Bacteriocyte-Associated Endosymbionts of Insects

  • Paul Baumann
  • Nancy A. Moran
  • Linda Baumann


Intracellular associations between bacteria and insects are widespread in nature (Baumann and Moran, 1997; Buchner, 1965; Dasch et al., 1984; Douglas, 1989; Houk and Griffiths, 1980). Extensive studies of the natural history of such associations have led to the conclusion that they are commonly found in insects that utilize diets containing an excess of one class of compounds but a deficiency of some essential nutrients (Buchner, 1965; Dadd, 1985). It was thought that the function of the endosymbionts was to rectify this imbalance by the synthesis of these essential nutrients for the host. Extensive compilations of the occurrence of endosymbionts in different groups of insects are found in Buchner (1965) and Dasch et al. (1984). Because most of the prokaryotes involved in such associations are not cultivable on common laboratory media, their characterization had to await the development of recombinant DNA methodology. The past 10 years have witnessed the initiation of...


Essential Amino Acid Aphid Species Aphid Host Leucine Biosynthesis Replicon Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Akhtar, S., and H. F. van Emden. 1994 Ultrastructure of the symbionts and mycetocytes of bird cherry aphid (Rhopalosiphum padi) Tissue Cell 26 513–522PubMedCrossRefGoogle Scholar
  2. Aksoy, S. 1995a Molecular analysis of the endosymbionts of tsetse flies: 16S rDNA locus and over-expression of a chaperonin Insect Mol. Biol. 4 23–29PubMedCrossRefGoogle Scholar
  3. Aksoy, S. 1995b Wigglesworthia gen. nov. and Wigglesworthia glossinidia sp. nov., taxa consisting of the mycetocyte-associated, primary endosymbionts of tsetse flies Int. J. Syst. Bacteriol. 45 848–851PubMedCrossRefGoogle Scholar
  4. Aksoy, S., X. Chen, and V. Hypsa. 1997 Phylogeny and potential transmission routes of midgut-associated endosymbionts of tsetse (Diptera: Glossinidae) Insect Mol. Biol. 6 183–190PubMedCrossRefGoogle Scholar
  5. Aksoy, S., A. A. Pourhosseini, and A. Chow. 1995 Mycetome endosymbionts of tsetse flies constitute a distinct lineage related to the Enterobacteriaceae Insect Mol. Biol. 4 15–22PubMedCrossRefGoogle Scholar
  6. Amann, R. I., W. Ludwig, and K. H. Schleifer. 1995 Phylogenetic identification and in situ detection of individual microbial cells without cultivation Microbiol. Rev. 59 143–169PubMedGoogle Scholar
  7. Andersson, S. G. E., A. Zomorodipour, J. O. Andersson, T. Sicheritz-Ponten, U. C. M. Alsmark, R. M. Podowski, A. K. Naslund, A. S. Eriksson, H. H. Winkler, and C. G. Kurland. 1998 The genome sequence of Rickettsia prowazekii and the origin of mitochondria Nature 396 133–140PubMedCrossRefGoogle Scholar
  8. Baker, J. E. 1975 Vitamin requirements of larvae of Sitophilus oryzae J. Insect Physiol. 21 1337–1342CrossRefGoogle Scholar
  9. Baker, J. E. 1979 Requirements for the essential dietary amino acids of larvae of the rice weevil Environ. Entomol. 8 451–453Google Scholar
  10. Baker, J. E., and P. T. M. Lum. 1973 Development of aposymbiosis in larvae of Sitophilus oryzae by dietary treatment with antibiotics J. Stored Prod. Res. 9 241–245CrossRefGoogle Scholar
  11. Bandi, C., and L. Sacchi. In Press Intracellular Symbiosis In: T. Abe, M. Higashi, and D. Bignel (eds.) Termites: their symbiosis, behavior, and global diversification Kluwer, Dordrecht, The NetherlandsGoogle Scholar
  12. Bandi, C., T. J. C. Anderson, C. Genchi, and M. L. Blaxter. 1998 Phylogeny of Wolbachia in filarial nematodes Proc. Roy. Soc. Lond. B265 2407–2414CrossRefGoogle Scholar
  13. Bandi, C., M. Sironi, C. A. Nalepa, S. Corona, and L. Sacchi. 1997 Phylogenetically distant intracellular symbionts in termites Parassitologia 39 71–75PubMedGoogle Scholar
  14. Bandi, C., G. Damiani, L. Magrassi, A. Grigolo, R. Fani, and L. Sacchi. 1994 Flavobacteria as intracellular symbionts in cockroaches Proc. Roy. Soc. Lond. B257 43–48CrossRefGoogle Scholar
  15. Bandi, C., J. W. McCall, C. Genchi, S. Corona, L. Venco, and L. Sacchi. 1999 Effects of tetracycline on the filarial worms Brugia pahangi and Dirofilaria immitis and their bacterial endosymbionts Wolbachia Int. J. Parasitol. 29 357–364PubMedCrossRefGoogle Scholar
  16. Bandi, C., M. Sironi, G. Damiani, L. Magrassi, C. A. Nalepa, U. Laudani, and L. Sacchi. 1995 The establishment of intracellular symbiosis in an ancestor of cockroaches and termites Proc. Roy. Soc. Lond. B259 293–299CrossRefGoogle Scholar
  17. Barancin, C. E., J. C. Smoot, R. H. Findlay, and L. A. Actis. 1998 Plasmid-mediated histamine biosynthesis in the bacterial fish pathogen Vibrio anguillarum Plasmid 39 235–244PubMedCrossRefGoogle Scholar
  18. Baumann, L., and P. Baumann. 1994 Growth kinetics of the endosymbiont Buchnera aphidicola in the aphid Schizaphis graminum Appl. Environ. Microbiol. 60 3440–3443PubMedGoogle Scholar
  19. Baumann, L., and P. Baumann. 1998 Characterization of ftsZ, the cell division gene of Buchnera aphidicola (endosymbiont of aphids) and detection of the product Curr. Microbiol. 36 85–89PubMedCrossRefGoogle Scholar
  20. Baumann, P., and N. A. Moran. 1997 Non-cultivable microorganisms from symbiotic associations of insects and other hosts Antonie van Leeuwenhoek 72 39–48PubMedCrossRefGoogle Scholar
  21. Baumann, P., L. Baumann, and M. A. Clark. 1996 Levels of Buchnera aphidicola chaperonin GroEL during growth of the aphid Schizaphis graminum Curr. Microbiol. 32 279–285CrossRefGoogle Scholar
  22. Baumann, L., P. Baumann, and N. A. Moran. 1998a The endosymbiont (Buchnera) of the aphid Diuraphis noxia contains all the genes of the tryptophan biosynthetic pathway Curr. Microbiol. 37 58–59PubMedCrossRefGoogle Scholar
  23. Baumann, P., L. Baumann, M. A. Clark, and M. L. Thao. 1998b Buchnera aphidicola: the endosymbiont of aphids ASM News 64 203–209Google Scholar
  24. Baumann, L., P. Baumann, and M. L. Thao. 1999a Detection of messenger RNA transcribed from genes encoding enzymes of amino acid biosynthesis in Buchnera aphidicola (endosymbiont of aphids) Curr. Microbiol. 38 135–136PubMedCrossRefGoogle Scholar
