Handbook of Coherent Domain Optical Methods pp 536-593 | Cite as
Optical Coherence Tomography
- 462 Downloads
Abstract
The fundamental aspects of optical coherence tomography and brief description of its applications in medicine and biology are presented. The impact of multiple scattering in tissues on the OCT imaging performances, and the developments in reducing the overwhelming multiple scattering effects and improving imaging capabilities by the use of immersion technique are discussed. A novel technique based on the usc of biocompatible and osmotically active chemical agents to impregnate the tissue and to enhance the OCT images is described. The mechanisms for improvements of imaging depth and contrast are discussed, primarily through the experimental examples.
Key words
optical coherence tomography multiple scattering osmotically active agents refractive index matching skin mucosa colon tooth ceramicsReferences to Optical Coherence Tomography
- A. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Physics Today 48, 34–40 (1995).CrossRefGoogle Scholar
- D. Delpy, “Optical spectroscopy for diagnosis,” Physics World 7, 34–39 (1994).CrossRefGoogle Scholar
- D. W. Piston, B. R. Masters, and W. W. Webb, “3-dimensionally resolved NAD(P)H cellular metabolic redox imaging of the in-situ cornea with 2-photon excitation laser-scanning microscopy,” J. Microsc. 178, 20–27 (1995).CrossRefGoogle Scholar
- M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. Webb, and R. Anderson, “In-vivo confocal scanning laser microscopy of human skin-melanin provides strong contrast,” J. Invest. Dermatol. 104, 946–952 (1995).CrossRefGoogle Scholar
- A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1, 157–173 (1996).CrossRefADSGoogle Scholar
- J. M. Schmitt, “Optical coherence tomography (OCT): A review,” IEEE J. Sel. Top. Quant. Electron. 5, 1205–1215 (1999).CrossRefADSGoogle Scholar
- D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).CrossRefADSGoogle Scholar
- A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Amer. J. Ophthalmol. 116, 113–114 (1993).CrossRefGoogle Scholar
- J. M. Schmitt, A. Knüttel, M. Yadlowsky, and R. F. Bonner, “Optical coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 42, 1427–1439 (1994).CrossRefGoogle Scholar
- J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nature Med. 1, 970–972 (1995).CrossRefGoogle Scholar
- G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).CrossRefGoogle Scholar
- R. C. Youngquist, S. Carr, and D. E. N. Davies, “Optical coherence domain reflectometry: A new optical evaluation technique,” Opt. Lett. 12, 158–160 (1987).CrossRefADSGoogle Scholar
- K. Takada, I. Yokohama, K. Chida, and J. Noda, “New measurement system for fault location in optical waveguide devices based on an interferometric technique,” Appl. Opt. 26, 1603–1606 (1987).CrossRefADSGoogle Scholar
- A. F. Fercher, K. Mengedoht, and W. Werner, “Eye-length measurement by interferometry with partially coherent light,” Opt. Lett. 13, 1867–1869 (1988).CrossRefGoogle Scholar
- C. K. Hitzenberger, W. Drexler, and A. F. Fercher, “Measurement of corneal thickness by laser Doppler interferometry,” Invest. Ophthal. Vis. Sci. 33, 98–103 (1992).Google Scholar
- J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye with optical coherence tomography,” Arch. Ophthalmol. 112, 1584–1589 (1994).CrossRefGoogle Scholar
- W. Clivaz, F. Marquis-Weible, R. P. Salathe, R. P. Novak, and H. H. Gilgen, “High-resolution reflectometry in biological tissue,” Opt. Lett. 17, 4–6 (1992).CrossRefADSGoogle Scholar
- M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 326–332 (1995).Google Scholar
