 184 1947–1951PubMedCrossRefGoogle Scholar
  197. Inoue, K., S. Kageyama, K. Miki, T. Morinaga, Y. Kamagata, K. Nakamura, and E. Mikami. 1992 Vitamin B12 Production by Acetobacterium sp. and its tetrachloromethane-resistant mutants J. Ferment. Bioengin. 73 76–78CrossRefGoogle Scholar
  198. Ivey, D. M., and L. G. Ljungdahl. 1986 Purification and characterization of the F1-ATPase from Clostridium thermoaceticum J. Bacteriol. 165 252–257PubMedGoogle Scholar
  199. Jansen, M., and T. A. Hansen. 2001 Non-growth-associated demethylation of dimethylsulfoniopropionate by (homo)acetogenic bacteria Appl. Environ. Microbiol. 67 300–306PubMedCrossRefGoogle Scholar
  200. Johnson, M. S., I. B. Zhulin, M. E. Gapuzan, and B. L. Taylor. 1997 Oxygen-dependent growth of the obligate anaerobe Desulfovibrio vulgaris Hildenborough J. Bacteriol. 179 5598–5601PubMedGoogle Scholar
  201. Kamen, M. D. 1963 The early history of carbon-14 J. Chem. Ed. 40 234–242CrossRefGoogle Scholar
  202. Kamlage, B., and M. Blaut. 1993a Isolation of a cytochrome-deficient mutant strain of Sporomusa sphaeroides not capable of oxidizing methyl groups J. Bacteriol. 175 3043–3050PubMedGoogle Scholar
  203. Kamlage, B., A. Boelter, and M. Blaut. 1993b Spectroscopic and potentiometric characterization of cytochromes in two Sporomusa species and their expression during growth on selected substrates Arch. Microbiol. 159 189–196CrossRefGoogle Scholar
  204. Kamlage, B., B. Gruhl, and M. Blaut. 1997 Isolation and characterization of two new homoacetogenic hydrogen-utilizing bacteria from the human intestinal tract that are closely related to Clostridium coccoides Appl. Environ. Microbiol. 63 1732–1738PubMedGoogle Scholar
  205. Kane, M. D., and J. A. Breznak. 1991a Acetonema longum gen. nov. sp. nov., an H2/CO2 acetogenic bacterium from the termite, Pterotermes occidentis Arch. Microbiol. 156 91–98PubMedCrossRefGoogle Scholar
  206. Kane, M. D., A. Brauman, and J. A. Breznak. 1991b Clostridium mayombei sp. nov., an H2/CO2 acetogenic bacterium from the gut of the African soil-feeding termite, Cubitermes speciosus Arch. Microbiol. 156 99–104CrossRefGoogle Scholar
  207. Kaneuchi, C., Y. Benno, and T. Mitsuoka. 1976 Clostridium coccoides, a new species from the feces of mice Int. J. Syst. Bacteriol. 26 482–486CrossRefGoogle Scholar
  208. Kappler, O., P. H. Janssen, J.-U. Kreft, and B. Schink. 1997 Effects of alternative methyl group acceptors on the growth energetics of the O-demethylating anaerobe Holophaga foetida Microbiology 143 1105–1114CrossRefGoogle Scholar
  209. Karita, S., K. Nakayama, M. Goto, K. Sakka, W.-J. Kim, and S. Ogawa. 2003 A novel cellulolytic, anaerobic, and thermophilic bacterium, Moorella sp. strain F21 Biosci. Biotechnol. Biochem. 67 183–185PubMedCrossRefGoogle Scholar
  210. Karlsson, J. L., B. E. Volcani, and H. A. Barker. 1948 The nutritional requirements of Clostridium aceticum J. Bacteriol. 56 781–782Google Scholar
  211. Karnholz, A., K. Küsel, A. Gößner, A. Schramm, and H. L. Drake. 2002 Tolerance and metabolic response of acetogenic bacteria toward oxygen Appl. Environ. Microbiol. 68 1005–1009PubMedCrossRefGoogle Scholar
  212. Karrasch, M., M. Bott, and R. K. Thauer. 1989 Carbonic anhydrase activity in acetate grown Methanosarcina barkeri Arch. Microbiol. 151 137–142CrossRefGoogle Scholar
  213. Kaufmann, F., G. Wohlfarth, and G. Diekert. 1997 Isolation of O-demethylase, an ether-cleaving enzyme system of the homoacetogenic strain MC Arch. Microbiol. 168 136–142PubMedCrossRefGoogle Scholar
  214. Kaufmann, F., G. Wohlfarth, and G. Diekert. 1998 O-demethylase from Acetobacterium dehalogenans, substrate specificity and function of the participating proteins Eur. J. Biochem. 253 706–711PubMedCrossRefGoogle Scholar
  215. Kellum, R., and H. L. Drake. 1984 Effects of cultivation gas phase on hydrogenase of the acetogen Clostridium thermoaceticum J. Bacteriol. 160 466–469PubMedGoogle Scholar
  216. Kellum, R., and H. L. Drake. 1986 Effects of carbon monoxide on one-carbon enzymes and energetics of Clostridium thermoaceticum FEMS Microbiol. Lett. 34 41–45CrossRefGoogle Scholar
  217. Kerby, R., and J. G. Zeikus. 1983 Growth of Clostridium thermoaceticum on H2/CO2 or CO as energy source Curr. Microbiol. 8 27–30CrossRefGoogle Scholar
  218. Kerby, R., and J. G. Zeikus. 1987 Anaerobic catabolism of formate to acetate and CO2 by Butyribacterium methylotrophicum J. Bacteriol. 169 2063–2068PubMedGoogle Scholar
  219. Kim, J. S., H. Kim, K. Oh, and Y. S. Kim. 2002 Acetic acid production using xylose and corn steep liquor by Clostridium thermoaceticum strain J. Indust. Engin. Chem. 8 519–523Google Scholar
  220. Kisker, C., H. Schindelin, B. E. Alber, J. G. Ferry, and D. C. Rees. 1996 A left-handed β-helix revealed by the crystal structure of a carbonic anhydrase from the archaeon Methanosarcina thermophila EMBO J. 15 2323–2330PubMedGoogle Scholar
  221. Klemps, R., H. Cypionka, F. Widdel, and N. Pfennig. 1985 Growth with hydrogen, and further physiological characteristics of Desulfotomaculum sp Arch. Microbiol. 143 203–208CrossRefGoogle Scholar
  222. Klemps, R., S. M. Schoberth, and H. Sahm. 1987 Production of acetic acid by Acetogenium kivui Appl. Microbiol. Biotechnol. 27 229–234CrossRefGoogle Scholar
  223. Koesnandar, N. Nishio, A. Yamamoto, and S. Nagai. 1991 Enzymatic reduction of cystine into cysteine by cell-free extract of Clostridium thermoaceticum J. Ferment. Bioengin. 72 11–14CrossRefGoogle Scholar
  224. Kotelnikova, S., and K. Pedersen. 1997 Evidence for methanogenic Archaea and homoacetogenic bacteria in deep granitic rock aquifers FEMS Microbiol. Rev. 20 339–349CrossRefGoogle Scholar
  225. Kotelnikova, S., and K. Pedersen. 1998 Distribution and activity of methanogens in deep granitic aquifers at Äspö Hard Rock Laboratory, Sweden FEMS Microbiol. Ecol. 26 21–134Google Scholar
  226. Kotelnikova, S. 2002 Microbial production and oxidation of methane in deep subsurface Earth Sci. Rev. 58 367–395CrossRefGoogle Scholar
  227. Kotsyurbenko, O. R., M. V. Simankova, N. P. Bolotina, T. N. Zhilina, and A. N. Nozhevnikova. 1992 Psychrotrophic homoacetogenic bacteria from several environments Abstr. 7th Int. Symp. C1 Compounds Abstr. C136Google Scholar
  228. Kotsyurbenko, O. R., M. V. Simankova, A. N. Nozhevnikova, T. N. Zhilina, N. P. Bolotina, A. M. Lysenko, and G. A. Osipov. 1995 New species of psychrophilic acetogens: Acetobacterium bakii sp. nov., A. paludosum sp. nov., A. fimetarium sp. nov Arch. Microbiol. 163 29–34CrossRefGoogle Scholar
  229. Kotsyurbenko, O. R., A. N. Nozhevnikova, T. I. Soloviova, and G. A. Zavarin. 1996 Methanogenesis at low temperatures by microflora of tundra wetland soil Ant. v. Leeuwenhoek 69 75–86CrossRefGoogle Scholar
  230. Kreft, J.-U., and B. Schink. 1993 Demethylation and degradation of phenylmethylethers by the sulfide-methylating homoacetogenic bacterium strain TMBS 4 Arch. Microbiol. 159 308–315CrossRefGoogle Scholar
  231. Kreft, J.-U., and B. Schink. 1997 Specificity of O-demethylation in extracts of the homoacetogenic Holophaga foetida and demethylation kinetics measured by a coupled photometric assay Arch. Microbiol. 167 363–368CrossRefGoogle Scholar
  232. Krumböck, M., and R. Conrad. 1991 Metabolism of position-labelled glucose in anoxic methanogenic paddy soil and lake sediment FEMS Microbiol. Ecol. 85 247–256CrossRefGoogle Scholar
  233. Krumholz, L. R., and M. P. Bryant. 1985 Clostridium pfennigii sp. nov. uses methoxyl groups of monobenzenoids and produces butyrate Int. J. Sys. Bacteriol. 35 454–456CrossRefGoogle Scholar
  234. Krumholz, L. R., and M. P. Bryant. 1986 Syntrophococcus sucromutans sp. nov. gen. nov. uses carbohydrates as electron donors and formate, methoxymonobenzenoids or Methanobrevibacter as electron acceptor systems Arch. Microbiol. 143 313–318CrossRefGoogle Scholar
  235. Krumholz, L. R., J. P. McKinley, G. A. Ulrich, and J. M. Suflita. 1997 Confined subsurface microbial communities in Cretaceous rock Nature 386 64–66CrossRefGoogle Scholar
  236. Krumholz, L. R., S. H. Harris, S. T. Tay, and S. M. Suflita. 1999 Characterization of two subsurface H2-utilizing bacteria, Desulfomicrobium hypogeium sp. nov. and Acetobacterium psammolithicum sp. nov., and their ecological roles Appl. Environ. Microbiol. 65 2300–2306PubMedGoogle Scholar
  237. Krumholz, L. R. 2000 Microbial communities in the deep subsurface Hydrogeol. J. 8 4–10Google Scholar
  238. Kuever, J., J. Kulmer, S. Jannsen, U. Fischer, and K.-H. Blotevogel. 1993 Isolation and characterization of a new spore-forming sulfate-reducing bacterium growing by complete oxidation of catechol Arch. Microbiol. 159 282–288PubMedCrossRefGoogle Scholar