  25. Baumann, L., P. Baumann, M. A. Moran, J. Sandström, and M. L. Thao. 1999b Genetic characterization of plasmids containing genes encoding enzymes of leucine biosynthesis in endosymbionts (Buchnera) of aphids J. Mol. Evol. 48 77–85PubMedCrossRefGoogle Scholar
  26. Baumann, P., N. A. Moran, and L. Baumann. 1997a The evolution and genetics of aphid endosymbionts Bioscience 47 12–20CrossRefGoogle Scholar
  27. Baumann, L., M. A. Clark, D. Rouhbakhsh, P. Baumann, N. A. Moran, and D. J. Voegtlin. 1997b Endosymbionts (Buchnera) of the aphid Uroleucon sonchi contain plasmids with trpEG and remnants of trpE pseudogenes Curr. Microbiol. 35 18–21CrossRefGoogle Scholar
  28. Baumann, P., L. Baumann, C. Y. Lai, D. Roubakhsh, N. A. Moran, and M. A. Clark. 1995 Genetics, physiology, and evolutionary relationships of the genus Buchnera: Intracellular symbionts of aphids Annu. Rev. Microbiol. 49 55–94PubMedCrossRefGoogle Scholar
  29. Beard, C. B., S. L. O’Neill, R. B. Tesh, F. F. Richards, and S. Aksoy. 1993a Modification of arthropod vector competence via symbiotic bacteria Parasitol. Today 9 179–183PubMedCrossRefGoogle Scholar
  30. Beard, C. B., S. K. O’Neill, P. Mason, L. Mandelco, C. R. Woese, R. B. Tesh, F. F. Richards, and S. Aksoy. 1993b Genetic transformation and phylogeny of bacterial symbionts from tsetse Insect Mol. Biol. 1 123–131PubMedCrossRefGoogle Scholar
  31. Bensaadi-Merchermek, N., J. C. Salvado, C. Cagnon, S. Karama, and C. Mouches. 1995 Characterization of the unlinked 16S rDNA and 23S-5S rRNA operon of Wolbachia pipientis, a prokaryotic parasite of insect gonads Gene 165 81–86PubMedCrossRefGoogle Scholar
  32. Berlyn, M. K. B. 1998 Linkage map of Escherichia coli K-12, edition 10: the traditional map Microbiol. Mol. Biol. Rev. 62 814–984PubMedGoogle Scholar
  33. Bigliardi, E., M. G. Selmi, S. Corona, C. A. Bandi, and L. Sacchi. 1995 Membrane systems in endocytobiosis. III. Ultrastructural features of symbionts and vacuolar membrane in bacteriocytes of the wood-eating cockroach Cryptocercus punctulatus (Dictyoptera, Cryptocercidae) Boll. Zool. 62 235–238CrossRefGoogle Scholar
  34. Blackman, R. L. 1984 Reproduction, cytogenetics and development A. K. Minks and P. Harrewijn Aphids: their biology, natural enemies and control Elsevier Biomedical Press, Amsterdam 2A 163–195Google Scholar
  35. Blackman, R. L., and V. F. Eastop. 1984 Aphids on the world’s crops Wiley Chichester, UKGoogle Scholar
  36. Blattner, F. R., G. Plunkett, C. A. Bloch, N. T. Perna, V. Burland, M. Riley, J. ColladoVides, J. D. Glasner, C. K. Rode, G. F. Mayhew, J. Gregor, N. W. Davis, H. A. Kirkpatrick, M. A. Goeden, D. J. Rose, B. Mau, and Y. Shao. 1997 The complete genome sequence of Escherichia coli K-12 Science 277 1453–1462PubMedCrossRefGoogle Scholar
  37. Blua, M. J., T. M. Perring, and M. A. Madore. 1994 Plant virus-induced changes in aphid population development and temporal fluctuations in plant nutrients J. Chem. Ecol. 20 691–707CrossRefGoogle Scholar
  38. Boman, H. G., and D. Hultmark. 1987 Cell-free immunity in insects Annu. Rev. Microbiol. 41 103–126PubMedCrossRefGoogle Scholar
  39. Borror, D. J., C. A. Triplehorn, and N. F. Johnson. 1989 An Introduction to the Study of Insects Harcourt Brace College Publishers Fort Worth, TXGoogle Scholar
  40. Bracho, A. M., D. Martínez-Torres, A. Moya, and A. Latorre. 1995 Discovery and molecular characterization of a plasmid localized in Buchnera sp., bacterial endosymbiont of the aphid Rhopalosiphum padi J. Mol. Evol. 41 67–73PubMedCrossRefGoogle Scholar
  41. Brenner, D. J. 1984 Enterobacteriaceae N. R. Krieg and J. G. Holt. Bergey’s manual of systematic bacteriology Williams and Wilkins Co Baltimore, MD 1 408–506Google Scholar
  42. Brough, C. N., and A. F. G. Dixon. 1990 Ultrastructual features of egg development in oviparae of vetch aphid, Megura viciae Tissue Cell 22 51–63PubMedCrossRefGoogle Scholar
  43. Brown, J. K., D. R. Frohlich, and R. C. Rosell. 1995 The sweetpotato or silverleaf whiteflies—biotypes of Bemisia tabaci or a species complex Annu. Rev. Entomol. 40 511–534CrossRefGoogle Scholar
  44. Brynnel, E. U., C. G. Kurland, N. A. Moran, and S. G. E. Andersson. 1998 Evolutionary rates for tuf genes in endosymbionts of aphids Mol. Biol. Evol. 15 574–582PubMedCrossRefGoogle Scholar
  45. Buchner, P. 1965 Endosymbiosis of animals with plant microorganisms Interscience Publishers, Inc New YorkGoogle Scholar
  46. Campbell, B. C., T. S. Bragg, and C. E. Turner. 1992 Phylogeny of symbiotic bacteria of four weevil species (Coleoptera, Curculionidae) based on analysis of 16S ribosomal DNA Insect Biochem. Mol. Biol. 22 415–421CrossRefGoogle Scholar
  47. Campbell, B. C., J. D. Stefen-Campbell, and R. J. Gill. 1994 Evolutionary origin of whiteflies (Hemiptera: Sternorrhyncha: Aleyrodidae) inferred from 18S rDNA sequences Insect Mol. Biol. 3 73–88PubMedCrossRefGoogle Scholar
  48. Chang, K. P., and A. J. Musgrave. 1969 Histochemistry and ultrastructure of the mycetome and its “symbiotes” in the pear psylla, Psylla pyricola Foerster (Homoptera) Tissue Cell 1 597–606PubMedCrossRefGoogle Scholar
  49. Charles, H., and H. Ishikawa. 1999 Physical and genetic map of the genome of Buchnera, the primary endosymbiont of the pea aphid Acyrthosiphon pisum J. Mol. Evol. 48 142–150PubMedCrossRefGoogle Scholar
  50. Charles, H., H. Ishikawa, and P. Nardon. 1995 Presence of a protein specific of endocytobiosis (symbionin) in the weevil Sitophilus C. R. Acad. Sci. Paris (ser. III) 318 35–41Google Scholar
  51. Charles, H., G. Condemine, C. Nardon, and P. Nardon. 1997a Genome size characterization of the principal endocellular symbiotic bacteria of the weevil Sitophilus oryzae, using pulsed field gel electrophoresis Insect Biochem. Mol. Biol. 27 345–350CrossRefGoogle Scholar
  52. Charles, H., A. Heddi, J. Guillaud, C. Nardon, and P. Nardon. 1997b A molecular aspect of symbiotic interactions between the weevil Sitophilus oryzae and its endosymbiotic bacteria: over-expression of a chaperonin Biochem. Biophys. Res. Com. 239 769–774PubMedCrossRefGoogle Scholar