- S. A. Boppart, M. E. Brezinsk, B. E. Boump, G. J. Tearney, and J. G. Fujimoto, “Investigation of developing embryonic morphology using optical coherence tomography,” Dev. Biol. 177, 54–64 (1996).CrossRefGoogle Scholar
- C. A Puliafito, M. R. Hee, C. P. Lin, and J. G. Fujimoto, “Imaging of macular disease with optical coherence tomography,” Ophthalmology 102, 217–229 (1995).CrossRefGoogle Scholar
- C. Pitris, C. Jesser, S. A. Boppart, D. Stamper, M. E. Brezinski, and J. G. Fujimoto, “Feasibility of optical coherence tomography for high resolution imaging of human gastrointestinal tract malignancies,” J. Gastroenterology 35, 87–92 (2000).CrossRefGoogle Scholar
- S. Brand, J. M. Poneros, B. E. Bouma, G. J. Tearney, C. C. Compton, N. S. Nishioka, “Optical coherence tomography in the gastrointestinal tract,” Endoscopy 632, 796–803 (2000).CrossRefGoogle Scholar
- B. E. Bouma, G. J. Tearney, C. C. Compton, N. S. Nishioka, “High-resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography,” Gastrointest. Endosc. 51, 467–574 (2000).CrossRefGoogle Scholar
- S. Jackle, N. Gladkova, F. Feldchtein, A. Terentieva, B. Brand, G. Gelikonov, V. Gelikonov, A. Sergeev, A. Fritscher-Ravens, J. Freund, U. Seitz, S. Schroder, N. Soehendra, “In vivo endoscopic optical coherence tomography of the human gastrointestinal tract-toward optical biopsy,” Endoscopy 32, 743–749 (2000).CrossRefGoogle Scholar
- R. K. Wang and J. B. Elder, “Propylene glycol as a contrasting agent for optical coherence tomography to image gastro-intestinal tissues,” Lasers Surg. Med. 30, 201–208 (2002).CrossRefGoogle Scholar
- B. W. Colston, M. J. Everett, L. B. Da Silva, L. L. Otis, P. Stroeve, and H. Nathel, “Imaging of hard-and soft-tissue structure in the oral cavity by optical coherence tomography,” Appl. Opt. 37, 3582–3585 (1998).CrossRefADSGoogle Scholar
- J. M. Schmitt, M. Yadlowsky, and R. Bonner, “Subsurface imaging of living skin with optical coherence tomography,” Dermatology 191, 93–98 (1995).CrossRefGoogle Scholar
- N. D. Gladkova, G. A. Petrova, N. K. Nikulin, S. G. Radenska-Lopovok, L. B. Snopova, Y. P. Chumakov, V. A. Nasonova, V. M. Geilkonov, G. V. Geilkonov, R. V. Kuranov, A. M. Sergeev, and F. I. Feldchtein, “In vivo optical coherence tomography imaging of human skin: norm and pathology,” Skin Research and Technology 6, 6–16 (2000).CrossRefGoogle Scholar
- R. K. Wang and J. B. Elder, “High resolution optical tomographic imaging of soft biological tissues,” Laser Physics 12, 611–616 (2002).Google Scholar
- J. G. Fujimoto, B. Bouma, G. J. Tearney, S. A. Boppart, C. Pitris, J. F. Southern, M. E. Brezinski, “New technology for high speed and high resolution optical coherence tomography,” Annals New York Academy of Sciences 838, 95–107 (1998).CrossRefADSGoogle Scholar
- C. Passmann and H. Ermert, “A 100 MHz ultrasound imaging system for dermatologic and ophthalmologic diagnostics,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 43, 545–552 (1996).CrossRefGoogle Scholar
- P. A. Flournoy, “White light interferometric thickness gauge,” Appl. Opt. 11, 1907–1915 (1972).CrossRefADSGoogle Scholar
- T. Li, A. Wang, K. Murphy, and R. Claus, “White light scanning fibre Michelson interferometer for absolute position measurement,” Opt. Lett. 20, 785–787 (1995).CrossRefADSGoogle Scholar
- Y. J. Rao, Y. N. Ning, and D. A. Jackson, “Synthesised source for white light sensing system,” Opt. Lett. 18, 462–464 (1993).CrossRefADSGoogle Scholar
- J. W. Goodman, Statistical Optics (John Wiley and Sons, New York, 1985), 164–169.Google Scholar
- R. K. Wang, “Resolution improved optical coherence-gated tomography for imaging through biological tissues,” J. Modern Optics 46, 1905–1913 (1999).CrossRefADSGoogle Scholar