  239. Kuever, J., F. A. Rainey, and H. Hippe. 1999 Description of Desulfotomaculum sp. Groll as Desulfotomaculum gibsoniae sp. nov Int. J. Syst. Bacteriol. 49 1801–1808PubMedCrossRefGoogle Scholar
  240. Kuhner, C. H., C. Frank, A. Grießhammer, M. Schmittroth, G. Acker, A. Gößner, and H. L. Drake. 1997 Sporomusa silvacetica sp. nov., an actogenic bacterium isolated from aggregated forest soil Int. J. Syst. Bacteriol. 47 352–358PubMedCrossRefGoogle Scholar
  241. Kuhner, C. H., C. Matthies, G. Acker, M. Schmittroth, A. S. Gößner, and H. L. Drake. 2000 Clostridium akagii sp. nov. and Clostridium acidisoli sp. nov.: Acid-tolerant, N2-fixing clostridia isolated from acidic forest soil and litter Int. J. Syst. Evol. Microbiol. 50 873–881PubMedCrossRefGoogle Scholar
  242. Kurtz Jr., D. M. 2003 Oxygen and anaerobes In: L. G. Ljungdahl, M. Adams, L. Barton, J. G. Ferry, and M. Johnson Biochemistry and Physiology of Anaerobic Bacteria Springer-Verlag New York, NY 128–142CrossRefGoogle Scholar
  243. Küsel, K., and H. L. Drake. 1994 Acetate synthesis in soil from a Bavarian beech forest Appl. Environ. Microbiol. 60 1370–1373PubMedGoogle Scholar
  244. Küsel, K., and H. L. Drake. 1995 Effects of environmental parameters on the formation and turnover of acetate by forest soils Appl. Environ. Microbiol. 61 3667–3675PubMedGoogle Scholar
  245. Küsel, K., and H. L. Drake. 1996 Anaerobic capacities of leaf litter Appl. Environ. Microbiol. 62 4216–4219PubMedGoogle Scholar
  246. Küsel, K., and H. L. Drake. 1999a Microbial turnover of low molecular weight organic acids during leaf litter decomposition Soil Biol. Biochem. 31 107–118CrossRefGoogle Scholar
  247. Küsel, K., H. C. Pinkart, H. L. Drake, and R. Devereux. 1999b Acetogenic and sulfate-reducing bacteria inhabiting the rhizoplane and deep cortex cells of the sea grass Halodule wrightii Appl. Environ. Microbiol. 65 5117–5123PubMedGoogle Scholar
  248. Küsel, K., C. Wagner, and H. L. Drake. 1999c Enumeration and metabolic product profiles of the anaerobic microflora in the mineral soil and litter of a beech forest FEMS Microbiol. Ecol. 29 91–103CrossRefGoogle Scholar
  249. Küsel, K., T. Dorsch, G. Acker, E. Stackebrandt, and H. L. Drake. 2000 Clostridium scatologenes strain SL1 isolated as an acetogenic bacterium from acidic sediments Int. J. Syst. Evol. Microbiol. 50 537–546PubMedCrossRefGoogle Scholar
  250. Küsel, K., A. Karnholz, T. Trinkwalter, R. Devereux, G. Acker, and H. L. Drake. 2001 Physiological ecology of Clostridium glycolicum RD-1, an aerotolerant acetogen isolated from sea grass roots Appl. Environ. Microbiol. 67 4734–4741PubMedCrossRefGoogle Scholar
  251. Küsel, K., C. Wagner, T. Trinkwalter, A. S. Gößner, R. Bäumler, and H. L. Drake. 2002 Microbial reduction of Fe(III) and turnover of acetate in Hawaiian soils FEMS Microbiol. Ecol. 40 73–81PubMedCrossRefGoogle Scholar
  252. Küsel, K., A. Gößner, C. R. Lovell, and H. L. Drake. 2003 Ecophysiology of an aerotolerant acetogen, Sporomusa ST-1, isolated from Juncus roots Abstr. Ann. Meet. Am. Soc. Microbiol. Abstr. Q-375 582Google Scholar
  253. Lajoie, S. F., S. Bank, T. L. Miller, and M. J. Wolin. 1988 Acetate production from hydrogen and [13C]carbon dioxide by the microflora of human feces Appl. Environ. Microbiol. 54 2723–2727PubMedGoogle Scholar
  254. Laopaiboon, R., and R. S. Tanner. 1999 Effect of nitrate on acetogenesis by Clostridium ljungdahlii Abstr. Ann. Meet. Am. Soc. Microbiol. Abstr. K-18 404Google Scholar
  255. Leadbetter, J. R., and J. A. Breznak. 1996 Physiological Ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes Appl. Environ. Microbiol. 62 3620–3631PubMedGoogle Scholar
  256. Leadbetter, J. R., T. M. Schmidt, J. R. Graber, and J. A. Breznak. 1999 Acetogenesis from H2 plus CO2 by sprirochetes from termite guts Science 283 686–689PubMedCrossRefGoogle Scholar
  257. Leaphart, A., and C. R. Lovell. 2001 Recovery and analysis of formyltetrahydrofolate synthetase gene sequences from natural populations of acetogenic bacteria Appl. Environ. Microbiol. 67 1392–1395PubMedCrossRefGoogle Scholar
  258. Leaphart, A. B., H. T. Spencer, and C. R. Lovell. 2002 Site-directed mutagenesis of a potential catalytic and formyl phosphate binding site and substrate inhibition of N-10-formyltetrahydrofolate synthetase Arch. Biochem. Biophys. 408 137–143PubMedCrossRefGoogle Scholar
  259. Leaphart, A. B., M. J. Friez, and C. R. Lovell. 2003 Formyltetrahydrofolate synthetase sequences from salt marsh plant roots reveal a diversity of acetogenic bacteria and other bacterial functional groups Appl. Environ. Microbiol. 69 693–696PubMedCrossRefGoogle Scholar
  260. Lebloas, P., P. Loubiere, and N. D. Lindley. 1994 Use of unicarbon substrate mixtures to modify carbon flux improves vitamin B12 production with the acetogenic methylotroph Eubacterium limosum Biotechnol. Lett. 16 129–132CrossRefGoogle Scholar
  261. Leclerc, M., A. Bernalier, G. Donadille, and M. Lelait. 1997a H2/CO2 metabolism in acetogenic bacteria isolted from the human colon Anaerobe 3 307–315PubMedCrossRefGoogle Scholar
  262. Leclerc, M., A. Bernalier, M. Lelait, and J.-P. Grivet. 1997b 13C-NMR study of glucose and pyruvate catabolism in four acetogenic species isolated from the human colon FEMS Microbiol. Lett. 146 199–204PubMedCrossRefGoogle Scholar
  263. Lee, M. J., and S. H. Zinder. 1988 Isolation and characterization of a thermophilic bacterium which oxidizes acetate in syntrophic association with a methanogen and which grows acetogenically on H2-CO22 Appl. Environ. Microbiol. 54 124–129PubMedGoogle Scholar
  264. Leedle, J. A. Z., and R. C. Greening. 1988 Postprandial changes in methanogenic and acidogenic bacteria in the rumens of steers fed high-or low-forage diets once daily Appl. Environ. Microbiol. 54 502–506PubMedGoogle Scholar
  265. Leedle, J. A. Z., J. Lotrario, J. Hovermale, and A. M. Craig. 1995 Forestomach anaerobic microflora of the bowhead whale (Balaena mysticetus) Abstr. Ann. Meet. Am. Soc. Microbiol. Abstr. N-8 334Google Scholar
  266. Leigh, J. A., F. Mayer, and R. S. Wolfe. 1981 Acetogenium kivui, a new thermophilic hydrogen-oxidizing, acetogenic bacterium Arch. Microbiol. 129 275–280CrossRefGoogle Scholar
  267. Lentz, K., and H. G. Wood. 1955 Synthesis of acetate from formate and carbon dioxide by Clostridium thermoaceticum J. Biol. Chem. 215 645–654PubMedGoogle Scholar
  268. Le Ruyet, P., H. C. Dubourguier, abd G. Albagnac. 1984 Homoacetogenic fermentation of cellulose by a coculture of Clostridium thermocellum and Acetogenium kivui Appl. Environ. Microbiol. 48 893–894PubMedGoogle Scholar
  269. Liesack, W., F. Bak, J.-U. Kreft, and E. Stackebrandt. 1994 Holophaga foetida gen. nov., sp. nov., a new, homoacetogenic bacterium degrading methoxylated aromatic compounds Arch. Microbiol. 162 85–90PubMedGoogle Scholar
  270. Lilburn, T. G., T. M. Schmidt, and J. A. Breznak. 1999 Phylogenetic diversity of termite gut spirochaetes Environ. Microbiol. 1 331–345PubMedCrossRefGoogle Scholar
  271. Lindahl, P. A., and B. Chang. 2001 The evolution of acetyl-CoA synthase Orig. Life Evol. Biosph. 31 403–434PubMedCrossRefGoogle Scholar
  272. Lindahl, P. A. 2002 The Ni-containing carbon monoxide dehydrogenase family: Light at the end of the tunnel? Biochemistry (Moscow) 41 2097–2105Google Scholar
  273. Lindskog, S., L. E. Henderson, K. K. Kannan, A. Liljas, and P. O. B. Strandberg. 1971 Carbonic anhydrase The Enzymes 5 587–665CrossRefGoogle Scholar
  274. Liu, C.-L., N. Hart, and H. D. Peck Jr. 1982 Inorganic pyrophosphate: Energy source for sulfate-reducing bacteria of the genus Desulfotomaculum Science 217 363–364PubMedCrossRefGoogle Scholar
  275. Liu, S., and J. M. Suflita. 1993 H2/CO2-dependent anaerobic O-demethylation activity in subsurface sediments and by an isolated bacterium Appl. Environ. Microbiol. 59 1325–1331PubMedGoogle Scholar
  276. Ljungdahl, L., and H. G. Wood. 1965 Incorporation of C14 from carbon dioxide into sugar phosphates, carboxylic acids, and amino acids by Clostridium thermoaceticum J. Bacteriol. 89 1055–1064PubMedGoogle Scholar
  277. Ljungdahl, L., E. Irion, and H. G. Wood. 1966 Role of corrinoids in the total synthesis of acetate from CO2 by Clostridium thermoaceticum Fed. Proceed. 25 1642–1648Google Scholar
  278. Ljungdahl, L. G., and H. G. Wood. 1969 Total synthesis of acetate from CO2 by heterotrophic bacteria Ann. Rev. Microbiol. 23 515–538CrossRefGoogle Scholar
  279. Ljungdahl, L. G., and K.-E. Eriksson. 1985 Ecology of microbial cellulose degradation Adv. Microb. Ecol. 8 237–299CrossRefGoogle Scholar