  53. Chen, D.-Q., and A. H. Purcell. 1997 Occurence and transmission of facultative endosymbionts in aphids Curr. Microbiol. 34 220–225PubMedCrossRefGoogle Scholar
  54. Chen, D. Q., B. C. Campbell, and A. H. Purcell. 1996 A new rickettsia from a herbivorous insect, the pea aphid Acyrthosiphon pisum (Harris) Curr. Microbiol. 33 123–128PubMedCrossRefGoogle Scholar
  55. Chen, X. A., S. Li, and S. Aksoy. 1999 Concordant evolution of a symbiont with its host insect species: molecular phylogeny of genus Glossina and its bacteriome-associated endosymbiont, Wigglesworthia glossinidia J. Mol. Evol. 48 49–58PubMedCrossRefGoogle Scholar
  56. Cheng, Q., and S. Aksoy. 1999 Tissue tropism, transmission and expression of foreign genes in vivo in midgut symbionts of tsetse flies Insect Mol. Biol. 8 125–132PubMedCrossRefGoogle Scholar
  57. Clark, M. A., L. Baumann, and P. Baumann. 1998a Sequence analysis of a 34.7-kb DNA segment from the genome of Buchnera aphidicola (endosymbiont of aphids) containing groEL, dnaA, the atp operon, gidA, and rho Curr. Microbiol. 36 158–163PubMedCrossRefGoogle Scholar
  58. Clark, M. A., L. Baumann, and P. Baumann. 1998b Buchnera aphidicola (aphid endosymbiont) contains genes encoding enzymes of histidine biosynthesis Curr. Microbiol. 37 356–358PubMedCrossRefGoogle Scholar
  59. Clark, M. A., P. Baumann, and M. A. Moran. 1999a Buchnera plasmid-associated trpEG probably originated from a chromosomal location between hslU and fpr Curr. Microbiol. 38 309–311CrossRefGoogle Scholar
  60. Clark, M. A., N. A. Moran, and P. Baumann. 1999b Sequence evolution in bacterial endosymbionts having extreme base compositions Mol. Biol. Evol. 16 1586–1598PubMedCrossRefGoogle Scholar
  61. Clark, M. A., N. A. Moran, and P. Baumann. 2000 Cospeciation between bacterial endosymbionts (Buchnera) and a recent radiation of aphids (Uroleucon) Evolution In Press In Press–In PressGoogle Scholar
  62. Clark, M. A., L. Baumann, P. Baumann, and D. Rouhbakhsh. 1996 Ribosomal protein S1(RpsA) of Buchnera aphidicola, the endosymbiont of aphids: characterization of the gene and detection of the product Curr. Microbiol. 32 89–94PubMedCrossRefGoogle Scholar
  63. Clark, M. A., L. Baumann, M. A. Munson, P. Baumann, B. C. Campbell, J. E. Duffus, L. S. Osborne, and N. A. Moran. 1992 The eubacterial endosymbionts of whiteflies (Homoptera, Aleyrodoidea) constitute a lineage distinct from the endosymbionts of aphids and mealybugs Curr. Microbiol. 25 119–123CrossRefGoogle Scholar
  64. Cochoran, D. G. 1985 Nitrogen excretion in cockroaches Annu. Rev. Entomol. 30 29–49CrossRefGoogle Scholar
  65. Costa, H. S., T. J. Henneberry, and N. C. Toscano. 1997 Effects of antibacterial materials on Bemisia argentifolii (Homoptera: Aleyrodidae) oviposition, growth, survival, and sex ratio J. Econ. Entomol. 90 333–339Google Scholar
  66. Costa, H. S., N. C. Toscano, and T. J. Henneberry. 1996 Mycetocyte inclusion in the oocytes of Bemisia argentifolii (Homoptera, Aleyrodidae) Ann. Entomol. Soc. Amer. 89 694–699Google Scholar
  67. Costa, H. S., D. E. Ullman, M. W. Johnson, and B. E. Tabashnik. 1993a Antibiotic oxytetracycline interferes with Bemisia tabaci (Homoptera, Aleyrodidae) oviposition, development, and ability to induce squash silverleaf Ann. Entomol. Soc. Amer. 86 740–748Google Scholar
  68. Costa, H. S., D. M. Westcot, D. E. Ullman, and M. W. Johnson. 1993b Ultrastructure of the endosymbionts of the whitefly, Bemisia tabaci and Trialeurodes vaporariorum Protoplasma 176 106–115CrossRefGoogle Scholar
  69. Costa, H. S., D. M. Westcot, D. E. Ullman, R. Rosell, J. K. Brown, and M. W. Johnson. 1995 Morphological variation in Bemisia endosymbionts Protoplasma 189 194–202CrossRefGoogle Scholar
  70. Crawford, I. P. 1989 Evolution of a biosynthetic pathway—the tryptophan paradigm Annu. Rev. Microbiol. 43 567–600PubMedCrossRefGoogle Scholar
  71. Dadd, R. H. 1985 Nutrition: organisms G. A. Kerkut and L. I. Gilbert (eds.) Comprehensive insect physiology, biochemistry, and pharmacology Pergamon Press, Inc. Elmsford, NY 4 315–319Google Scholar
  72. Dale, C., and I. Maudlin. 1999 Sodalis gen. nov. and Sodalis glossinidius sp. nov., a microaerophilic secondary endosymbiont of the tsetse fly Glossina morsitans morsitans Int. J. Syst. Bacteriol. 49 267–275PubMedCrossRefGoogle Scholar
  73. Dasch, G. A. 1975 Morphological and molecular studies on intracellular bacterial symbiotes of insects. Yale University New HavenGoogle Scholar
  74. Dasch, G. A., E. Weiss, and K.-P. Chang. 1984 Endosymbionts of insects N. R. Krieg and J. G. Holt (eds.) Bergey’s manual of systematic bacteriology Williams and Wilkins Co Baltimore 1 811–833Google Scholar
  75. Denk, D., and A. Böck. 1987 L-Cysteine biosynthesis in Escherichia coli: nucleotide sequence and expression of the serine acetyltransferase (cysE) gene from wild-type and a cysteine-excreting mutant J. Gen. Microbiol. 133 515–525PubMedGoogle Scholar
  76. Dixon, A. F. G. 1973 Biology of aphids Edward Arnold, Ltd LondonGoogle Scholar
  77. Dixon, A. F. G. 1992 Constraints on the rate of parthenogenetic reproduction and pest status of aphid Invertebr. Rep. Devel. 22 159–163CrossRefGoogle Scholar
  78. Douglas, A. E. 1988 Sulfate utilization in an aphid symbiosis Insect Biochem. 18 159–163Google Scholar
  79. Douglas, A. E. 1989 Mycetocyte symbiosis in insects Biol. Rev. Camb. 64 409–434CrossRefGoogle Scholar
  80. Douglas, A. E. 1990 Nutritional interactions between Myzus persicae and its symbionts R. K. Campbell and R. D. Eikenbary (eds.) Aphid-plant genotype interactions Elsevier Biomedical Press Amsterdam 319–327Google Scholar
  81. Douglas, A. E. 1997 Parallels and contrasts between symbiotic bacteria and bacterial-derived organelles: evidence from Buchnera, the bacterial symbiont of aphids FEMS Microbiol. Ecol. 24 1–9CrossRefGoogle Scholar
  82. Douglas, A. E. 1998 Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera Annu. Rev. Entomol. 43 17–37PubMedCrossRefGoogle Scholar