- A. Podolenau and D. A. Jackson, “Noise analysis of a combined optical coherence tomograph and a confocal scanning ophthalmoscope,” Appl. Opt. 38, 2116–2127 (1999).CrossRefADSGoogle Scholar
- P. R. Gray and R. G. Meyer, Analysis and Design of Integrated Circuits, 2nd ed. (Wiley, New York, 1984).Google Scholar
- A. Sergeev, V. Gelikonov, and A. Gelikonov, “High-spatial-resolution optical-coherence tomography of human skin and mucous membranes,” presented at the Conf. Lasers and Electro Optics'95, Anaheim, Ca, May 21–26, 1995.Google Scholar
- G. J. Tearney, B. E. Bouma, S. A. Boppart, B. Golubovic, E. A. Swanson, and J. G. Fujimoto, “Rapid acquisition of in vivo biological images by use of optical coherence tomography,” Opt. Lett. 21, 1408–1410 (1996).CrossRefADSGoogle Scholar
- K. Takada, H. Yamada, and M. Horiguchi, “Optical low coherence reflectometer using [3 × 3] fiber coupler,” IEEE Photon. Technol. Lett. 6, 1014–1016 (1994).CrossRefADSGoogle Scholar
- B. E. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source,” Opt. Lett. 20, 1486–1488 (1995).CrossRefADSGoogle Scholar
- G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).CrossRefGoogle Scholar
- R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Efficient superfluorescent light sources with broad bandwidth,” IEEE J. Select. Topics Quantum Electron. 3, 1097–1099 (1997).CrossRefADSGoogle Scholar
- B. E. Bouma, L. E. Nelso, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomographic imaging of human tissue at 1.55 μm and 1.81 μm using Er-and Tm-doped fiber sources,” J. Biomed. Opt. 3, 76–79 (1998).CrossRefADSGoogle Scholar
- D. J. Derickson, P. A. Beck, T. L. Bagwell, D. M. Braun, J. E. Fouquet, F. G. Kellert, M. J. Ludowise, W. H. Perez, T. R. Ranganath, G. R. Trott, and S. R. Sloan, “High-power, low-internal-reflection, edge emitting light-emitting diodes,” Hewlett-Packard J. 46, 43–49 (1995).Google Scholar
- H. H. Liu, P. H. Cheng, and J. P. Wang, “Spatially coherent white-light interferometer based on a point fluorescent source,” Opt. Lett. 18, 678–680 (1993).CrossRefADSGoogle Scholar
- C. F. Lin and B. L. Lee, “Extremely broadband AlGaAs/GaAs superluminescent diodes,” Appl. Phys. Lett. 71, 1598–1600 (1997).CrossRefADSGoogle Scholar
- P. J. Poole, M. Davies, M. Dion, Y. Feng, S. Charbonneau, R. D. Goldberg, and I. V. Mitchell, “The fabrication of a broad-spectrum light-emitting diode using high-energy ion implantation,” IEEE Photon. Technol. Lett. 8, 1145–1147 (1996).CrossRefADSGoogle Scholar
- T. R. Cole and G. S. Kino, Confocal Scanning Optical Microscopy and Related Imaging Systems (Academic, San Diego, CA, 1990).Google Scholar
- J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical coherence tomography of a dense tissue: Statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705–1720 (1994).CrossRefGoogle Scholar
- C. B. Su, “Achieving variation of the optical path length by a few millimeters at millisecond rates for imaging of turbid media and optical interferometry: A new technique,” Opt. Lett. 22, 665–667 (1997).CrossRefADSMathSciNetGoogle Scholar
- G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, “High speed phase and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22, 1811–1813 (1997).CrossRefADSGoogle Scholar
- A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, and J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express 3, 219–229 (1998).CrossRefADSGoogle Scholar
- A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In-vivo optical coherence tomography,” Am. J. Ophthalmol. 116, 113–115 (1993).CrossRefGoogle Scholar
