Advertisement

Optical Doppler Tomography

  • Zhongping Chen
Reference work entry

Abstract

This chapter describes optical Doppler tomography (ODT). This is an imaging modality that combines Doppler principles with optical coherence tomography to image tissue structure and blood flow velocity simultaneously. We will review the principle and technology of ODT, and illustrate a few examples of its applications.

Key words

Optical Doppler tomography Doppler OCT biomedical imaging 

References to Optical Doppler Tomography

  1. E. Yamada, M. Matsumura, S. Kyo, and R. Omoto, “Usefulness of a prototype intravascular ultrasound imaging in evaluation of aortic dissection and comparison with angiographic study, transesophageal echocardiography, computed tomography, and magnetic resonance imaging,” Am. J. Cardiol. 75, 161–165 (1995).CrossRefGoogle Scholar
  2. P. L. Carson, D. D. Adler, and J. B. Fowlkes, “Enhanced color flow imaging of breast cancer vasculature: continuous wave Doppler and three-dimensional display,” J. Ultrasound Med. 11, 77 (1992).CrossRefGoogle Scholar
  3. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).ADSCrossRefGoogle Scholar
  4. V. Gusmeroli and M. Martnelli, “Distributed laser Doppler velocimeter,” Opt. Lett. 16, 1358–1360 (1991).ADSCrossRefGoogle Scholar
  5. Z. Chen, T. E. Milner, S. Srinivas, X. J. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive Imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22, 1119–1121 (1997).ADSGoogle Scholar
  6. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22, 1439–1441 (1997).ADSCrossRefGoogle Scholar
  7. Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett. 22, 64–66 (1997).ADSCrossRefGoogle Scholar
  8. Z. Chen, T. E. Milner, X. J. Wang, S. Srinivas, and J. S. Nelson, “Optical Doppler tomography: imaging in vivo blood flow dynamics following pharmacological intervention and photodynamic therapy,” Photochem. Photobiol. 67, 56–60 (1998).CrossRefGoogle Scholar
  9. Z. Chen, Y. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, and R. D. Frostig, “Optical Doppler Tomography,” IEEE J. Select. Tops Quant. Electr. 5(4), 1134–1141 (1999).ADSCrossRefGoogle Scholar
  10. M. D. Kulkarni, T. G. van Leeuwen, S. Yazdanfar, and J. A. Izatt, “Velocity-estimation accuracy and frame-rate limitations in color Doppler optical coherence tomography.,” Opt. Lett. 23, 1057–1059 (1998).ADSCrossRefGoogle Scholar
  11. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high veocity sensitivity,” Opt. Lett. 25(2), 114 (2000).ADSCrossRefGoogle Scholar
  12. Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer, and J. S. Nelson, “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,” Opt. Lett. 25, 1358–1360 (2000).ADSCrossRefGoogle Scholar
  13. Y. Zhao, Z. Chen, Z. Ding, H. Ren, and J. S. Nelson, “Three-dimensional reconstruction of in vivo blood vessels in human skin using phase-resolved optical Doppler tomography,” IEEE J. Select. Tops Quant. Electr. 7, 931–935 (2001).ADSCrossRefGoogle Scholar
  14. Z. Ding, Y. Zhao, H. Ren, S. J. Nelson, and Z. Chen, “Real-time phase resolved optical coherence tomography and optical Doppler tomography,” Opt. Express 10, 236–245 (2002).ADSCrossRefGoogle Scholar
  15. J. S. Nelson, K. M. Kelly, Y. Zhao, and Z. Chen, “Imaging blood flow in human port-wine stain in situ and in real time using optical Doppler tomography,” Arch. Dermatol. 137(6), 741–744 (2001).Google Scholar
  16. V. X. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208, 209–214 (2002).ADSCrossRefGoogle Scholar
  17. V. Westphal, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “Real-time, high velocity-resolution color Doppler optical coherence tomography,” Opt. Lett. 27, 34–36 (2002).ADSCrossRefGoogle Scholar
  18. D. P. Dave and T. E. Milner, “Doppler-angle measurement in highly scattering media,” Opt. Lett. 25(20), 1523–1525 (2000).ADSCrossRefGoogle Scholar
  19. H. Ren, M. K. Breke, Z. Ding, Y. Zhao, J. S. Nelson, and Z. Chen, “Imaging and quantifying transverse flow velocity with the Doppler bandwidth in a phase-resolved functional optical coherence tomography,” Opt. Lett. 27, 409–411 (2002).ADSCrossRefGoogle Scholar
  20. S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography,” Opt. Lett. 25, 1448–1450 (2000).ADSCrossRefGoogle Scholar