  83. Douglas, A. E., and A. F. G. Dixon. 1987 The mycetocyte symbiosis of aphids: variation with age and morph in virginoparae of Megoura viciae and Acyrthosiphon pisum J. Insect Physiol. 33 109–113CrossRefGoogle Scholar
  84. Douglas, A. E., and W. A. Prosser. 1992 Synthesis of the essential amino acid tryptophan in the pea aphid (Acyrthosiphon pisum) symbiosis J. Insect Physiol. 38 565–568CrossRefGoogle Scholar
  85. Douglas, A. E., and D. C. Smith. 1989 Are endosymbioses mutualistic? Trends Ecol. Evol. 4 350–352PubMedCrossRefGoogle Scholar
  86. Durvasula, R. V., A. Gumbs, A. Panackal, O. Kruglov, S. Aksoy, R. B. Merrifield, F. F. Richards, and C. B. Beard. 1997 Prevention of insect-borne disease: an approach using transgenic symbiotic bacteria Proc. Natl. Acad. Sci. USA 94 3274–3278PubMedCrossRefGoogle Scholar
  87. Eisen, J. A. 1995 The RecA Protein as a model molecule for molecular systematic studies of bacteria—comparison of trees of RecAs and 16S rRNAs from the same species J. Mol. Evol. 41 1105–1123PubMedCrossRefGoogle Scholar
  88. Eremeeva, M. E., W. M. Ching, Y. L. Wu, D. J. Silverman, and G. A. Dasch. 1998 Western blotting analysis of heat shock proteins of Rickettsiales and other eubacteria FEMS Microbiol. Lett. 167 229–237PubMedCrossRefGoogle Scholar
  89. Faye, I. 1978 Insect immunity: early fate of bacteria injected in a saturniid pupae J. Invertebr. Pathol. 31 19–26CrossRefGoogle Scholar
  90. Filichkin, S. A., S. Brumfield, T. P. Filichkin, and M. J. Young. 1997 In vitro interactions of the aphid endosymbiotic SymL chaperonin with barley yellow dwarf virus J. Virol. 71 569–577PubMedGoogle Scholar
  91. Fleischmann, R. D., M. D. Adams, O. White, R. A. Clayton, E. F. Kirkness, A. R. Kerlavage, C. J. Bult, J. F. Tomb, B. A. Dougherty, J. M. Merrick, K. McKenney, G. Sutton, W. Fitzhugh, C. Fields, J. D. Gocayne, J. Scott, R. Shirley, L. I. Liu, A. Glodek, J. M. Kelley, J. F. Weidman, C. A. Phillips, T. Spriggs, E. Hedblom, M. D. Cotton, T. R. Utterback, M. C. Hanna, D. T. Nguyen, D. M. Saudek, R. C. Brandon, L. D. Fine, J. L. Fritchman, J. L. Fuhrmann, N. S. M. Geoghagen, C. L. Gnehm, L. A. McDonald, K. V. Small, C. M. Fraser, H. O. Smith, and J. C. Venter. 1995 Whole-genome random sequencing and assembly of Haemophilus influenzae Rd Science 269 469–512CrossRefGoogle Scholar
  92. Forrest, J. M. S. 1987 Galling aphids A. K. Minks and P. Harrewijn Aphids: their biology, natural enemies and control Elsevier Amsterdam 2A 341–353Google Scholar
  93. Fraser, C. M., J. D. Gocayne, O. White, M. D. Adams, R. A. Clayton, R. D. Fleischmann, C. J. Bult, A. R. Kerlavage, G. Sutton, J. M. Kelley, J. L. Fritchman, J. F. Weidman, K. V. Small, M. Sandusky, J. Fuhrmann, D. Nguyen, T. R. Utterback, D. M. Saudek, C. A. Phillips, J. M. Merrick, J. F. Tomb, B. A. Dougherty, K. F. Bott, P. C. Hu, T. S. Lucier, S. N. Peterson, H. O. Smith, C. A. Hutchison, and J. C. Venter. 1995 The minimal gene complement of Mycoplasma genitalium Science 270 397–403PubMedCrossRefGoogle Scholar
  94. Fraser, C. M., S. Casjens, W. M. Huang, G. G. Sutton, R. Clayton, R. Lathigra, O. White, K. A. Ketchum, R. Dodson, E. K. Hickey, M. Gwinn, B. Dougherty, J. F. Tomb, R. D. Fleischmann, D. Richardson, J. Peterson, A. R. Kerlavage, J. Quackenbush, S. Salzberg, M. Hanson, R. vanVugt, N. Palmer, M. D. Adams, J. Gocayne, J. Weidman, T. Utterback, L. Watthey, L. McDonald, P. Artiach, C. Bowman, S. Garland, C. Fujii, M. D. Cotton, K. Horst, K. Roberts, B. Hatch, H. O. Smith, and J. C. Venter. 1997 Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi Nature 390 580–586PubMedCrossRefGoogle Scholar
  95. Fukatsu, T., and H. Ishikawa. 1992a A novel eukaryotic extracellular symbiont in an aphid, Astegopteryx styraci (Homoptera, Aphididae, Hormaphidinae) J. Insect Physiol. 38 765–773CrossRefGoogle Scholar
  96. Fukatsu, T., and H. Ishikawa. 1992b Soldier and male of an eusocial aphid Colophina arma lack endosymbiont: implications for physiological and evolutionary interaction between host and symbiont J. Insect Physiol. 38 1033–1042CrossRefGoogle Scholar
  97. Fukatsu, T., and H. Ishikawa. 1992c Synthesis and localization of symbionin, an aphid endosymbiont protein Insect Biochem. Mol. Biol. 22 167–174CrossRefGoogle Scholar
  98. Fukatsu, T., and H. Ishikawa. 1993 Occurrence of chaperonin-60 and chaperonin-10 in primary and secondary bacterial symbionts of aphids—implications for the evolution of an endosymbiotic system in aphids J. Mol. Evol. 36 568–577PubMedCrossRefGoogle Scholar
  99. Fukatsu, T., and H. Ishikawa. 1996 Phylogenetic position of yeast-like symbiont of Hamiltonaphis styraci (Homoptera, Aphididae) based on 18S rDNA sequence Insect Biochem. Mol. Biol. 26 383–388PubMedCrossRefGoogle Scholar
  100. Fukatsu, T., and H. Ishikawa. 1998 Differential immunohistochemical visualization of the primary and secondary intracellular symbiotic bacteria of aphids Appl. Entomol. Zool. 33 321–326Google Scholar
  101. Fukatsu, T., and N. Nikoh. 1998 Two intracellular symbiotic bacteria from the mulberry psyllid Anomoneura mori (Insecta, Homoptera) Appl. Environ. Microbiol. 64 3599–3606PubMedGoogle Scholar
  102. Fukatsu, T., K. Watanabe, and Y. Sekiguchi. 1998 Specific detection of intracellular symbiotic bacteria of aphids by oligonucleotide-probed in situ hybridization Appl. Entomol. Zool. 33 461–472Google Scholar
  103. Fukatsu, T., S. Aoki, U. Kurosu, and H. Ishikawa. 1994 Phylogeny of Cerataphidini aphids revealed by their symbiotic microorganisms and basic structure of their galls: implications for host-symbiont coevolution and evolution of sterile soldier castes Zool. Sci. 11 613–623Google Scholar
  104. Gasnier-Fauchet, F., and P. Nardon. 1986 Comparison of methionine metabolism in symbiotic and aposymbiotic larvae of Sitophilus oryzae L. (Coleopetera: curculionidae) II. Involvement of the symbiotic bacteria in the oxidation of methionine Comp. Biochem. Physiol. 85B 251–254Google Scholar