  280. Ljungdahl, L. G., L. H. Carreira, and R. J. Garrison, N. E. Rabek, and J. Wiegel. 1985 Comparison of three thermophilic acetogenic bacteria for production of calcium magnesium acetate Biotechnol. Bioengin. Symp. 15 207–223Google Scholar
  281. Ljungdahl, L. G. 1986 The autotrophic pathway of acetate synthesis in acetogenic bacteria Ann. Rev. Microbiol. 40 415–450CrossRefGoogle Scholar
  282. Ljungdahl, L. G., J. Hugenholtz, and J. Wiegel. 1989 Acetogenic and acid-producing clostridia In: N. P. Minton and D. J. Clarke Clostridia Plenum Press New York, NY 145–191Google Scholar
  283. Ljungdahl, L. G. 1994 The acetyl-CoA pathway and the chemiosmotic generation of ATP during acetogenesis In: H. L. Drake (Ed.) Acetogenesis Chapman and Hall New York, NY 63–87CrossRefGoogle Scholar
  284. Loke, H. K., and P. A. Lindahl. 2003 Identification and preliminary characterization of AcsF, a putative Ni-insertase used in the biosynthesis of acetyl-CoA synthase from Clostridium thermoaceticum J. Inorg. Biochem. 93 33–40PubMedCrossRefGoogle Scholar
  285. Lorowitz, W. H., and M. P. Bryant. 1984 Peptostreptococcus productus strain that grows rapidly with CO as the energy source Appl. Environ. Microbiol. 47 961–964PubMedGoogle Scholar
  286. Loubiere, P., E. Gros, V. Paquet, and N. D. Lindley. 1992 Kinetics and physiological implications of the growth behaviour of Eubacterium limosum on glucose/methanol mixtures J. Gen. Microbiol. 138 979–985CrossRefGoogle Scholar
  287. Lovell, C. R., A. Przybyla, and L. G. Ljungdahl. 1990 Primary structure of the thermostable formyltetrahydrofolate synthetase from Clostridium thermoaceticum Biochemistry 29 5687–5694PubMedCrossRefGoogle Scholar
  288. Lovell, C. R., and Y. Hui. 1991 Design and testing of a functional group-specific DNA probe for the study of natural populations of acetogenic bacteria Appl. Environ. Microbiol. 57 2602–2609PubMedGoogle Scholar
  289. Lovell, C. R. 1994 Development of DNA probes for the detection and identification of acetogenic bacteria In: H. L. Drake (Ed.) Acetogenesis Chapman and Hall New York, NY 236–253CrossRefGoogle Scholar
  290. Lovell, C. R., Y. M. Piceno, J. M. Quattro, and C. E. Bagwell. 2000 Molecular analysis of diazotroph diversity in the rhizosphere of the smooth cordgrass Spartina alterniflora Appl. Environ. Microbiol. 66 3814–3822PubMedCrossRefGoogle Scholar
  291. Lowe, A., M. K. Jain, and J. G. Zeikus. 1993 Biology, ecology, and biotechnological applications of anaerobic bacteria adapted to envionmental stresses in temperature, pH, salinity, or substrates Microbiol. Rev. 57 451–509PubMedGoogle Scholar
  292. Ludwig, W., S. H. Bauer, M. Bauer, I. Held, G. Kirchhof, R. Schulze, I. Huber, S. Spring, A. Hartmann, and K.-H. Schleifer. 1997 Detection of in situ identification of representatives of a widely distributed new bacterial phylum FEMS Microbiol. Lett. 153 181–190PubMedCrossRefGoogle Scholar
  293. Lumppio, H. L., N. V. Shenvi, A. O. Summers, G. Voordrouw, and D. M. Kurtz Jr. 2001 Rubrerythrin and rubredoxin oxidoreductase in Desulfovibrio vulgaris: A novel oxidative stress protection system J. Bacteriol. 183 101–108PubMedCrossRefGoogle Scholar
  294. Lundie Jr., L. L., and H. L. Drake. 1984 Development of a minimally defined medium for the acetogen Clostridium thermoaceticum J. Bacteriol. 159 700–703PubMedGoogle Scholar
  295. Lupas, A., H. Engelhardt, J. Peters, U. Santarius, S. Volker, and W. Baumeister. 1994 Domain structure of the Acetogenium kivui surface layer revealed by electron crystallography and sequence analysis J. Bacteriol. 176 1224–1233PubMedGoogle Scholar
  296. Lux, M. F., E. Keith, T. Hsu, and H. L. Drake. 1990 Biotransformation of aromatic aldehydes by acetogenic bacteria FEMS Microbiol. Lett. 67 73–78CrossRefGoogle Scholar
  297. Lux, M. F., and H. L. Drake. 1992 Re-examination of the metabolic potentials of the acetogens Clostridium aceticum and Clostridium formicoaceticum: Chemolithoautotrophic and aromatic-dependent growth FEMS Microbiol. Lett. 95 49–56CrossRefGoogle Scholar
  298. Lynd, L., R. Kerby, and J. G. Zeikus. 1982 Carbon monoxide metabolism of the methylotrophic acidogen Butyribacterium methylotrophicum J. Bacteriol. 149 255–263PubMedGoogle Scholar
  299. Lynd, L. H., and J. G. Zeikus. 1983 Metabolism of H2-CO2, methanol, and glucose by Butyribacterium methylotrophicum J. Bacteriol. 153 1415–1423PubMedGoogle Scholar
  300. Mackie, R. I., and M. P. Bryant. 1994 Acetogenesis and the rumen: Syntrophic relationships In: H. L. Drake (Ed.) Acetogenesis Chapman and Hall New York, NY 331–364CrossRefGoogle Scholar
  301. Madsen, T., and D. Licht. 1992 Isolation and characterization of an anaerobic chlorophenol-transforming bacterium Appl. Environ. Microbiol. 58 2874–2878PubMedGoogle Scholar
  302. Marschall, C., P. Frenzel, and H. Cypionka. 1993 Influence of oxygen on sulfate reduction and growth of sulfate-reducing bacteria Arch. Microbiol. 159 168–173CrossRefGoogle Scholar
  303. Martin, D. R., L. L. Lundie, R. Kellum, and H. L. Drake. 1983 Carbon monoxide-dependent evolution of hydrogen by the homoacetate-fermenting bacterium Clostridium thermoaceticum Curr. Microbiol. 8 337–340CrossRefGoogle Scholar
  304. Martin, D. R., A. Misra, and H. L. Drake. 1985 Dissimilation of carbon monoxide to acetic acid by glucose-limited cultures of Clostridium thermoaceticum Appl. Environ. Microbiol. 49 1412–1417PubMedGoogle Scholar
  305. Matthies, C., A. Freiberger, and H. L. Drake. 1993 Fumarate dissimilation and differential reductant flow by Clostridium formicoaceticum and Clostridium aceticum Arch. Microbiol. 160 273–278CrossRefGoogle Scholar
  306. Matthies, C., C. H. Kuhner, G. Acker, and H. L. Drake. 2001 Clostridium uliginosum sp. nov., a novel acid-tolerant, anaerobic bacterium with connecting filaments Int. J. Syst. Evol. Microbiol. 51 1119–1125PubMedCrossRefGoogle Scholar
  307. Mayer, F., J. I. Elliott, D. Sherod, and L. G. Ljungdahl. 1982 Formyltetrahydrofolate synthetase from Clostridium thermoaceticum Eur. J. Biochem. 124 397–404PubMedCrossRefGoogle Scholar
  308. Maynard, E. L., and P. A. Lindahl. 1999 Evidence of a molecular tunnel connecting the active sites for CO2 reduction and acetyl-CoA synthesis in acetyl-CoA synthase from Clostridium thermoaceticum J. Am. Chem. Soc. 121 9221–9222CrossRefGoogle Scholar
  309. Maynard, E. L., and P. A. Lindahl. 2001 Catalytic coupling of the active sites in acetyl-CoA synthase, a bifunctional CO-channeling enzyme Biochemistry 40 13262–13267PubMedCrossRefGoogle Scholar
  310. McInerney, M. J., and M. P. Bryant. 1981 Basic principles of bioconversions in anaerobic digestion and methanogenesis In: S. S. Sofer and O. R. Zaborsky Biomass Conversion Processes for Energy and Fuels Plenum Press New York, NY 277–296CrossRefGoogle Scholar
  311. Mechichi, T., M. Labat, T. H. S. Woo, P. Thomas, J.-L. Garcia, and B. K. C. Patel. 1998 Eubacterium aggregans sp. nov., a new homoacetogenic bacterium from olive mill wastewater treatment digestor Anaerobe 4 283–291PubMedCrossRefGoogle Scholar
  312. Mechichi, T., M. Labat, B. K. C. Patel, T. H. S. Woo, P. Thomas, and J.-L. Garcia. 1999 Clostridium methoxybenzovorans sp. nov., a new aromatic O-demethylating homoacetogen from an olive mill wastewater treatment digester Int. J. Syst. Bacteriol. 49 1201–1209PubMedCrossRefGoogle Scholar
  313. Menzel, U., and G. Gottschalk. 1985 The internal pH of Acetobacterium wieringae and Acetobacter aceti during growth and production of acetic acid Arch. Microbiol. 143 47–51CrossRefGoogle Scholar
  314. Meßmer, M., G. Wohlfarth, and G. Diekert. 1993 Methyl chloride metabolism of the strictly anaerobic, methyl chloride-utilizing homoacetogen strain MC Arch. Microbiol. 160 383–387CrossRefGoogle Scholar
  315. Meßmer, M., S. Reinhardt, G. Wohlfarth, and G. Diekert. 1996 Studies on methyl chloride dehalogenase and O-demethylase in cell extracts of the homoacetogen strain MC based on a newly developed coupled enzyme assay Arch. Microbiol. 165 18–25CrossRefGoogle Scholar
  316. Meyer, O. 1988 Biology and biotechnology of aerobic carbon monoxide-oxidising bacteria In: M. Schlingmann, W. Crueger, K. Esser, R. Thauer, and F. Wagner Biotechnology Focus Hanser Publishers Munich, Germany, 1 3–31Google Scholar
  317. Meyer, O., K. Frunzke, and G. Mörsdorf. 1993 Biochemistry of the aerobic utilization of carbon monoxide In: J. C. Murrell and D. P. Kelly Microbial Growth on C1 Compounds Intercept Ltd. Andover, UK 433–459Google Scholar
  318. Meyer, O., L. Gremer, R. Ferner, M. Ferner, H. Dobbek, M. Gnida, W. Meyer-Klaucke, and R. Huber. 2000 The role of Se, Mo and Fe in the structure and function of carbon monoxide dehydrogenase Biol. Chem. 381 865–876PubMedCrossRefGoogle Scholar