- W. Drexler, O. Findl, R. Menapace, A. Kruger, A. Wedrich, G. Rainer, A. Baumgartner, C. K. Hitzenberger, and A. F. Fercher, “Dual Beam Optical Coherence Tomography: Signal Identification for Ophthalmologic Diagnosis” J. Biomed. Opt. 3, 55–65 (1998)CrossRefADSGoogle Scholar
- J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–592 (1994).CrossRefADSGoogle Scholar
- A. G. Podoleanu, “Unbalanced versus balanced operation in an optical coherence tomography system,” Appl. Opt. 39, 173–82 (2000).CrossRefADSGoogle Scholar
- A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–8 (1995).CrossRefADSGoogle Scholar
- G. Hausler and M. W. Lindner, “Coherence Radar and Spectral Radar—New Tools for Dermatological Diagnosis” J. Biomed. Opt. 3, 21–31 (1998).CrossRefADSGoogle Scholar
- Y. Yasuno, Y. Sutoh, M. Nakama, S. Makita, M. Itoh, T. Yatagai, and M. Mori, “Spectral interferometric optical coherence tomography with nonlinear beta-barium borate time gating,” Opt. Lett. 27, 403–405 (2002).CrossRefADSGoogle Scholar
- E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23, 244–2466 (1998).CrossRefADSGoogle Scholar
- L. Vabre, A. Dubois, and A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Opt. Lett. 27, 530–532 (2002).CrossRefADSGoogle Scholar
- C. E. Saxer, J. F. de Boer, B. Hyle Park, Y. Zhao, Z. Chen, and J. S. Nelson, “High-speed fiber-based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett. 25, 1257–355 (2000).CrossRefGoogle Scholar
- J. E. Roth, J. A. Kozak, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “Simplified method for polarization-sensitive optical coherence tomography,” Opt. Lett. 26, 1069–1071 (2001).CrossRefADSGoogle Scholar
- S. Jiao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography,” Opt. Lett. 27, 101–103 (2002).CrossRefADSGoogle Scholar
- Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett. 22, 64–66 (1997).CrossRefADSGoogle Scholar
- J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomograghy,” Opt. Lett. 22, 1439–1441 (1997).CrossRefADSGoogle Scholar
- Y. Zhao, Z. Chen, C. Saxer, X. Shaohua, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25, 114–116 (2000).CrossRefADSGoogle Scholar
- Y. Zhao, Z. Chen, Z. Ding, H. Ren, and J. S. Nelson, “Real-time phase-resolved functional optical coherence tomography by use of optical Hilbert transformation,” Opt. Lett. 27, 98–100 (2002).CrossRefADSGoogle Scholar
- S. G. Proskurin, Y. He, and R. K. Wang, “Determination of flow-velocity vector based on Doppler shift and spectrum broadening with optical coherence tomography,” Opt. Lett. 28, 1224–1226 (2003).CrossRefADSGoogle Scholar
- S. G. Proskurin, I. A. Sokolova, and R. K. Wang, “Imaging of non-parabolic velocity profiles in converging flow with optical coherence tomography” Phy. Med. Biol. 48, 2907–2918 (2003).CrossRefGoogle Scholar
- U. Morgner, W. Drexler, F. X. Kartner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111–113 (2000).CrossRefADSGoogle Scholar
- A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography–principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).CrossRefADSGoogle Scholar
- M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Opthalmol. 113, 325–332 (1995).CrossRefGoogle Scholar
- C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, J. G. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmol. 120, 217–229 (1995).CrossRefGoogle Scholar
- C. A. Puliafito, M. R. Hee, J. S. Schumann, and J. G. Fujimoto, Optical Coherence Tomography of Ocular Diseases (Slack, Thorofare, NJ, 1995).Google Scholar
- M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Optical coherence tomography for optical biopsy: Properties and demonstration of vascular pathology,” Circulation 93, 1206–1213 (1996).CrossRefGoogle Scholar