  105. Gasnier-Fauchet, F., A. Gharib, and P. Nardon. 1986 Comparison of methionine metabolism in symbiotic and aposymbiotic larvae of Sitophilus oryzae L. (Coleopetera: Curculionidae) I. Evidence for a glycine N-methyltransferase-like activity in the aposymbiotic larvae Comp. Biochem. Physiol. 85B 245–250Google Scholar
  106. Gray, S. M., and N. Banerjee. 1999 Mechanisms of arthropod transmission of plant and animal viruses Microbiol. Mol. Biol. Rev. 63 128–148PubMedGoogle Scholar
  107. Grenier, A. M., C. Nardon, and Y. Rahbe. 1994 Observations on the micro-organisms occurring in the gut of the pea aphid Acyrthosiphon pisum Entomol. Exp. Appli. 70 91–96CrossRefGoogle Scholar
  108. Griffiths, G. W., and S. D. Beck. 1973 Intracellular symbiotes of the pea aphid, Acyrthosiphon pisum J. Insect Physiol. 19 75–84CrossRefGoogle Scholar
  109. Griffiths, G. W., and S. D. Beck. 1974 Effect of antibiotics on intracellular symbiotes in the pea aphid, Acyrthosiphon pisum Cell Tissue Res 148 287–300PubMedCrossRefGoogle Scholar
  110. Grinyer, I., and A. J. Musgrave. 1966 Ultrastructure and peripheral membranes of the mycetomal microorganism of Sitophilus granarius (L. coleoptera) J. Cell Sci. 1 181–186Google Scholar
  111. Gross, C. A. 1996 Function and regulation of heat shock proteins F. C. Neidhard (ed.) Escherichia coli and Salmonella ASM Press Washington, DC 1 1382–1399Google Scholar
  112. Gross, R., and R. Rappuoli. 1988 Positive regulation of pertussis toxin expression Proc. Nat. Acad. Sci. USA 85 3913–3917PubMedCrossRefGoogle Scholar
  113. Hara, E., and H. Ishikawa. 1990 Purification and partial characterization of symbionin, an aphid endosymbiont-specific protein Insect Biochem. 20 421–427CrossRefGoogle Scholar
  114. Harada, H., and H. Ishikawa. 1993 Gut microbe of aphid closely related to its intracellular symbiont Biosystems 31 185–191PubMedCrossRefGoogle Scholar
  115. Harada, H., H. Oyaizu, and H. Ishikawa. 1996 A consideration about the origin of aphid intracellular symbiont in connection with gut bacterial flora J. Gen. Appl. Microbiol. 42 17–26CrossRefGoogle Scholar
  116. Harrison, C. P., A. E. Douglas, and A. F. G. Dixon. 1989 A rapid method to isolate symbiotic bacteria from aphids J. Invertebr. Pathol. 53 427–428CrossRefGoogle Scholar
  117. Harwood, R. F., and M. T. James. 1979 Entomology in human and animal health Macmillan Publishing Co New YorkGoogle Scholar
  118. Hassan, A. K. M., S. Moriya, P. Baumann, H. Yoshikawa, and N. Ogasawara. 1996 Structure of the dnaA region of the endosymbiont, Buchnera aphidicola, of the aphid Schizaphis graminum DNA Res. 3 415–419PubMedCrossRefGoogle Scholar
  119. Heddi, A., F. Lefebvre, and P. Nardon. 1991 The influence of symbiosis on the respiratory control ratio (RCR) and the ADP/O Ratio in the adult weevil-Sitophilus oryzae (Coleoptera, Curculionidae) Endocytobiosis Cell Res. 8 61–73Google Scholar
  120. Heddi, A., F. Lefebvre, and P. Nardon. 1993 Effect of endocytobiotic bacteria on mitochondrial enzymatic activities in the weevil Sitophilus oryzae (Coleoptera, Curculionidae) Insect Biochem. Mol. Biol. 23 403–411CrossRefGoogle Scholar
  121. Heddi, A., H. Charles, C. Khatchadourian, G. Bonnot, and P. Nardon. 1998 Molecular characterization of the principal symbiotic bacteria of the weevil Sitophilus oryzae: a peculiar G—C content of an endocytobiotic DNA J. Mol. Evol. 47 52–61PubMedCrossRefGoogle Scholar
  122. Henry, S. M. 1962 The significance of microorganisms in the nutrition of insects Trans. N. Y. Acad. Sci. 24 676–683CrossRefGoogle Scholar
  123. Hinde, R. 1971a The control of mycetome symbiotes of the aphids Brevicoryne brassicae, Myzus persicae, and Macrosiphon rosae J. Insect Physiol. 17 1971–1800Google Scholar
  124. Hinde, R. 1971b The fine structure of mycetome symbiotes of the aphids Brevicoryne brassicae, Myzus persicae, and Macrosiphum rosae J. Insect Physiol. 17 2035–2050PubMedCrossRefGoogle Scholar
  125. Hogenhout, S. A., F. van derWilk, M. Verbeek, R. W. Goldbach, and J. F. J. M. van den Heuvel. 1998 Potato leafroll virus binds to the equatorial domain of the aphid endosymbiotic GroEL homolog J. Virol. 72 358–365PubMedGoogle Scholar
  126. Houk, E. J., and G. W. Griffiths. 1980 Intracellular symbiotes of the Homoptera Annu. Rev. Entomol. 25 161–187CrossRefGoogle Scholar
  127. Houk, E. J., G. W. Griffiths, N. E. Hadjokas, and S. D. Beck. 1977 Peptidoglycan in the cell wall of the primary intracellular symbiote of the pea aphid Science 198 401–403PubMedCrossRefGoogle Scholar
  128. Humphreys, N. J., and A. E. Douglas. 1997 Partitioning of symbiotic bacteria between generations of insect: a quantitative study of a Buchnera sp. in the pea aphid (Acyrthosiphon pisum) reared at different temperatures Appl. Environ. Microbiol. 63 3294–3296PubMedGoogle Scholar
  129. Iaccarino, F. M., and E. Tremblay. 1973 Comparazione ultrastrutturale della disimbiosi di Macrosiphum rosae (L.) e Dactynotus jaceae (L.) (Homoptera, Aphididae) Boll. Lab. Entomol. Ag. Filipo Silvestri 30 319–335Google Scholar
  130. Ishikawa, H. 1982 Isolation of the intracellular symbionts and partial characterizations of their RNA species of the elder aphid, Acyrthosiphon magnoliae Comp. Biochem. Physiol. 72B 239–247Google Scholar
  131. Ishikawa, H. 1987 Nucleotide composition and kinetic complexity of the genomic DNA of an intracellular symbiont in the pea aphid Acyrthosiphon pisum J. Mol. Evol. 24 205–211CrossRefGoogle Scholar
  132. Kakeda, K., and H. Ishikawa. 1991 Molecular chaperon produced by an intracellular symbiont J. Biochem. 110 583–587PubMedGoogle Scholar
  133. Kambhampati, S. 1995 A phylogeny of cockroaches and related insects based on DNA sequence of mitochondrial ribosomal RNA genes Proc. Natl. Acad. Sci. USA 92 2017–2020PubMedCrossRefGoogle Scholar
  134. Katsumata, R., and M. Ikeda. 1993 Hyperproduction of tryptophan in Corynebacterium glutamicum by pathway engineering Biotechnology 11 921–925CrossRefGoogle Scholar