  319. Mikx, F. H. M. 1997 Environmental effects on the growth and proteolysis of Treponema denticola ATCC 33520 Oral Microbiol. Immunol. 12 249–253PubMedCrossRefGoogle Scholar
  320. Miller, T. L., and M. J. Wolin. 1982 Enumeration of Methanobrevibacter smithii in human feces Arch. Microbiol. 141 116–122CrossRefGoogle Scholar
  321. Miller, T. L., and M. J. Wolin. 1995 Bioconversion of cellulose to acetate with pure cultures of Ruminococcus albus and a hydrogen-using acetogen Appl. Environ. Microbiol. 61 3832–3835PubMedGoogle Scholar
  322. Miller, T. L., and M. J. Wolin. 1996 Pathways of acetate, propionate, and butyrate formation by the human fecal microbial flora Appl. Environ. Microbiol. 62 1589–1592PubMedGoogle Scholar
  323. Min, H., and S. H. Zinder. 1990 Isolation and characterization of a thermophilic sulfate-reducing bacterium Desulfotomaculum thermoacetoxidans sp. nov Arch. Microbiol. 153 399–404CrossRefGoogle Scholar
  324. Misoph, M., and H. L. Drake. 1996a Effect of CO2 on the fermentation capacities of the acetogen Peptostreptococcus productus U-1 J. Bacteriol. 178 3140–3145PubMedGoogle Scholar
  325. Misoph, M., S. L. Daniel, and H. L. Drake. 1996b Bidirectional usage of ferulate by the acetogen Peptostreptococcus productus U-1: CO2 and aromatic acrylate groups as competing electron acceptors Microbiology 142 1983–1988CrossRefGoogle Scholar
  326. Moench, T. T., and J. G. Zeikus. 1983 An improved preparation method for a titanium (III) media reductant J. Microbiol. Meth. 1 199–202CrossRefGoogle Scholar
  327. Möller, B., R. Oßmer, B. H. Howard, G. Gottschalk, and H. Hippe. 1984 Sporomusa, a new genus of Gram-negative anaerobic bacteria including Sporomusa sphaeroides spec. nov. and Sporomusa ovata spec. nov Arch. Microbiol. 139 388–396CrossRefGoogle Scholar
  328. Moore, W., and E. Cato. 1965 Synonymy of Eubacterium limosum and Butyribacterium rettgeri Int. Bull. Bacteriol. Nomen. Taxon. 15 69–80Google Scholar
  329. Moore, W. E. C., and L. V. Holdeman. 1974 Human fecal flora: The normal flora of 20 Japanese-Hawaiians Appl. Microbiol. 27 961–979PubMedGoogle Scholar
  330. Morton, T. A., C.-F. Chou, and L. G. Ljungdahl. 1992 Cloning, sequencing, and expressions of genes encoding enzymes of the autotrophic acetyl-CoA pathway in the acetogen Clostridium thermoaceticum In: M. Sebald (Ed.) Genetics and Molecular Biology of Anaerobic Bacteria Springer-Verlag New York, NY 389–406Google Scholar
  331. Müller, V., and G. Gottschalk. 1994 The sodium ion cycle in acetogenic and methanogenic bacteria: Generation and utilization of a primary electrochemical sodium ion gradient In: H. L. Drake (Ed.) Acetogenesis Chapman and Hall New York, NY 127–156CrossRefGoogle Scholar
  332. Müller, V., and S. Bowien. 1995 Differential effects of sodium ions on motility in the homoacetogenic bacteria Acetobacterium woodii and Sporomusa sphaeroides Arch. Microbiol. 164 363–369CrossRefGoogle Scholar
  333. Müller, V., S. Aufurth, and S. Rahlfs. 2001 The Na+-cycle in Acetobacterium woodii: Identification and characterization of a Na+-translocating F1F0-ATPase with a mixed oligomer of 8 and 16-kDa proteolipids Biochim. Biophys. Acta 1505 108–120PubMedCrossRefGoogle Scholar
  334. Müller, V. 2003 Energy conservation in acetogenic bacteria Appl. Environ. Microbiol. 69 6345–6353PubMedCrossRefGoogle Scholar
  335. Müller, V., F. Inkamp, A. Rauwolf, K. Küsel, and H. L. Drake. 2004 Molecular and cellular biology of acetogenic bacteria In: M. Nakano and P. Zuber (Eds) Strict and Facultative Anaerobes: Medical and Environmental Aspects Horizon Scientific Press United Kingdom 392Google Scholar
  336. Nagaranthal, K. R., and D. P. Nagle Jr. 1992 Inhibition of methanogenesis in Methanobacterium thermoautotrophicum by lumazine Abstr. Ann. Meet. Am. Soc. Microbiol. Abstr. I-23 240Google Scholar
  337. Naidu, D., and S. W. Ragsdale. 2001 Characterization of a three-component vanillate O-demethylase from Moorella thermoacetica J. Bacteriol. 183 3276–3281PubMedCrossRefGoogle Scholar
  338. Nozhevnikova, A. N., O. R. Kotsyurbenko, and M. V. Simankova. 1994 Acetogenesis at low temperature In: H. L. Drake (Ed.) Acetogenesis Chapman and Hall New York, NY 416–431CrossRefGoogle Scholar
  339. Nozhevnikova, A. N., M. V. Simankova, S. N. Parshina, and O. R. Kotsyurbenko. 2001 Temperature characteristics of methanogenic archaea and acetogenic bacteria isolated from cold environments Water Sci. Technol. 44 41–48PubMedGoogle Scholar
  340. O’Brien, W. E., and L. G. Ljungdahl. 1972 Fermentation of fructose and synthesis of acetate from carbon dioxide by Clostridium formicoaceticum J. Bacteriol. 109 626–632PubMedGoogle Scholar
  341. O’Brien, W. E., J. M. Brewer, and L. G. Ljungdahl. 1973 Purification and characterization of thermostable 5,10-methylenetetrahydrofolate dehydrogenase from Clostridium thermoaceticum J. Biol. Chem. 248 403–408PubMedGoogle Scholar
  342. Ohwaki, K., and R. E. Hungate. 1977 Hydrogen utilization by clostridia in sewage sludge Appl. Environ. Microbiol. 33 1270–1274PubMedGoogle Scholar
  343. Ollivier, B., R. Cordruwisch, A. Lombardo, and J.-L. Garcia. 1985a Isolation and characterization of Sporomusa acidovorans sp. nov., a methylotrophic homoacetogenic bacterium Arch. Microbiol. 142 307–310CrossRefGoogle Scholar
  344. Ollivier, B. M., R. A. Mah, T. J. Ferguson, D. R. Boone, J. L. Garcia, and R. Robinson. 1985b Emendation of the genus Thermobacteroides: Thermobacteriodes proteolyticus sp. nov., a proteolytic acetogen from a methanogenic enrichment Int. J. Sys. Bacteriol. 35 425–428CrossRefGoogle Scholar
  345. Ollivier, B., P. Caumette, J.-L. Garcia, and R. A. Mah. 1994 Anaerobic bacteria from hypersaline environments Microbiol. Rev. 58 27–38PubMedGoogle Scholar
  346. Oren, A. 1988 Anaerobic degradation of organic compounds at high salt concentrations Ant. v. Leeuwenhoek 54 267–277CrossRefGoogle Scholar
  347. Oren, A. 1999 Bioenergetic aspects of halophilism Microbiol. Molec. Rev. 63 334–348Google Scholar
  348. Pacaud, S., P. Loubiere, and G. Goma. 1985 Methanol metabolism by Eubacterium limosum B2: Effects of pH and carbon dioxide on growth and organic acid production Curr. Microbiol. 12 245–250CrossRefGoogle Scholar
  349. Parekh, S. R., and M. Cheryan. 1991 Production of acetate by mutant strains of Clostridium thermoaceticum Appl. Microbiol. Biotechnol. 36 384–387CrossRefGoogle Scholar
  350. Parekh, M., E. S. Keith, S. L. Daniel, and H. L. Drake. 1992 Comparative evaluation of the metabolic potentials of different strains of Peptostreptococcus productus: Utilization and transformation of aromatic compounds FEMS Microbiol. Lett. 94 69–74CrossRefGoogle Scholar
  351. Park, E. Y., J. E. Clark, D. V. DerVartanian, and L. G. Ljungdahl. 1991 5,10-Methylenetetrahydrofolate reductases: Iron-sulfur-zinc flavoproteins of two acetogenic clostridia In: F. Müller (Ed.) Chemistry and Biochemistry of Flavoenzymes CRC Press Boca Raton, FL 1 389–400Google Scholar
  352. Patel, B. K. C., C. Monk, H. Littleworth, H. W. Morgan, and R. M. Daniel. 1987 Clostridium fervidus sp. nov., a new chemoorganotrophic acetogenic thermophile Int. J. Sys. Bacteriol. 37 123–126CrossRefGoogle Scholar
  353. Peters, V., and R. Conrad. 1995 Methanogenic and other strictly anaerobic bacteria in desert soil and other oxic soils Appl. Environ. Microbiol. 61 1673–1676PubMedGoogle Scholar
  354. Peters, V., and R. Conrad. 1996 Sequential reduction processes and initiation of CH4 production upon flooding of oxic upland soils Soil Biol. Biochem. 28 371–382CrossRefGoogle Scholar
  355. Peters, V., P. H. Janssen, and R. Conrad. 1998 Efficiency of hydrogen utilization during unitrophic and mixotrophic growth of Acetobacterium woodii on hydrogen and lactate in the chemostat FEMS Microbiol. Ecol. 26 317–324CrossRefGoogle Scholar
  356. Pezacka, E., and H. G. Wood. 1984a Role of carbon monoxide dehydrogenase in the autotrophic pathway used by acetogenic bacteria Proc. Natl. Acad. Sci. USA 81 6261–6265PubMedCrossRefGoogle Scholar
  357. Pezacka, E., and H. G. Wood. 1984b The synthesis of acetyl-CoA by Clostridium thermoaceticum from carbon dioxide, hydrogen, coenzyme A and methyltetrahydrofolate Arch. Microbiol. 137 63–69PubMedCrossRefGoogle Scholar
  358. Pezacka, E., and H. G. Wood. 1986 The autotrophic pathway of acetogenic bacteria: Role of CO dehydrogenase disulfide reductase J. Biol. Chem. 261 1609–1615PubMedGoogle Scholar
  359. Pfennig, N. 1978 Rhodocyclus purpureus gen. nov. and sp. nov., a ring-shaped, vitamin B12-requiring member of the family Rhodospirillaceae Int. J. Syst. Bacteriol. 28 283–288CrossRefGoogle Scholar
  360. Phelps, T. J., and J. G. Zeikus. 1984 Influence of pH on terminal carbon metabolism in anoxic sediments from a mildly acidic lake Appl. Environ. Microbiol. 48 1088–1095PubMedGoogle Scholar