- J. M. Schmitt, M. Yadlowsky, and R. F. Bonner, “Subsurface imaging of living skin with optical coherence microscopy,” Dermatol. 191, 93–98 (1995).CrossRefGoogle Scholar
- V. V. Tuchin, X. Xu, and R. K. Wang, “Dynamic optical coherence tomography in optical clearing, sedimentation and aggregation study of immersed blood,” Appl. Opt. 41, 258–271 (2002).CrossRefADSGoogle Scholar
- Special section on Coherence Domain Optical Methods in Biomedical Science and Clinics, V. V. Tuchin, H. Podbielska, and C. K. Hitzenberger eds., J. Biomed. Opt. 4, 94–190 (1999).Google Scholar
- R. K. Wang, “Signal degradation by multiple scattering in optical coherence tomography of dense tissue: A Monte Carlo study towards optical clearing of biotissues,” Phys. Med. Biol. 47, 2281–2299 (2002).CrossRefGoogle Scholar
- D. Huang, J. Wang, C. P. Lin, C. A Puliafito, and J. G Fujimoto, “Micron-resolution ranging of cornea anterior chamber by optical reflectometry,” Lasers Surg. Med. 11, 419–425 (1991).CrossRefGoogle Scholar
- A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol. 116, 113–114 (1993).CrossRefGoogle Scholar
- A. F. Fercher, C. K. Hitzenberger, G. Kemp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).CrossRefADSGoogle Scholar
- K. Rohrschneider, R. O. Burk, F. E. Kruse, and H. E. Volcker, “Reproducibility of the optic nerve head topography with a new laser tomographic scanning device,” Ophthalmol. 101, 1044–1049 (1994).CrossRefGoogle Scholar
- M. R. Hee, C. A. Puliafitom C. Wong, E. Reichel, J. S. Duker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of central serous chorioretinopathy,” Am. J. Ophthalmol. 120, 65–74 (1995).CrossRefGoogle Scholar
- M. R. Hee, C. A. Puliafitom C. Wong, E. Reichel, J. S. Duker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of macular holes,” Ophthalmol. 102, 748–756 (1995).CrossRefGoogle Scholar
- J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedutkloizman, C. P. Lin, E. Hertzmark, J. A Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of nerve fibre layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113, 586–596 (1995).CrossRefGoogle Scholar
- W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nature Medicine 7, 502–507 (2001).CrossRefGoogle Scholar
- I. Hartl, T. Ko, R. K. Ghanta, W. Drexler, A. Clermont, S. E. Bursell, and J. G. Fujimoto, “In vivo ultrahigh resolution optical coherence tomography for the quantification of retinal structure in normal and transgenic mice,” Invest. Ophthal. Vis. Sci. 42 (4), 4252 Suppl. (2001)Google Scholar
- S. A. Boppart, M. E. Brezinski, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, “Investigation of developing embryonic morphology using optical coherence tomography,” Develop. Biol. 177, 54–63 (1996).CrossRefGoogle Scholar
- S. A. Boppart, B. E. Bouma, M. E. Brezinski, G. J. Tearney, and J. G. Fujimoto, “Imaging developing neural morphology using optical coherence tomography,” J. Neurosci. Methods, 70, 65–72 (1996).CrossRefGoogle Scholar
- S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography,” PNAS 94, 4256–4261 (1997).CrossRefADSGoogle Scholar
- J. M. Schmitt, M. J. Yadlowsky, and R. F. Bonner, “Subsurface imaging of living skin with optical coherence microscopy,” Dermatology 191, 93–98 (1995).CrossRefGoogle Scholar
- N. D. Gladkova, G. A. Petrova, N. K. Nikulin, S. G. Radenska-Lopovok, L. B. Snopova, Y. P. Chumakov, V. A. Nasonova, V. M. Gelikonov, G. V. Gelikonov, R. V. Kuranov, A. M. Sergeev, and F. I. Feldchtein “In vivo optical coherence tomography imaging of human skin: norm and pathology,” Skin Res. Technol. 6, 6–16 (2000).CrossRefGoogle Scholar