  135. Klotz, M. G., and J. M. Norton. 1998 Multiple copies of ammonia monooxygenase (amo) operons have evolved under biased AT/GC mutational pressure in ammonia-oxidizing autotrophic bacteria FEMS Microbiol. Lett. 168 303–311PubMedCrossRefGoogle Scholar
  136. Komaki, K., and H. Ishikawa. 1999 Intracellular symbionts of aphids are bacteria with numerous genomic copies J. Mol. Evol. 48 717–722PubMedCrossRefGoogle Scholar
  137. Kreditch, N. M. 1996 Biosynthesis of cysteine F. C. Neidhardt (ed.) Escherichia coli and Salmonella ASM Press Washington, DC 1 514–527Google Scholar
  138. Kusano, T., T. Takeshima, C. Inoue, and K. Sugawara. 1991 Evidence for two sets of structural genes coding for ribulose bisphosphate carboxylase in Thiobacillus ferrooxidans J. Bacteriol. 173 7313–7323PubMedGoogle Scholar
  139. Lai, C. Y., L. Baumann, and P. Baumann. 1994 Amplification of trpEG: adaptation of Buchnera aphidicola to an endosymbiotic association with aphids Proc. Natl. Acad. Sci. USA 91 3819–3823PubMedCrossRefGoogle Scholar
  140. Lai, C.-Y., P. Baumann, and N. A. Moran. 1995 Genetics of the tryptophan biosynthetic pathway of the prokaryotic endosymbiont (Buchnera) of the aphid Schlechtendalia chinensis Insect Mol. Biol. 4 47–59PubMedCrossRefGoogle Scholar
  141. Lai, C. Y., and P. Baumann. 1992a Genetic analysis of an aphid endosymbiont DNA fragment homologous to the rnpA-rpmH-dnaA-dnaN-gyrB region of eubacteria Gene 113 175–181PubMedCrossRefGoogle Scholar
  142. Lai, C. Y., and P. Baumann. 1992b Sequence analysis of a DNA fragment from Buchnera aphidicola (an endosymbiont of aphids) containing genes homologous to dnaG, rpoD, cysE andsecB Gene 119 113–118PubMedCrossRefGoogle Scholar
  143. Lai, C. Y., P. Baumann, and N. Moran. 1996 The endosymbiont (Buchnera sp.) of the aphid Diuraphis noxia contains plasmids consisting of trpEG and tandem repeats of trpEG pseudogenes Appl. Environ. Microbiol. 62 332–339PubMedGoogle Scholar
  144. Lambert, J. D., and N. A. Moran. 1998 Deleterious mutations destabilize ribosomal RNA in endosymbiotic bacteria Proc. Natl. Acad. Sci. USA 95 4458–4462PubMedCrossRefGoogle Scholar
  145. Liadouze, I., G. Febvay, J. Guillaud, and G. Bonnot. 1996 Metabolic fate of energetic amino acids in the aposymbiotic pea aphid Acyrthosiphon pisum (Harris) (Homoptera, Aphididae) Symbiosis 21 115–127Google Scholar
  146. Lipsitch, M., M. A. Nowak, D. Ebert, and R. M. May. 1995 The population dynamics of vertically and horizontally transmitted parasites Proc. Roy. Soc. Lond. B 260 321–327CrossRefGoogle Scholar
  147. Llanes, C., P. Gabant, M. Couturier, L. Bayer, and P. Plesiat. 1996 Molecular analysis of the replication elements of the broad-host-range RepA/C replicon Plasmid 36 26–35PubMedCrossRefGoogle Scholar
  148. Margolis, N., D. Hogan, K. Tilly, and P. A. Rosa. 1994 Plasmid location of Borrelia purine biosynthesis gene homologs J. Bacteriol. 176 6427–6432PubMedGoogle Scholar
  149. Maynard Smith, J., and E. Szathmáry. 1995 The major transitions in evolution W. H. Freeman Spektrum Oxford, New YorkGoogle Scholar
  150. McLean, D. L., and E. J. Houk. 1973 Phase contrast and electron microscopy pf the mycetocytes and symbiotes of the pea aphid, Acyrthosiphon pisum J. Insect Physiol. 19 625–633CrossRefGoogle Scholar
  151. McMillan, D. J., M. Mau, and M. J. Walker. 1998 Characterisation of the urease gene cluster in Bordetella bronchiseptica Gene 208 243–251PubMedCrossRefGoogle Scholar
  152. Messer, W., and C. Weigl. 1996 Initiation of chromosome replication F. C. Neidhardt (ed.) Escherichia coli and Salmonella ASM Press Washington, DC 2 1579–1601Google Scholar
  153. Moran, N. A. 1996 Accelerated evolution and Muller’s rachet in endosymbiotic bacteria Proc. Natl. Acad. Sci. USA 93 2873–2878PubMedCrossRefGoogle Scholar
  154. Moran, N., and P. Baumann. 1994 Phylogenetics of cytoplasmically inherited microorganisms of arthropods Trends Ecol. Evol. 9 15–20PubMedCrossRefGoogle Scholar
  155. Moran, N. A., M. E. Kaplan, M. J. Gelsey, T. G. Murphy, and E. A. Scholes. 1999 Phylogeny and evolution of the aphid genus Uroleucon based on nuclear and mitochondrial DNA sequences System. Entomol. 24 85–93CrossRefGoogle Scholar
  156. Moran, N. A., M. A. Munson, P. Baumann, and H. Ishikawa. 1993 A molecular clock in endosymbiotic bacteria is calibrated using the insect hosts Proc. Roy. Soc. Lond. B253 167–171CrossRefGoogle Scholar
  157. Moran, N. A., and A. Telang. 1998 Bacteriocyte-associated symbionts of insects: a variety of insect groups harbor ancient prokaryotic endosymbionts Bioscience 48 295–304CrossRefGoogle Scholar
  158. Moran, N. A., C. D. von Dohlen, and P. Baumann. 1995 Faster evolutionary rates in endosymbiotic bacteria than in cospeciating insect hosts J. Mol. Evol. 41 727–731CrossRefGoogle Scholar
  159. Munson, M. A., L. Baumann, and P. Baumann. 1993 Buchnera aphidicola (a prokaryotic endosymbiont of aphids) contains a putative 16S rRNA operon unlinked to the 23S rRNA-encoding gene: sequence determination, and promoter and terminator analysis Gene 137 171–178PubMedCrossRefGoogle Scholar
  160. Munson, M. A., P. Baumann, and M. G. Kinsey. 1991a Buchnera gen. nov. and Buchnera aphidicola sp. nov., a taxon consisting of the mycetocyte-associated, primary endosymbionts of aphids Int. J. Syst. Bacteriol. 41 566–568CrossRefGoogle Scholar
  161. Munson, M. A., P. Baumann, M. A. Clark, L. Baumann, N. A. Moran, D. J. Voegtlin, and B. C. Campbell. 1991b Evidence for the establishment of aphid-eubacterium endosymbiosis in an ancestor of four aphid families J. Bacteriol. 173 6321–6324PubMedGoogle Scholar
  162. Munson, M. A., P. Baumannn, and M. A. Moran. 1992 Phylogenetic relationships of the endosymbionts of mealybugs (Homoptera:Pseudococcidae) based on 16S rDNA sequences Mol. Phylogen. Evol. 1 26–30CrossRefGoogle Scholar
  163. Musgrave, A. J., and I. Grinyer. 1968 Membranes associated with the disintegration of mycetomal micro-organisms in Sitophilus zea-mais (Mots. Coleoptera) J. Cell Sci. 3 65–70PubMedGoogle Scholar
  164. Nakabachi, A., and H. Ishikawa. 1997 Differential display of mRNAs related to amino acid metabolism in the endosymbiotic system of aphids Insect Biochem. Mol. Biol. 27 1057–1062PubMedCrossRefGoogle Scholar