  361. Phillips, J. R., E. C. Clausen, and J. L. Gaddy. 1994 Synthesis gas as substrate for the biological production of fuels and chemicals Appl. Biochem. Biotechnol. 45/46 145–157CrossRefGoogle Scholar
  362. Plugge, C. M., J. T. C. Grotenhuis, and A. J. M. Stams. 1990 Isolation and characterization of an ethanol-degrading anaerobe from methanogenic granular sludge In: J.-P. Belaich, M. Bruschiand, and J.-L. Garcia Microbiology and Biochemistry of Strict Anaerobes Involved in Interspecies Hydrogen Transfer Plenum Press New York, NY FEMS Symposium No. 54 439–442CrossRefGoogle Scholar
  363. Pochart, P., J. Dore, F. Lemann, I. Goderel, and J. C. Rambaud. 1992 Interrelations between populations of methanogenic archaea and sulphate-reducing bacteria in the human colon FEMS Microbiol. Lett. 98 225–228Google Scholar
  364. Poston, J. M., K. Kuratomi, and E. R. Stadtman. 1964 Methyl-vitamin B12 as a source of methyl groups for the synthesis of acetate by cell-free extracts of Clostridium thermoaceticum Ann. NY Acad. Sci. 112 804–806PubMedCrossRefGoogle Scholar
  365. Preuss, A., J. Fimpel, and G. Diekert. 1993 Anaerobic transformation of 2,4,6-trinitrotoluene (TNT) Arch. Microbiol. 159 345–353PubMedCrossRefGoogle Scholar
  366. Prins, R. A., and A. Lankhorst. 1977 Synthesis of acetate from CO2 in the cecum of some rodents FEMS Microbiol. Lett. 1 255–258CrossRefGoogle Scholar
  367. Radfar, R., R. Shin, G. M. Sheldrick, W. Minor, C. R. Lovell, J. D. Odom, R. B. Dunlap, and L. Lebioda. 2000 The crystal structure of N10-formyltetrahydrofolate synthetase from Moorella thermoacetica Biochemistry (Moscow) 39 3920–3926Google Scholar
  368. Ragsdale, S. W., J. E. Clark, L. G. Ljungdahl, L. L. Lundie, and H. L. Drake. 1983 Properties of purified carbon monoxide dehydrogenase from Clostridium thermoaceticum, a nickel, iron-sulfide protein J. Biol. Chem. 258 2364–2369PubMedGoogle Scholar
  369. Ragsdale, S. W., and L. G. Ljungdahl. 1984 Hydrogenase from Acetobacterium woodii Arch. Microbiol. 139 361–365PubMedCrossRefGoogle Scholar
  370. Ragsdale, S. W., H. G. Wood, and W. E. Antholine. 1985 Evidence that an iron-nickel-carbon complex is formed by reaction of CO with the CO dehydrogenase from Clostridium thermoaceticum Proc. Natl. Acad. Sci. USA 82 6811–6814PubMedCrossRefGoogle Scholar
  371. Ragsdale, S. W. 1991 Enzymology of the acetyl-CoA pathway of CO2 fixation Crit. Rev. Biochem. Molec. Biol. 26 261–300CrossRefGoogle Scholar
  372. Ragsdale, S. W. 1994 CO dehydrogenase and the central role of this enzyme in the fixation of carbon dioxide by anaerobic bacteria In: H. L. Drake (Ed.) Acetogenesis Chapman and Hall New York, NY 88–126CrossRefGoogle Scholar
  373. Ragsdale, S. W., and M. Kumar. 1996 Nickel-containing carbon monoxide dehydrogenase/acetyl-CoA synthase Chem. Rev. 96 2515–2539PubMedCrossRefGoogle Scholar
  374. Ragsdale, S. W. 1997 The Eastern and Western branches of the Wood/Ljungdahl pathway: How the East and West were won BioFactors 6 3–11PubMedCrossRefGoogle Scholar
  375. Ragsdale, S. W. 2000 Nickel containing CO dehydrogenases and hydrogenases In: A. Holzenburg and N. Scrutton Enzyme-catalyzed Electron and Radical Transfer Plenum Press New York, NY 35 487–518Google Scholar
  376. Ragsdale, S. W. 2003a Anaerobic one-carbon catalysis In: I. T. Horvath, E. Iglesia, M. T. Klein, J. A. Lercher, A. J. Russell, and E. I. Stiefel Encyclopedia of Catalysis John Wiley New York, NY 665–695Google Scholar
  377. Ragsdale, S. W. 2003b Pyruvate ferredoxin oxidoreductase and its radical intermediate Chem. Rev. 103 2333–2346PubMedCrossRefGoogle Scholar
  378. Ragsdale, S. W. 2004 Life with carbon monoxide CRC Crit. Rev. Biochem. Molec. Biol. 39(3) 165–95CrossRefGoogle Scholar
  379. Rainey, F. A., N. L. Ward, H. W. Morgan, R. Toalster, and E. Stackebrandt. 1993 Phylogenetic analysis of anaerobic thermophilic bacteria: Aid for their reclassification J. Bacteriol. 175 4772–4779PubMedGoogle Scholar
  380. Rasch, M., W. O. Saxton, and W. Baumeister. 1984 The regular surface layer of Acetogenium kivui: Some structural, developmental and evolutionary aspects FEMS Microbiol. Lett. 24 285–290CrossRefGoogle Scholar
  381. Ravinder, T., M. V. Swamy, G. Seenaya, and G. Reddy. 2001 Clostridium lentocellum SG6—a potential organism for fermentation of cellulose to acetic acid Biores. Technol. 80 171–177CrossRefGoogle Scholar
  382. Reidlinger, J., and V. Müller. 1994a Purification of ATP synthase from Acetobacterium woodii and identification as a Na+-translocating F1F0-type enzyme Eur. J. Biochem. 223 275–283PubMedCrossRefGoogle Scholar
  383. Reidlinger, J., F. Mayer, and V. Müller. 1994b The molecular structure of the Na+-translocating F1F0-ATPase of Acetobacterium woodii, as revealed by electron microscopy, resembles that of H+-translocating ATPases FEBS Lett. 356 17–20PubMedCrossRefGoogle Scholar
  384. Reith, F., H. L. Drake, and K. Küsel. 2002 Anaerobic activities of bacteria and fungi in moderately acidic conifer and leaf litter FEMS Microbiol. Ecol. 41 27–35PubMedCrossRefGoogle Scholar
  385. Revsbech, N. P., O. Pedersen, W. Reichardt, and A. Briones. 1999 Microsensor analysis of oxygen and pH in the rice rhizosphere under field and laboratory conditions Biol. Fertil. Soils 29 379–385CrossRefGoogle Scholar
  386. Rieu-Lesme, F., G. Fonty, and J. Doré. 1995 Isolation and characterization of a new hydrogen-utilizing bacterium from the rumen FEMS Microbiol. Lett. 125 77–82PubMedCrossRefGoogle Scholar
  387. Rieu-Lesme, F., C. Dauga, B. Morvan, O. M. M. Bouvet, P. A. D. Grimont, and J. Doré. 1996a Acetogenic coccoid spore-forming bacteria isolated from the rumen Res. Microbiol. 147 753–764PubMedCrossRefGoogle Scholar
  388. Rieu-Lesme, F., B. Morvan, M. D. Collins, G. Fontyand, and A. Willems. 1996b A new H2/CO2-using acetogenic bacterium from the rumen: Description of Ruminococcus schinkii sp. nov FEMS Microbiol. Lett. 140 281–286PubMedGoogle Scholar
  389. Rieu-Lesme, F., C. Dauga, G. Fonty, and J. Doré. 1998 Isolation from the rumen of a new acetogenic bacterium phylogenetically closely related to Clostridium difficile Anaerobe 4 89–94PubMedCrossRefGoogle Scholar
  390. Rosencrantz, D., F. A. Rainey, and P. H. Janssen. 1999 Culturable populations of Sporomusa spp. and Desulfovibrio spp. in the anoxic bulk soil of flooded rice microcosms Appl. Environ. Microbiol. 65 3526–3533PubMedGoogle Scholar
  391. Rotthauwe, J. H., K. P. Witzel, and W. Liesack. 1997 The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidising populations Appl. Environ. Microbiol. 63 4704–4712PubMedGoogle Scholar
  392. Royall, D., T. M. S. Wolever, and K. N. Jeejeebhoy. 1990 Clinical significance of colonic fermentation Am. J. Gastroenetrol. 85 1307–1312Google Scholar
  393. Salmassi, T. M., and J. R. Leadbetter. 2003 Analysis of genes of tetrahydrofolate-dependent metabolism from cultivated spirochaetes and the gut community of the termite Zootermopsis angusticollis Microbiology 149 2529–2537PubMedCrossRefGoogle Scholar
  394. Samain, E., G. Albangnac, H. C. Dubourguier, and J.-P. Touzel. 1982 Characterization of a new propionic acid bacterium that ferments ethanol and displays a growth factor-dependent association with a gram-negative homoacetogen FEMS Microbiol. Lett. 15 69–74CrossRefGoogle Scholar
  395. Sanford, R. A., J. R. Cole, F. E. Löffler, and J. M. Tiedje. 1996 Characterization of Desulfitobacterium chlororespirans sp. nov., which grows by coupling the oxidation of lactate to the reductive dechlorination of 3-chloro-4-hydroxybenzoate Appl. Environ. Microbiol. 62 3800–3808PubMedGoogle Scholar
  396. Sansone, F. J., and C. S. Martens. 1982 Volatile fatty acid cycling in organic-rich marine sediments Geochim. Cosmochim. Acta 46 1575–1589CrossRefGoogle Scholar
  397. Savage, M. D., and H. L. Drake. 1986 Adaptation of the acetogen Clostridium thermoautotrophicum to minimal medium J. Bacteriol. 165 315–318PubMedGoogle Scholar
  398. Savage, M. D., Z. Wu, S. L. Daniel, L. L. Lundie Jr., and H. L. Drake. 1987 Carbon monoxide-dependent chemolithotrophic growth of Clostridium thermoautotrophicum Appl. Environ. Microbiol. 53 1902–1906PubMedGoogle Scholar
  399. Schauder, R., B. Eikmanns, R. K. Thauer, F. Widdel, and G. Fuchs. 1986 Acetate oxidation to CO2 in anaerobic bacteria via a novel pathway not involving reactions of the critic acid cycle Arch. Microbiol. 145 162–172CrossRefGoogle Scholar
  400. Schaupp, A., and L. G. Ljungdahl. 1974 Purification and properties of acetate kinase from Clostridium thermoaceticum Arch. Microbiol. 100 121–129PubMedCrossRefGoogle Scholar