- J. Welzel, “Optical coherence tomography in dermatology: a review,” Skin Res. Technol. 7, 1–9 (2001).CrossRefGoogle Scholar
- C. B. Williams, J. E. Whiteway, and J. R. Jass, “Practical aspects of endoscopic management of malignant polyps,” Endoscopy 19, 31–37 Suppl. 1 (1987).CrossRefGoogle Scholar
- K. Kobayashi, H. S. Wang, M. V. Sivak, and J. A. Izatt, “Micron-resolution sub-surface imaging of the gastrointestinal tract wall with optical coherence tomography,” Gastrointestinal Endoscopy 43, 29–29 (1996).CrossRefGoogle Scholar
- J. A. Izatt, “Micron scale in vivo imaging of gastrointestinal cancer using optical coherence tomography,” Radiology 217, 385 Suppl. S (2000).CrossRefGoogle Scholar
- A. Das, M. V. Sivak, A. Chak, R. C. K. Wong, V. Westphal, A. M. Rollins, J. Willis, G. Isenberg, and J. A. Izatt, “High-resolution endoscopic imaging of the GI tract: a comparative study of optical coherence tomography versus high-frequency catheter probe EUS,” Gastrointestinal Endoscopy 54, 219–224 (2001).CrossRefGoogle Scholar
- J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nature Med. 1, 970–972 (1995).CrossRefGoogle Scholar
- M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Optical coherence tomography for optical biopsy-Properties and demonstration of vascular pathology,” Circulation 93, 1206–1213 (1996).CrossRefGoogle Scholar
- M. E. Brezinski, G. J. Tearney, N. J. Weissman, S. A. Boppart, B. E. Bouma, M. R. Hee, A. E. Weyman, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Assessing atherosclerotic plaque morphology: Comparison of optical coherence tomography and high frequency intravascular ultrasound,” Heart 77, 397–403 (1997).CrossRefGoogle Scholar
- J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, and M. E. Brezinski, “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart 82, 128–133 (1999).CrossRefGoogle Scholar
- B. W. Colston, U. S. Sathyam, L. B. DaSilva, M. J. Everett, P. Stroeve, and L. L. Otis, “Dental OCT,” Opt. Express 3, 230–238 (1998).CrossRefADSGoogle Scholar
- Y. Yang, L. Wu, Y. Feng, R. K. Wang, “Observations of birefringence in tissues from optic-fibre based optical coherence tomography,” Measur. Sci. Technol. 14, 41–46 (2003).CrossRefADSGoogle Scholar
- A. Baumgartner, C. K. Hitzenberger, H. Sattmann, W. Drexler, and A. F. Fercher, “Signal and resolution enhancements in dual beam optical coherence tomography of the human eye” J. Biomed. Opt. 3, 45–54 (1998).CrossRefADSGoogle Scholar
- G. Yao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography,” Opt. Lett. 24, 537–539 (1999).CrossRefADSGoogle Scholar
- J. P. Dunkers, R. S. Parnas, C. G. Zimba, R. C. Peterson, K. M. Flynn, J. G. Fujimoto, and B. E. Bouma, “Optical coherence tomography of glass reinforced polymer composites,” Composites 30A, 139–145 (1999).CrossRefGoogle Scholar
- M. Bashkansky, D. Lewis III, V. Pujari, J. Reintjes, and H. Y. Yu, “Subsurface detection and characterization of Hertzian cracks in Si3N4 balls using optical coherence tomography,” NDT E-International 34, 547–555 (2001).CrossRefGoogle Scholar
- F. Xu, H. E. Pudavar, and P. N. Prasad, “Confocal enhanced optical coherence tomography for nondestructive evaluation of paints and coatings,” Opt. Lett. 24 1808–1810 (1999).CrossRefADSGoogle Scholar
- R. K. Wang and J. B. Elder, “Optical coherence tomography: a new approach to medical imaging with resolution at cellular level,” Proc. MBNT, ISSBN 0951584235, 1–4 (1999).Google Scholar
- D. J. Smithies, T. Lindmo, Z. Chen, J. S. Nelson, and T. Miller, “Signal attenuation and localisation in optical coherence tomography by Monte Carlo simulation,” Phys. Med. Biol. 43, 3025–3044 (1998).CrossRefGoogle Scholar