  165. Nakabachi, A., and H. Ishikawa. 1999 Provision of riboflavin to the host aphid, Acyrthosiphon pisum, by endosymbiotic bacteria, Buchnera J. Insect Physiol. 45 1–6PubMedCrossRefGoogle Scholar
  166. Nardon, P., and A. M. Grenier. 1988 Genetical and biochemical interactions between the host and its endocytobiotes in the weevil Sitophilus (Coleoptere, Curculionidae) and other related species S. Scannerini Cell to cell signals in plant, animal and microbial symbiosis Springer Verlag Heidelberg 255–270CrossRefGoogle Scholar
  167. Nicholson, M. L., M. Gaasenbeek, and D. E. Laudenbach. 1995 Two enzymes together capable of cysteine biosynthesis are encoded on a cyanobacterial plasmid Mol. Gen. Genet. 247 623–632PubMedCrossRefGoogle Scholar
  168. Nogge, G. 1976 Aposymbiotic tsetse flies, Glossina morsitans morsitans obtained by feeding adults on rabbits immunized specificaly with symbionts J. Insect Physiol. 24 299–304CrossRefGoogle Scholar
  169. Nogge, G. 1982 Significance of symbionts for the maintenance of an optimal nutritional state of successful reproduction in hematophagous arthropods Parasitology 82 299–304Google Scholar
  170. Norton, J. M., J. M. Low, and G. Martin. 1996 The gene encoding ammonia monooxygenase subunit A exists in three nearly identical copies in Nitrosospira sp. NpAV FEMS Microbiol. Lett. 139 181–188PubMedGoogle Scholar
  171. O’Neill, A., A. Hoffman, and J. H. Werren. 1997 Influential passengers; inherited microorganisms and arthropod reproduction Oxford University Press OxfordGoogle Scholar
  172. Ohtaka, C., H. Nakamura, and H. Ishikawa. 1992 Structures of chaperonins from an intracellular symbiont and their functional expression in Escherichia coli groE mutants J. Bacteriol. 174 1869–1874PubMedGoogle Scholar
  173. Patten, C. L., and B. R. Glick. 1996 Bacterial biosynthesis of indole-3-acetic acid Can. J. Microbiol. 42 207–220PubMedCrossRefGoogle Scholar
  174. Pennisi, E. 1998 Evolution—heat shock protein mutes genetic changes Science 282 1796–1796PubMedCrossRefGoogle Scholar
  175. Remaudié, G., and M. Remaudi 1997 Catalogue des aphididae du monde Institut National de la Recherche Agronomique ParisGoogle Scholar
  176. Riley, M., and B. Labedan. 1996 Escherichia coli gene products: physiological functions and common ancestries F. C. Neidhardt (ed.) Escherichia coli and Salmonella ASM Press Washington, DC 2 2118–2202Google Scholar
  177. Romero, D., and R. Palacios. 1997 Gene amplification and genomic plasticity in prokaryotes Annu. Rev. Gen. 31 91–111CrossRefGoogle Scholar
  178. Roth, J. R., N. Benson, T. Galitski, K. Haack, J. G. Lawrence, and L. Miesel. 1996 Rearrangements of the bacterial chromosome: formation and applications F. C. Neidhardt (ed.) Escherichia coli and Salmonella ASM Press Washington, DC 2 2256–2276Google Scholar
  179. Rouhbakhsh, D., and P. Baumann. 1995 Characterization of a putative 23S-5S rRNA operon of Buchnera aphidicola (endosymbiont of aphids) unlinked to the 16S rRNA-encoding gene Gene 155 107–112PubMedCrossRefGoogle Scholar
  180. Rouhbakhsh, D., M. A. Clark, L. Baumann, N. A. Moran, and P. Baumann. 1997 Evolution of the tryptophan biosynthetic pathway in Buchnera (aphid endosymbionts): studies of plasmid-associated trpEG within the genus Uroleucon Mol. Phylogen. Evol. 8 167–176CrossRefGoogle Scholar
  181. Rouhbakhsh, D., N. A. Moran, L. Baumann, D. J. Voegtlin, and P. Baumann. 1994 Detection of Buchnera, the primary prokaryotic endosymbiont of aphids, using the polymerase chain reaction Insect Mol. Biol. 3 213–217PubMedCrossRefGoogle Scholar
  182. Rouhbakhsh, D., C. Y. Lai, C. D. von Dohlen, M. A. Clark, L. Baumann, P. Baumann, N. A. Moran, and D. J. Voegtlin. 1996 The tryptophan biosynthetic pathway of aphid endosymbionts (Buchnera): genetics and evolution of plasmid-associated anthranilate synthase (trpEG) within the Aphididae J. Mol. Evol. 42 414–421PubMedCrossRefGoogle Scholar
  183. Rutherford, S. L., and S. Lindquist. 1998 Hsp90 as a capacitor for morphological evolution Nature 396 336–342PubMedCrossRefGoogle Scholar
  184. Sacchi, L., S. Corona, A. Grigolo, U. Laudani, M. G. Selmi, and E. Bigliardi. 1996 The fate of the endocytobionts of Blattella germanica (Blattaria, Blattellidae) and Periplaneta americana (Blattaria, Blattidae) during embryo development Ital. J. Zool. 63 1–11CrossRefGoogle Scholar
  185. Sacchi, L., C. A. Nalepa, E. Bigliardi, S. Corona, A. Grigolo, U. Laudani, and C. Bandi. 1998a Ultrastructural studies of the fat body and bacterial endosymbionts of Cryptocercus punctulatus Scudder (Blattaria: Cryptocercidae) Symbiosis 25 251–269Google Scholar
  186. Sacchi, L., C. A. Nalepa, E. Bigliardi, M. Lenz, C. Bandi, S. Corona, A. Grigolo, S. Lambiase, and U. Laudani. 1998b Some aspecys of intracellular symbiosis during embryo development of Mastotermes darwiniensis (Isoptera: Mastotermididae) Parassitologia 40 309–316PubMedGoogle Scholar
  187. Sandström, J., and N. Moran. 1999 How nutritionally imbalanced is phloem sap for aphids? Entomol. Exp. Appl. 91 203–210CrossRefGoogle Scholar
  188. Sandström, J., and J. Pettersson. 1994 Amino acid composition of phloem sap and the relation to intraspecific variation in pea aphid (Acyrthosiphon pisum) performance J. Insect Physiol. 40 947–955CrossRefGoogle Scholar
  189. Sandström, J., A. Telang, and N. A. Moran. 2000 Nuritional enhancement of host plants by aphids-a comparison of three aphid species on grasses J. Insect Physiol. 46 33–40PubMedCrossRefGoogle Scholar
  190. Sasaki, T., and H. Ishikawa. 1995 Production of essential amino acids from glutamate by mycetocyte symbionts of the pea aphid, Acyrthosiphon pisum J. Insect Physiol. 41 41–46CrossRefGoogle Scholar
  191. Sasaki, T., T. Aoki, H. Hayashi, and H. Ishikawa. 1990 Amino acid composition of the honeydew of symbiotic and aposymbiotic pea aphids Acyrthosiphon pisum J. Insect Physiol. 36 35–40CrossRefGoogle Scholar