  401. Schink, B. 1984 Clostridium magnum sp. nov., a non-autotrophic homoacetogenic bacterium Arch. Microbiol. 137 250–255CrossRefGoogle Scholar
  402. Schink, B., and M. Bomar. 1992 The genera Acetobacterium, Acetogenium, Acetoanaerobium, and Acetitomaculum In: A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer The Prokaryotes, 2nd ed Springer New York, NY 1925–1936Google Scholar
  403. Schink, B. 1994 Diversity, ecology, and isolation of acetogenic bacteria In: H. L. Drake (Ed.) Acetogenesis Chapman and Hall New York, NY 197–235CrossRefGoogle Scholar
  404. Schmitt-Wagner, D., and A. Brune. 1999 Hydrogen profiles and localization of methanogenic activities in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp.) Appl. Environ. Microbiol. 65 4490–4496PubMedGoogle Scholar
  405. Schnürer, A., F. P. Houwen, and B. H. Svensson. 1994 Mesophilic syntrophic acetate oxidation during methane formation by a triculture at high ammonium concentration Arch. Microbiol. 162 70–74CrossRefGoogle Scholar
  406. Schnürer, A., B. Schink, and B. H. Svensson. 1996 Clostridium ultunense sp. nov., a mesophilic bacterium oxidizing acetate in syntrophic association with a hydrogenotrophic methanogenic bacterium Int. J. Syst. Bacteriol. 46 1145–1152PubMedCrossRefGoogle Scholar
  407. Schnürer, A., B. H. Svensson, and B. Schink. 1997 Enzyme activities in and energetics of acetate metabolism by the mesophilic syntrophically acetate-oxidizing anaerobe Clostridium ultunense FEMS Microbiol. Lett. 154 331–336CrossRefGoogle Scholar
  408. Schopf, J. W., J. M. Hayes, and M. R. Walter. 1983 Evolution of the earth’s earliest ecosystems: Recent progress and unsolved problems In: J. W. Schopf (Ed.) Earth’s Earliest Biosphere Princeton University Press Princeton, NJ 361–384Google Scholar
  409. Schramm, E., and B. Schink. 1991 Ether-cleaving enzyme and diol dehydratase involved in anaerobic polyethylene glycol degradation by a new Acetobacterium sp Biodegradation 2 71–79PubMedCrossRefGoogle Scholar
  410. Schulman, M., R. K. Ghambeer, L. G. Ljungdahl, and H. G. Wood. 1973 Total synthesis of acetate from CO2. VII: Evidence with Clostridium thermoaceticum that the carboxyl of acetate is derived from the carboxyl of pyruvate by transcarboxylation and not by fixation of CO2 J. Biol. Chem. 248 6255–6261PubMedGoogle Scholar
  411. Schulz, M., H. Leichmann, H. Günther, and H. Simon. 1995 Electromicrobial regeneration of pyridine nucleotides and other preparative redox transformations with Clostridium thermoaceticum Appl. Microbiol. Biotechnol. 42 916–922CrossRefGoogle Scholar
  412. Schulz, S., and R. Conrad. 1996 Influence of temperature on pathways to methane production in the permanently cold profundal sediment of Lake Constance FEMS Microbiol. Ecol. 20 1–14CrossRefGoogle Scholar
  413. Schuppert, B., and B. Schink. 1990 Fermentation of methoxyacetate to glycolate and acetate by newly isolated strains of Acetobacterium sp Arch. Microbiol. 153 200–204CrossRefGoogle Scholar
  414. Schwartz, R. D., and F. A. Keller Jr. 1982 Isolation of a strain of Clostridium thermoaceticum capable of growth and acetic acid production at pH 4.5 Appl. Environ. Microbiol. 43 117–123PubMedGoogle Scholar
  415. Seifritz, C., S. L. Daniel, A. Gößner, and H. L. Drake. 1993 Nitrate as a preferred electron sink for the acetogen Clostridium thermoaceticum J. Bacteriol. 175 8008–8013PubMedGoogle Scholar
  416. Seifritz, C., J. M. Fröstl, H. L. Drake, and S. L. Daniel. 1999 Glycolate as a metabolic substrate for the acetogen Moorella thermoacetica FEMS Microbiol. Lett. 170 399–405CrossRefGoogle Scholar
  417. Seifritz, C., J. M. Fröstl, H. L. Drake, and S. L. Daniel. 2002 Influence of nitrate on oxalate-and glyoxylate-dependent growth and acetogenesis by Moorella thermoacetica Arch. Microbiol. 178 457–464PubMedCrossRefGoogle Scholar
  418. Seifritz, C., H. L. Drake, and S. L. Daniel. 2003 Nitrite as an energy-conserving electron sink for the acetogenic bacterium Moorella thermoacetica Curr. Microbiol. 46 329–333PubMedCrossRefGoogle Scholar
  419. Sembiring, T., and J. Winter. 1989 Anaerobic degradation of O-phenylphenol by mixed and pure cultures Appl. Microbiol. Biotechnology 31 89–92Google Scholar
  420. Sembiring, T., and J. Winter. 1990 Demethylation of aromatic compounds by strain B10 and complete degradation of 3-methoxybenzoate in co-culture with Desulfosarcina strains Appl. Microbiol. Biotechnol. 33 233–238CrossRefGoogle Scholar
  421. Sexstone, A. J., N. P. Revsbech, T. B. Parkin, and J. M. Tiedje. 1985 Direct measurement of oxygen profiles and denitrification rates in soil aggregates Soil Sci. Soc. Am. J. 49 645–651CrossRefGoogle Scholar
  422. Sharak Genthner, B. R., C. L. Davies, and M. P. Bryant. 1981 Features of rumen and sewage sludge strains of Eubacterium limosum, a methanol-and H CO2-CO CO2-utilizing species Appl. Environ. Microbiol. 42 12–19PubMedGoogle Scholar
  423. Sharak Genthner, B. R., and M. P. Bryant. 1982 Growth of Eubacterium limosum with carbon monoxide as the energy source Appl. Environ. Microbiol. 43 70–74PubMedGoogle Scholar
  424. Sharak Genthner, B. R., and M. P. Bryant. 1987 Additional characteristics of one-carbon-compound utilization by Eubacterium limosum and Acetobacterium woodii Appl. Environ. Microbiol. 53 471–476Google Scholar
  425. Shin, W. S., J. S. Kim, S. P. Lee, Y. S. Kim, J. W. Shin, and S. H. Lee. 2001 Electrochemical conversion of CO CO2 to CO or acetate by enzymes of Clostridium thermoaceticum Abstr. Am. Chem. Soc. 221 U504Google Scholar
  426. Silaghi-Dumitrescu, R., E. D. Coulter, A. Das, L. G. Ljungdahl, G. N. L. Jameson, B. H. Huynh, and D. M. Kurtz Jr. 2003 A flavodiiron protein and high molecular weight rubredoxin from Moorella thermoacetica with nitric oxide reductase activity Biochemistry 42 2806–2815PubMedCrossRefGoogle Scholar
  427. Simankova, M. V., O. R. Kotsyurbenko, E. Stackebrandt, N. A. Kostrikina, A. M. Lysenko, G. A. Osipov, and A. N. Nozhevnikova. 2000 Acetobacterium tundrae sp. nov., a new psychrophilic acetogenic bacterium from tundra soil Arch. Microbiol. 174 440–447PubMedCrossRefGoogle Scholar
  428. Singleton Jr., R. 1997a Harland Goff Wood: An American biochemist In: G. Semenza and R. Jaenicke Comprehensive Biochemistry: History of Biochemistry Elsevier Science Amsterdam, The Netherlands 40 333–382Google Scholar
  429. Singleton Jr., R. 1997b Heterotrophic CO2-fixation, mentors, and students: The Wood-Werkman reactions J. Hist. Biol. 30 91–120PubMedCrossRefGoogle Scholar
  430. Singleton Jr., R. 2000 From bacteriology to biochemistry: Albert Jan Kluyver and Chester Werkman at Iowa State J. Hist. Biol. 33 141–180PubMedCrossRefGoogle Scholar
  431. Sleat, R., R. A. Mah, and R. Robinson. 1985 Acetoanaerobium noterae gen. nov., sp. nov.: An anaerobic bacterium that forms acetate from H2 and CO2 Int. J. Sys. Bacteriol. 35 10–15CrossRefGoogle Scholar
  432. Slobodkin, A.-L. Reysenbach, F. Mayer, and J. Wiegel. 1997 Isolation and characterization of the homoacetogenic thermophilic bacterium Moorella glycerini sp. nov Int. J. Syst. Bacteriol. 47 969–974PubMedCrossRefGoogle Scholar
  433. Smith, M. R., and R. A. Mah. 1981 2-Bromoethanesulfonate: A selective agent for isolating resistant Methanosarcina mutants Curr. Microbiol. 6 321–326CrossRefGoogle Scholar
  434. Smith, K. A., and J. R. M. Arah. 1986 Anaerobic micro-environments in soil and the occurrence of anaerobic bacteria In: V. Jensen, A. Kjöller, and L. H. Sørensen Microbial Communities in Soil Elsevier Applied Science Publishers London, UK FEMS Symposium, No. 33 247–261Google Scholar
  435. Spruth, M., J. Reidlinger, and V. Müller. 1995 Sodium ion dependence of inhibition of the Na+-translocating F1F0-ATPase from Acetobacterium woodii: Probing the site(s) involved in ion transport Biochim. Biophys. Acta 1229 96–102CrossRefGoogle Scholar
  436. Stackebrandt, E., I. Kramer, J. Swiderski, and H. Hippe. 1999 Phylogenetic basis for a taxonomic dissection of the genus Clostridium FEMS Immun. Med. Microbiol. 24 253–258CrossRefGoogle Scholar
  437. Stams, A. J. M., and X. Dong. 1995 Role of formate and hydrogen in the degradation of propionate and butyrate by defined suspended cocultures of acetogenic and methanogenic bacteria Ant. v. Leeuwenhoek 68 281–284CrossRefGoogle Scholar
  438. Stevens, T., and J. P. McKinley. 1995 Lithoautotrophic microbial ecosystems in deep basalt aquifers Science 270 450–454CrossRefGoogle Scholar
  439. Stromeyer, S. A., K. Stumpf, A. M. Cook, and T. Leisinger. 1992 Anaerobic degradation of tetrachloromethane by Acetobacterium woodii: Separation of dechlorinative activities in cell extracts and roles of vitamin B12 and other factors Biodegradation 3 113–123CrossRefGoogle Scholar