- G. Yao and L. V. Wang, “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44, 2307–2320 (1999).CrossRefGoogle Scholar
- J. M. Schmitt, A. Knüttle, M. J. Yadlowsky, and M. A. Eckhaus, “Optical coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705–1720 (1994).CrossRefGoogle Scholar
- X. Xu, R. K. Wang, J. B. Elder, and V. V. Tuchin, “Effect on dextran-induced changes in refractive index and aggregation on optical properties of whole blood,” Phys. Med. Biol. 48, 1205–1221 (2003).CrossRefGoogle Scholar
- J. M. Schmitt and A. Knüttel, “Model of optical coherence tomography of heterogeneous tissue,” J. Opt. Soc. Am. A 14, 1231–1242 (1997).CrossRefADSGoogle Scholar
- L. Thrane, H. T. Yura, and P. E. Andersen, “Analysis of optical coherence tomography systems based on the extended Huygens-Fresenel principle,” J. Opt. Soc. Am. A 17, 484–490 (2000).CrossRefADSGoogle Scholar
- Y. Feng, R. K. Wang, and J. B. Elder, “A theoretical model of optical coherence tomography for system optimization and characterization,” J. Opt. Soc. Am. A, 20, 1792–1803 (2003).CrossRefADSGoogle Scholar
- V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, SPIE Tutorial Texts in Optical Engineering, TT38 (SPIE Press, Bellingham, 2000).Google Scholar
- V. V. Tuchin, “Light scattering study of tissue,” Physics-Uspekhi 40, 495–515 (1997).CrossRefADSGoogle Scholar
- V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlutov, and A. A. Mishin, “Light propagation in tissues with controlled optical properties,” J. Biomed. Opt. 2, 401–417 (1997).CrossRefADSGoogle Scholar
- V. V. Tuchin, “Coherent optical techniques for the analysis of tissue structure and dynamics,” J. Biomed. Opt. 4, 106–124 (1999).CrossRefADSGoogle Scholar
- Handbook of Optical Biomedical Diagnostics, PM107, V. V. Tuchin, ed. (SPIE Press, Bellingham, 2002).Google Scholar
- B. Beauvoit, T. Kitai, and B. Chance, “Contribution of the mitochondrial compartment to the optical properties of rat liver: a theoretical and practical approach,” Biophys. J. 67, 2501–2510 (1994).CrossRefADSGoogle Scholar
- J. T. Bruulsema, J. E. Hayward, T. J. Farrell, M. S. Patterson, L. Heinemann, M. Berger, T. Koschinsky, J. S. Christiansen, H. Orskov, “Correlation between blood glucose concentration in diabetics and noninvasively measured tissue optical scattering coefficient,” Opt. Lett. 22, 190–192 (1997).CrossRefADSGoogle Scholar
- E. K. Chan, B. Sorg, D. Protsenko, M. O'Neil, M. Motamedi, and A. J. Welch, “Effects of compression on soft tissue optical properties,” IEEE J. Sel. Top. Quant. Electron. 2, 943–950 (1996).CrossRefADSGoogle Scholar
- B. Chance, H. Liu, T. Kitai, and Y. Zhang, “Effects of solutes on optical properties of biological materials: models, cells, and tissues,” Anal. Biochem. 227, 351–362 (1995).CrossRefGoogle Scholar
- I. F. Cilesiz and A. J. Welch, “Light dosimetry: effects of dehydration and thermal damage on the optical properties of the human aorta,” Appl. Opt. 32, 477–487 (1993).CrossRefADSGoogle Scholar
- M. Kohl, M. Esseupreis, and M. Cope, “The influence of glucose concentration upon the transport of light in tissue-simulating phantoms,” Phys. Med. Biol. 40, 1267–1287 (1995).CrossRefGoogle Scholar
- H. Liu, B. Beauvoit, M. Kimura, and B. Chance, “Dependence of tissue optical properties on solute-induced changes in refractive index and osmolarity,” J. Biomed. Opt. 1, 200–211 (1996).CrossRefADSGoogle Scholar
- J. S. Maier, S. A. Walker, S. Fantini, M. A. Franceschini, and E. Gratton, “Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared,” Opt. Lett. 19, 2062–2064 (1994).CrossRefADSGoogle Scholar