  21. V. X. Yang, M. L. Gordon, S. Tang, N. E. Marcon, G. Gardiner, B. Qi, S. Bisland, E. Seng-Yue, S. Lo, J. Pekar, B. C. Wilson, and I. A. Vitkin, “High speed, wide velocity dyhamic range Doppler optical coherence tomography (part III): in vivo endoscopic imaging of blood flow in the rat and human gastrointestinal tracts,” Opt. Express 11, 2416–2424 (2003).ADSCrossRefGoogle Scholar
  22. G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, “High-speed phase-and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22(23), 1811–1813 (1997).ADSCrossRefGoogle Scholar
  23. F. Hlawatsch and G. F. Boudreaux-Bartels, “Linear and Quadratic Time-Frequency Signal Representations,” IEEE Spectrum 4, 21–67 (1992).Google Scholar
  24. S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “ultrahigh velocity resolution imaging of the microcirculation in vivo using colar Doppler optical coherence tomography,” Proc. SPIE 4251, 156 (2001).ADSCrossRefGoogle Scholar
  25. A. F. Fercher, C. K. Kitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).ADSCrossRefGoogle Scholar
  26. R. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and M. Kulhavy, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).ADSCrossRefGoogle Scholar
  27. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitvity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183–2189 (2003).ADSCrossRefGoogle Scholar
  28. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).ADSCrossRefGoogle Scholar
  29. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High speed optical frequency domain imaging,” Opt. Express 11, 2593–2563 (2003).Google Scholar
  30. Z. Chen, “Optical Doppler tomography for high resolution imaging of in vivo microcirculation,” Whitaker Foundation Investigator Abstract, 1997.Google Scholar
  31. R. Leitgeb, L. Schmetterer, M. Wojtkowski, M. Sticker, C. K. Hitzenberger, and A. F. Fercher, “Flow velocity measurement by frequency domain short cohrence interferometry,” Proc. SPIE 4619, 16 (2002).ADSCrossRefGoogle Scholar
  32. L. Wang, Y. Wang, M. Bachaman, G. P. Li, and Z. Chen, “Phase-resolved frequency domain optical Doppler tomography,” Proc. SPIE 5345, to be published (2004).Google Scholar
  33. L. Wang, X. Wei, Y. Wang, M. Bachaman, G. P. Li, and Z. Chen, “Imaging and quantifying of microflow by phase-resolved optical Doppler tomography,” Opt. Commun. in press (2004).Google Scholar
  34. D. Piao, L. L. Otis, and Q. Zhu, “Doppler angle and flow velocity mapping by combine Doppler shift and Doppler bandwidth measurements in optical Doppler tomography,” Opt. Lett. 28, 1120 (2003).ADSCrossRefGoogle Scholar
  35. S. Proskurin, Y. He, and R. Wang, “Determination of flow velocity vector based on Doppler shift and spectrum boradening with optical coherence tomography,” Opt. Lett. 28, 1227 (2003).ADSCrossRefGoogle Scholar
  36. L. Wang, Y. Wang, M. Bachaman, G. P. Li, and Z. Chen, “Quantify flow vector using phase resolved optical Doppler tomography,” Proc. SPIE 5316, to be published (2004).Google Scholar
  37. A. Major, S. Kimel, S. Mee, T. E. Milner, D. J. Smithies, S. M. Srinivas, Z. Chen, and J. S. Nelson, “Microvascular photodynamic effects determined in vivo using optical Doppler tomography,” IEEE J. Select. Tops Quant. Electr. 5, 1168–1175 (1999).ADSCrossRefGoogle Scholar
  38. R. D. Frostig, E. E. Lieke, D. Y. Ts'o, and A. Grinvald, “Cortical functional architechture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. USA 87, 6082–6086 (1990).ADSCrossRefGoogle Scholar
  39. Y. Chen, Z. Chen, Y. Zhao, J. S. Nelson, M. Bachman, Y. Chiang, C. Chu, and G. P. Li, “tTest channels for flow characterization of processed plastic microchannels,” Materials Science of Microelectromechanical Systems (MEMS) Devices II, M. P. deBoer, A. H. Heuer, S. J. Jacobs, E. Peeters, Eds., MRS, December (1999).Google Scholar
  40. Y. Chen, “In vivo measurement and characterization of fluid flow in microchannels using OCT/ODT system,” M. S. Thesis, University of California, Irvine, Irvine, CA, (2001).Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Zhongping Chen
    • 1
  1. 1.Department of Biomedical Engineering, Beckman Laser InstituteUniversity of CaliforniaIrvineUSA

Personalised recommendations