  440. Sugaya, K., D. Tusé, and J. L. Jones. 1986 Production of acetic acid by Clostridium thermoaceticum in batch and continuous fermentations Biotechnol. Bioengin. 28 678–683CrossRefGoogle Scholar
  441. Talabardon, M., J.-P. Schwitzguébel, P. Péringer, and S.-T. Yang. 2000 Acetic acid production from lactose by an anaerobic thermoophilic coculture immobilized in a fibrous-bed bioreactor Biotechnol. Progr. 16 1008–1017CrossRefGoogle Scholar
  442. Tanaka, K., and N. Pfennig. 1988 Fermentation of 2-methoxyethanol by Acetobacterium malicum sp. nov. and Pelobacter venetianus Arch. Microbiol. 149 181–187CrossRefGoogle Scholar
  443. Tani, M., T. Higashi, and S. Nagatsuka. 1993 Dynamics of low-molecular weight aliphatic carboxylic acids (LACAs) in forest soils. I: Amount and composition of LACAs in different types of forest soils Soil Sci. Plant Nutr. 39 485–495CrossRefGoogle Scholar
  444. Tanner, R. S., E. Stackebrandt, G. E. Fox, and C. R. Woese. 1981 A phylogenetic analysis of Acetobacterium woodii, Clostridium barkeri, Clostridium butyricum, Clostridium lituseburense, Eubacterium limosum, and Eubacterium tenue Curr. Microbiol. 5 35–38CrossRefGoogle Scholar
  445. Tanner, R. S., L. M. Miller, and D. Yang. 1993 Clostridium ljungdahlii sp. nov., and acetogenic species in clostridial rRNA homology group I Int. J. Sys. Bacteriol. 43 232–236CrossRefGoogle Scholar
  446. Tanner, R. S., and C. R. Woese. 1994 A phylogenetic assessment of the acetogens In: H. L. Drake (Ed.) Acetogenesis Chapman and Hall New York, NY 254–269CrossRefGoogle Scholar
  447. Tasaki, M., Y. Kamagata, K. Nakamura, and E. Mikami. 1992 Utilization of methoxylated benzoates and formation of intermediates by Desulfotomaculum thermobenzoicum in the presence or absence of sulfate Arch. Microbiol. 157 209–212PubMedCrossRefGoogle Scholar
  448. Tasaki, M., Y. Kamagata, K. Nakamura, K. Okamura, and E. Mikami. 1993 Acetogenesis from pyruvate by Desulfotomaculum thermobenzoicum and differences in pyruvate metabolism among three sulfate-reducing bacteria in the absence of sulfate FEMS Microbiol. Lett. 106 259–264CrossRefGoogle Scholar
  449. Terracciano, J. S., W. J. A. Schreurs, and E. R. Kashket. 1987 Membrane H+ conductance of Clostridium thermoaceticum and Clostridium acetobutylicum: Evidence for electrogenic Na+/H+ antiport in Clostridium thermoaceticum Appl. Environ. Microbiol. 53 782–786PubMedGoogle Scholar
  450. Terzenbach, D. P., and M. Blaut. 1994 Transformation of tetrachloroethylene by homoacetogenic bacteria FEMS Microbiol. Lett. 123 213–218PubMedCrossRefGoogle Scholar
  451. Teske, A., N. B. Ramsing, K. Habicht, M. Fukui, J. Küver, B. B. Jørgensen, and Y. Cohen. 1998 Sulfate-reducing bacteria and their activities in cyanobacterial mats of Solar Lake (Sinai, Egypt) Appl. Environ. Microbiol. 64 2943–2951PubMedGoogle Scholar
  452. Thauer, R. K., G. Fuchs, B. Käufer, and U. Schnitker. 1974 Carbon-monoxide oxidation in cell-free extracts of Clostridium pasteurianum Eur. J. Biochem. 45 343–349PubMedCrossRefGoogle Scholar
  453. Thauer, R. K., K. Jungermann, and K. Decker. 1977 Energy conservation in chemotrophic anaerobic bacteria Bacteriol. Rev. 41 100–180PubMedGoogle Scholar
  454. Thauer, R. K. 1988 Citric acid cycle, 50 years on: Modification and an alternative pathway in anaerobic bacteria Eur. J. Biochem. 176 497–508PubMedCrossRefGoogle Scholar
  455. Thauer, R. K., D. Möller-Zinkhan, and A. M. Spormann. 1989 Biochemistry of acetate catabolism in anaerobic chemotrophic bacteria Ann. Rev. Microbiol. 43 43–67CrossRefGoogle Scholar
  456. Tholen, A., B. Schink, and A. Brune. 1997 The gut microflora of Reticulitermes flavipes, its relation to oxygen, and evidence for oxygen-dependent acetogenesis by the most abundant Enterococcus sp FEMS Microbiol. Ecol. 24 137–149CrossRefGoogle Scholar
  457. Tholen, A., and A. Brune. 1999 Localization and in situ activities of homoacetogenic bacteria in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp.) Appl. Environ. Microbiol. 65 4497–4505PubMedGoogle Scholar
  458. Tholen, A., and A. Brune. 2000 Impact of oxygen on metabolic fluxes and in situ rates of reductive acetogenesis in the hindgut of the wood-feeding termite Reticulitermes flavipes Environ. Microbiol. 2 436–449PubMedCrossRefGoogle Scholar
  459. Tiedje, J. M., A. J. Sexstone, T. B. Parkin, N. P. Revsbech, and D. R. Shelton. 1984 Anaerobic processes in soil Plant Soil 76 197–212CrossRefGoogle Scholar
  460. Traunecker, J., A. Preuß, and G. Diekert. 1991 Isolation and characterization of a methyl cloride utilizing, strictly anaerobic bacterium Arch. Microbiol. 156 416–421CrossRefGoogle Scholar
  461. Tschech, A., and N. Pfennig. 1984 Growth yield increase linked to caffeate reduction in Acetobacterium woodii Arch. Microbiol. 137 163–167CrossRefGoogle Scholar
  462. Tyler, S. C. 1991 The global methane budget In: J. E. Rogers and W. B. Whitman Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes American Society for Microbiology Washington, DC 7–38Google Scholar
  463. Vandenberg, J. I., N. D. Carter, H. W. L. Bethell, A. Nogradi, Y. Ridderstrale, J. C. Metcalfe, and A. A. Grace. 1996 Carbonic anhydrase and cardiac pH regulation Am. J. Physiol. 40 1838–1846Google Scholar
  464. Van der Lee, G. E. M., B. de Winder, W. Bouten, and A. Tietema. 1999 Anoxic microsites in douglas fir litter Soil Biol. Biochem. 31 1295–1301CrossRefGoogle Scholar
  465. Varel, V. H., M. P. Bryant, L. V. Holdeman, and W. E. C. Moore. 1974 Isolation of ureolytic Peptostreptococcus productus from feces using defined medium; failure of common urease tests Appl. Microbiol. 28 594–599PubMedGoogle Scholar
  466. Varma, A. K., and H. D. Peck Jr. 1983 Utilization of short and long-chain polyphosphates as energy sources for the anaerobic growth of bacteria FEMS Microbiol. Lett. 16 281–285CrossRefGoogle Scholar
  467. Varma, A., B. K. Kolli, J. Paul, S. Saxena, and H. König. 1994 Lignocellulose degradation by microorganisms from termite hills and termite guts: A survey on the present state of art FEMS Microbiol. Rev. 15 9–28CrossRefGoogle Scholar
  468. Von Eysmondt, J., D. Vasic-Racki, and C. Wandrey. 1990 Acetic acid production by Acetogenium kivui in continuous culture—kinetic studies and computer simulations Appl. Microbiol. Biotechnol. 34 344–349CrossRefGoogle Scholar
  469. Wagener, S., and B. Schink. 1988 Fermentative degradation of nonionic surfactants and polyethylene glycol by enrichment cultures and by pure cultures of homoacetogenic and propionate-forming bacteria Appl. Environ. Microbiol. 54 561–565PubMedGoogle Scholar
  470. Wagner, C., A. Grießhammer, and H. L. Drake. 1996 Acetogenic capacities and the anaerobic turnover of carbon in a Kansas prairie soil Appl. Environ. Microbiol. 62 494–500PubMedGoogle Scholar
  471. Waisel, Y., and M. Agami. 1996 Ecophysiology of roots of submerged aquatic plants In: Y. Waisel, A. Eshel, and U. Kafkafi Plant Roots: The Hidden Half, 2nd ed Marcel Dekker New York, NY 895–909Google Scholar
  472. Wang, G., and D. I. C. Wang. 1983 Production of acetic acid by immobilized whole cells of Clostridium thermoaceticum Appl. Biochem. Biotechnol. 8 491–503PubMedCrossRefGoogle Scholar
  473. Wang, G., and D. I. C. Wang. 1984 Elucidation of growth inhibition and acetic acid production by Clostridium thermoaceticum Appl. Environ. Microbiol. 47 294–298PubMedGoogle Scholar
  474. Weinberg, M., and B. Ginsbourg. 1927 Données récéntes sur les microbes anaérobies et leur role en pathologie Masson Paris, France 1–291Google Scholar
  475. Wellsbury, P., K. Goodman, T. Barth, B. A. Cragg, S. P. Barnes, and R. J. Parkes. 1997 Deep marine biosphere fuelled by increasing organic matter availability during burial and heating Nature 388 573–576CrossRefGoogle Scholar
  476. Wellsbury, P., K. Goodman, B. A. Cragg, and J. Parkes. 2000 The geomicrobiology of deep marine sediments from Blake Ridge containing methane hydrate (sites 994, 995, and 997) Proceedings of the Ocean Drilling Program, Scientific Results 164 379–391Google Scholar
  477. Wellsbury, P., I. Mather, and R. J. Parkes. 2002 Geomicrobiology of deep, low organic carbon sediments in the Woodlark Basin, Pacific Ocean FEMS Microbiol. Ecol. 42 59–70PubMedCrossRefGoogle Scholar
  478. Whitman, W. B. 1994 Autotrophic Acetyl Coenzyme A Biosynthesis in Methanogens Acetogenesis Chapman and Hall New York, NY 521–538CrossRefGoogle Scholar
  479. Whitman, W. B., D. C. Coleman, and W. J. Wiebe. 1998 Prokaryotes: The unseen majority Proc. Natl. Acad. Sci. USA 95 6578–6583PubMedCrossRefGoogle Scholar