  192. Sato, S., and H. Ishikawa. 1997a Expression and control of an operon from an intracellular symbiont which is homologous to the groE operon J. Bacteriol. 179 2300–2304PubMedGoogle Scholar
  193. Sato, S., and H. Ishikawa. 1997b Structure and expression of the dnaKJ operon of Buchnera, an intracellular symbiotic bacteria of aphid J. Biochem. 122 41–48PubMedCrossRefGoogle Scholar
  194. Schröder, D., H. Deppisch, M. Obermayer, G. Krohne, E. Stackebrandt, B. Holldobler, W. Goebel, and R. Gross. 1996 Intracellular endosymbiotic bacteria of Camponotus species (carpenter ants): systematics, evolution and ultrastructural characterization Mol. Microbiol. 21 479–489PubMedCrossRefGoogle Scholar
  195. Silva, F. J., R. C. H. J. van Ham, B. Sabater, and A. Latorre. 1998 Structure and evolution of the leucine plasmids carried by the endosymbiont (Buchnera aphidicola) from aphids of the family Aphididae FEMS Microbiol. Lett. 168 43–49PubMedCrossRefGoogle Scholar
  196. Smith, D. C., and A. E. Douglas. 1987 The biology of symbiosis Edward Arnold LondonGoogle Scholar
  197. Smith, O. H., and C. Yanofsky. 1962 Enzymes involved in the biosynthesis of tryptophan Meth. Enzymol. 5 794–806CrossRefGoogle Scholar
  198. Spaulding, A. W., and C. D. vonDohlen. 1998 Phylogenetic characterization and molecular evolution of bacterial endosymbionts in psyllids (Hemiptera: Sternorrhyncha) Mol. Biol. Evol. 15 1506–1513PubMedCrossRefGoogle Scholar
  199. Stephens, R. S., S. Kalman, C. Lammel, J. Fan, R. Marathe, L. Aravind, W. Mitchell, L. Olinger, R. L. Tatusov, Q. X. Zhao, E. V. Koonin, and R. W. Davis. 1998 Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis Science 282 754–759PubMedCrossRefGoogle Scholar
  200. Sylvester, E. S. 1985 Multiple acquisition of viruses and vector-dependent prokaryotes: consequences on transmission Annu. Rev. Entomol. 30 71–88CrossRefGoogle Scholar
  201. Telang, A., J. Sandström, E. Dyreson, and N. A. Moran. 1999 Feeding damage by Diuraphis noxia results in nutritionally enhanced phloem diet Entomol. Exp. Appl. 91 403–412CrossRefGoogle Scholar
  202. Thao, M. L., and P. Baumann. 1998 Sequence analysis of a DNA fragment from Buchnera aphidicola (aphid endosymbiont) containing the genes dapD-htrA-ilvI-ilvH-ftsL-ftsI-murE Curr. Microbiol. 37 214–216PubMedCrossRefGoogle Scholar
  203. Thao, M. L., L. Baumann, P. Baumann, and N. A. Moran. 1998 Endosymbionts (Buchnera) from the aphids Schizaphis graminum and Diuraphis noxia have different copy numbers of the plasmid containing the leucine biosynthetic genes Curr. Microbiol. 36 238–240PubMedCrossRefGoogle Scholar
  204. Tremblay, E. 1989 Coccoidea endosymbiosis W. Schwemmler and G. Gassner Insect endocytobiosis: morphology, physiology, genetics, evolution CRC Press, Inc. Boca Raton145–173Google Scholar
  205. Unterman, B. M., and P. Baumann. 1990 Partial characterization of ribosomal RNA operons of the pea-aphid endosymbionts: evolutionary and physiological implications R. K. Campbell and R. D. Eikenbary (eds.) Aphid-plant genotype interactions Elsevier Biomedical Press Amsterdam 329–350Google Scholar
  206. Unterman, B. M., P. Baumann, and D. L. McLean. 1989 Pea aphid symbiont relationships established by analysis of 16S rRNAs J. Bacteriol. 171 2970–2974PubMedGoogle Scholar
  207. van den Heuvel, J. F. J. M., A. Bruyere, A. Hogenhout, V. ZieglerGraff, V. Brault, M. Verbeek, F. van derWilk, and K. Richards. 1997 The N-terminal region of the luteovirus readthrough domain determines virus binding to Buchnera GroEL and is essential for virus persistence in the aphid J. Virol. 71 7258–7265PubMedGoogle Scholar
  208. van den Heuvel, J. F. J. M., M. Verbeek, and F. van der Wilk. 1994 Endosymbiotic bacteria associated with circulative transmission of potato leafroll virus by Myzus persicae J. Gen. Virol. 75 2559–2565PubMedCrossRefGoogle Scholar
  209. van Ham, R. C. H. J., D. Martínez-Torres, A. Moya, and A. Latorre. 1999 Plasmid-encoded anthranilate synthase (TrpEG) in Buchnera aphidicola from the family Pemphigidae Appl. Environ. Microbiol. 65 117–125Google Scholar
  210. van Ham, R. C. H. J., A. Moya, and A. Latorre. 1997 Putative evolutionary origin of plasmids carrying the genes involved in leucine biosynthesis in Buchnera aphidicola (endosymbiont of aphids) J. Bacteriol. 179 4768–4777PubMedGoogle Scholar
  211. von Dohlen, C. D., and N. A. Moran. 1995 Molecular phylogeny of the Homoptera—a paraphyletic taxon J. Mol. Evol. 41 211–223CrossRefGoogle Scholar
  212. von Wintzingerode, F., U. B. Gobel, and E. Stackebrandt. 1997 Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis FEMS Microbiol. Rev. 21 213–229CrossRefGoogle Scholar
  213. Waku, Y., and Y. Endo. 1987 Ultrastructure and life cycle of the symbionts in a Homopteran insect, Anomoneura mori Schwartz (Psyllidae) Appl. Entomol. Zool. 22 630–637Google Scholar
  214. Wernegreen, J. J., and N. A. Moran. 1999 Evidence for genetic drift in endosymbionts (Buchnera): analyses of protein-coding genes Mol. Biol. Evol. 16 83–97PubMedCrossRefGoogle Scholar
  215. Werren, J. H., and S. L. O’Neill. 1997 The evolution of heritable symbionts S. L. O’Neill, A. A. Hoffman, and J. H. Werren Influential passengers; inherited microorganisms and arthropod reproduction Oxford University Press Oxford 1–41Google Scholar
  216. Whitehead, L. F., and A. E. Douglas. 1993 A metabolic study of Buchnera, the intracellular bacterial symbionts of the pea aphid Acyrthosiphon pisum J. Gen. Microbiol. 139 821–826CrossRefGoogle Scholar
  217. Wicker, C., and P. Nardon. 1982 Development responses of symbiotic and aposymbiotic weevils Sitophilus oryzae L. (Coleoptera, Curculonidae) to a diet supplemented with aromatic amino-acids J. Insect. Physiol. 28 1021–1024CrossRefGoogle Scholar
  218. Wilkinson, T. L. 1998 The elimination of intracellular microorganisms from insects: an analysis of antibiotic-treatment in the pea aphid (Acyrthosiphon pisum) Comp. Biochem. Physiol. A119 871–881Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Paul Baumann
  • Nancy A. Moran
  • Linda Baumann

There are no affiliations available

Personalised recommendations