  480. Widdel, F. 1988 Microbiology and ecology of sulfate and sulfur-reducing bacteria In: A. J. B. Zehnder (Ed.) Biology of Anaerobic Microorganisms Wiley New York, NY 469–587Google Scholar
  481. Wiegel, J., M. Braun, and G. Gottschalk. 1981 Clostridium thermoautotrophicum species novum, a thermophile producing acetate from molecular hydrogen and carbon dioxide Curr. Microbiol. 5 255–260CrossRefGoogle Scholar
  482. Wiegel, J., L. H. Carreira, R. J. Garrison, N. E. Robek, and L. G. Ljungdahl. 1990 Calcium magnesium acetate (CMA) manufacture from glucose by fermentation with thermophilic homoacetogenic bacteria In: D. L. Wise, Y. Levendis, and M. Metghalchi Calcium Magnesium Acetate Elsevier Amsterdam, The Netherlands 359–416Google Scholar
  483. Wiegel, J. 1994 Acetate and the potential of homoacetogenic bacteria for industrial applications In: H. L. Drake (Ed.) Acetogenesis Chapman and Hall New York, NY 484–504CrossRefGoogle Scholar
  484. Wieringa, K. T. 1936 Over het verdwijnen van waterstof en koolzuur onder anaerobe voorwaarden Ant. v. Leeuwenhoek 3 263–273CrossRefGoogle Scholar
  485. Wieringa, K. T. 1939–1940 The formation of acetic acid from carbon dioxide and hydrogen by anaerobic spore-forming bacteria Ant. v. Leeuwenhoek 6 251–262CrossRefGoogle Scholar
  486. Wieringa, K. T. 1941 Über die Bildung von Essigsäure aus Kohlensäure und Wasserstoff durch anaerobe Bazillen Brennstoff-Chemie 22 161–164Google Scholar
  487. Winter, J. U., and R. S. Wolfe. 1980 Methane formation from fructose by syntrophic associations of Acetobacterium woodii and different strains of methanogens Arch. Microbiol. 124 73–39PubMedCrossRefGoogle Scholar
  488. Wofford, N. Q., P. S. Beaty, and M. J. McInerney. 1986 Preparation of cell-free extracts and the enzymes involved in fatty acid metabolism in Syntrophomonas wolfei J. Bacteriol. 167 179–185PubMedGoogle Scholar
  489. Wohlfarth, G., and G. Diekert. 1991 Thermodynamics of methylenetetrahydrofolate reduction to methyltetrahydrofolate and its implications for the energy metabolism of homoacetogenic bacteria Arch. Microbiol. 155 378–381CrossRefGoogle Scholar
  490. Wolin, M. J., and T. L. Miller. 1983 Carbohydrate fermentation In: D. A. Hentges (Ed.) Human Intestinal Flora in Health and Disease Academic Press New York, NY 147–165CrossRefGoogle Scholar
  491. Wolin, M. J., and T. L. Miller. 1993 Bacterial strains from human feces that reduce CO2 to acetic acid Appl. Environ. Microbiol. 59 3551–3556PubMedGoogle Scholar
  492. Wolin, M. J., and T. L. Miller. 1994 Acetogenesis from CO2 in the human colonic ecosystem In: H. L. Drake (Ed.) Acetogenesis Chapman and Hall New York, NY 365–385CrossRefGoogle Scholar
  493. Wolin, M. J., T. L. Miller, S. Yerry, Y. Zhang, S. Bank, and G. A. Weaver. 1999 Changes of fermentation pathways of fecal microbial communities associated with a drug treatment that increases dietary starch in the human colon Appl. Environ. Microbiol. 65 2807–2812PubMedGoogle Scholar
  494. Wolin, M. J., T. L. Miller, M. D. Collins, and P. A. Lawson. 2003 Formate-dependent growth and homoacetogenic fermentation by a bacterium from human feces: Description of Bryantella formatexigens gen. nov., sp. nov Appl. Environ. Microbiol. 69 6321–6326PubMedCrossRefGoogle Scholar
  495. Wood, H. G., and C. H. Werkman. 1936 Mechanism of glucose dissimilation by the propionic acid bacteria Biochem. J. 30 618–623PubMedGoogle Scholar
  496. Wood, H. G., and C. H. Werkman. 1938 The utilization of CO2 by the propionic acid bacteria Biochem. J. 32 1262–1271PubMedGoogle Scholar
  497. Wood, H. G., C. H. Werkman, A. Hemingway, and A. O. Nier. 1941a Heavy carbon as a tracer in heterotrophic carbon dioxide assimilation J. Biol. Chem. 139 365–376Google Scholar
  498. Wood, H. G., C. H. Werkman, A. Hemingway, and A. O. Nier. 1941b The position of carbon dioxide carbon in succinic acid synthesized by heterotrophic bacteria J. Biol. Chem. 139 377–381Google Scholar
  499. Wood, H. G. 1952a A study of carbon dioxide fixation by mass determination on the types of C13-acetate J. Biol. Chem. 194 905–931PubMedGoogle Scholar
  500. Wood, H. G. 1952b Fermentation of 3,4-C14-and 1-C14-labeled glucose by Clostridium thermoaceticum J. Biol. Chem. 199 579–583PubMedGoogle Scholar
  501. Wood, H. G. 1972 My life and carbon dioxide fixation In: J. F. Woessner Jr. and F. Huijing The Molecular Basis of Biological Transport Academic Press New York, NY Miami Winter Symposium Vol. 3 1–54Google Scholar
  502. Wood, H. G. 1976 Trailing the propionic acid bacteria In: A. Kornberg, B. L. Horecker, L. Cornudella, and J. Oro Reflections on Biochemistry Pergamon Press Oxford, UK 105–115Google Scholar
  503. Wood, H. G. 1982 The discovery of the fixation of CO2 by heterotrophic organisms and metabolism of the propionic bacteria In: G. Semenza (Ed.) Of Oxygen, Fuels, and Living Matter, Part 2 John Wiley New York, NY 173–250Google Scholar
  504. Wood, H. G. 1985 Then and now Ann. Rev. Biochem. 54 1–41PubMedCrossRefGoogle Scholar
  505. Wood, H. G. 1989 Past and present of CO2 utilization In: H. G. Schlegel and B. Bowien Autotrophic Bacteria Science Tech Madison, WI 33–52Google Scholar
  506. Wood, H. G. 1991a Life with CO or CO2 and H2 as a source of carbon and energy FASEB J. 5 156–163PubMedGoogle Scholar
  507. Wood, H. G., and L. G. Ljungdahl. 1991b Autotrophic character of the acetogenic bacteria In: J. M. Shively and L. L. Barton Variations in Autotrophic Life Academic Press San Diego, CA 201–250Google Scholar
  508. Worden, R. M., A. J. Grethlein, J. G. Zeikus, and R. Datta. 1989 Butyrate production from carbon monoxide by Butyribacterium methylotrophicum Appl. Biochem. Biotechnol. 20/21 687–698CrossRefGoogle Scholar
  509. Wu, Z., S. L. Daniel, and H. L. Drake. 1988 Characterization of a CO-dependent O-demethylating enzyme system from the acetogen Clostridium thermoaceticum J. Bacteriol. 170 5747–5750PubMedGoogle Scholar
  510. Yamamoto, I., T. Saiki, S.-M. Liu, and L. G. Ljungdahl. 1983 Purification and properties of NADP-dependent formate dehydrogenase from Clostridium thermoaceticum, a tungsten-selenium-iron protein J. Biol. Chem. 258 1826–1832PubMedGoogle Scholar
  511. Yang, H., and H. L. Drake. 1990 Differential effects of sodium on hydrogen-and glucose-dependent growth of the acetogenic bacterium Acetogenium kivui Appl. Environ. Microbiol. 56 81–86PubMedGoogle Scholar
  512. Zavarzin, G. A., T. N. Zhilina, and M. A. Pusheva. 1994 Halophilic acetogenic bacteria In: H. L. Drake (Ed.) Acetogenesis Chapman and Hall New York, NY 432–444CrossRefGoogle Scholar
  513. Zehnder, A. J. B., and K. Wuhrmann. 1976 Titanium III citrate as a nontoxic oxidation-reduction buffering system for the culture of obligate anaerobes Science 194 1165–1166PubMedCrossRefGoogle Scholar
  514. Zehnder, A. J. B., B. A. Huser, T. D. Brock, and K. Wuhrmann. 1980 Characterization of an acetate-decarboxylating non-hydrogen oxidizing methane bacterium Arch. Microbiol. 124 1–11PubMedCrossRefGoogle Scholar
  515. Zeikus, J. G., L. H. Lynd, T. E. Thompson, J. A. Krzycki, P. J. Weimer, and P. W. Hegge. 1980 Isolation and characterization of a new, methylotrophic, acidogenic anaerobe, the Marburg strain Curr. Microbiol. 3 381–386CrossRefGoogle Scholar
  516. Zeikus, J. G. 1983 Metabolism of one-carbon compounds by chemotrophic anaerobes Adv. Microb. Physiol. 24 215–299PubMedCrossRefGoogle Scholar
  517. Zeikus, J. G., R. Kerby, and J. A. Krzycki. 1985 Single-carbon chemistry of acetogenic and methanogenic bacteria Science 227 1167–1173PubMedCrossRefGoogle Scholar
  518. Zhilina, T. N., and G. A. Zavarzin. 1990 Extremely halophilic, methylotrophic, anaerobic bacteria FEMS Microbol. Rev. 87 315–322CrossRefGoogle Scholar
  519. Zhilina, T. N., G. A. Zavarzin, E. N. Detkova, and F. A. Rainey. 1996 Natroniella acetigena gen. nov. sp. nov., an extremely halophilic, homoacetogenic bacterium: A new member of Haloanaerobiales Curr. Microbiol. 32 320–326PubMedCrossRefGoogle Scholar
  520. Zhilina, T. N., E. N. Detkova, F. A. Rainey, G. A. Osipov, A. M. Lysenko, N. A. Kostrikina, and G. A. Zavarzin. 1998 Natronoincola histidinovorans gen. nov., sp. nov., a new alkaliphilic acetogenic anaerobe Curr. Microbiol. 37 177–185PubMedCrossRefGoogle Scholar
  521. Zinder, S. H., and M. Koch. 1984 Non-aceticlastic methanogenesis from acetate: Acetate oxidation by a thermophilic syntrophic coculture Arch. Microbiol. 138 263–272CrossRefGoogle Scholar
  522. Zinder, S. H. 1994 Syntrophic Acetate Oxidation and “Reversible Acetogenesis” In: H. L. Drake (Ed.) Acetogenesis Chapman and Hall New York, NY 386–415CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Harold L. Drake
  • Kirsten Küsel
  • Carola Matthies

There are no affiliations available

Personalised recommendations