- X. Xu, R. K. Wang, and A. El Haj, “Investigation of changes in optical attenuation of bone and neuronal cells in organ culture or 3 dimensional constructs in vitro with optical coherence tomography: relevance to cytochrome-oxidase monitoring,” Europ. Biophys. J. 32, 355–362 (2003).CrossRefGoogle Scholar
- V. V. Tuchin, A. N. Bashkatov, E. A. Genina, Yu. P. Sinichkin, and N. A. Lakodina. “In vivo investigation of the immersion-liquid-induced human skin clearing dynamics,” Tech. Phys. Lett. 27, 489–490 (2001).CrossRefADSGoogle Scholar
- G. Vargas, E. K. Chan, J. K. Barton, H. G. Rylander III, and A. J. Welch, “Use of an agent to reduce scattering in skin,” Lasers Surg. Med. 24, 133–141 (1999).CrossRefGoogle Scholar
- R. K. Wang, X. Xu, V. V. Tuchin, and J. B. Elder, “Concurrent enhancement of imaging depth and contrast for optical coherence tomography by hyperosmotic agents,” J. Opt. Soc. Am. B18, 948–953 (2001).CrossRefADSGoogle Scholar
- M. Brezinski, K. Saunders, C. Jesser, X. Li, and J. Fujimoto, “Index matching to improve OCT imaging through blood,” Circulation 103, 1999–2003 (2001).CrossRefGoogle Scholar
- G. Vargas, K. F. Chan, S. L. Thomsen, and A. J. Welch, “Use of osmotically active agents to alter optical properties of tissue: effects on the detected fluorescence signal measured through skin,” Lasers Surg. Med. 29, 213–220 (2001).CrossRefGoogle Scholar
- R. K. Wang and J. B. Elder, “Propylene glycol as a contrasting agent for optical coherence tomography to image gastro-intestinal tissues,” Lasers Surg. Med. 30, 201–208 (2002).CrossRefGoogle Scholar
- R. K. Wang and V. V. Tuchin, “Enhance light penetration in tissue for high resolution optical imaging techniques by use of biocompatible chemical agents,” J. X-Ray Sci. Tech. 10, 167–176 (2002).Google Scholar
- Y. He, and R. K. Wang, “Dynamic optical clearing effect of tissue impregnated by hyperosmotic agents: studied with optical coherence tomography,” J. Biomed. Opt. 9 (1) (2004).Google Scholar
- R. K. Wang, X. Xu, Y. He, and J. B. Elder, “Investigation of optical clearing of gastric tissue immersed with the hyperosmotic agents,” IEEE J. Sel. Top. Quant. Electron. (2003). In pressGoogle Scholar
- X. Xu and R. K. Wang, “The role of water desorption on optical clearing of biotissue: studied with near infrared reflectance spectroscopy,” Medical Physics, 30, 1246–1253 (2003).CrossRefADSGoogle Scholar
- X. Xu, R. K. Wang, and J. B. Elder, “Optical clearing effect on gastric tissues immersed with biocompatible chemical agents studied by near infrared reflectance spectroscopy,” J. Phys. D: Appl. Phys. 36, 1707–1713 (2003).CrossRefADSGoogle Scholar
- A. N. Bashkatov, E. A. Genina, Yu. P. Sinichkin, V. I. Kochubey, N. A. Lakodina, and V. V. Tuchin, “Glucose and mannitol diffusion in human dura mater,” Biophys. J. 85 (5) (2003).Google Scholar
- J. M. Schmitt and G. Kumar. “Optical scattering properties of soft tissue: a discrete particle model,” Appl. Opt. 37, 2788–2797 (1998).CrossRefADSGoogle Scholar
- R. K. Wang, “Modeling optical properties of soft tissue by fractal distribution of scatters, J. Modern Opt. 47, 103–120 (2000).CrossRefADSGoogle Scholar
- A. Dunn and R. Richards-Kortum, “Three-dimensional computation of light scattering from cells,” IEEE J. Sel. Top. Quant. Electron. 2, 898–905 (1996).CrossRefADSGoogle Scholar
- R. Drezek, A. Dunn, and R. Richards-Kortum, “Light scattering from cells: finite-difference time-domain simulations and goniometric measurements,” Appl. Opt. 38, 3651–3661 (1999).CrossRefADSGoogle Scholar
- V. Twersky, “Transparency of pair-correlated, random distributions of small scatters, with applications to the cornea,” J. Opt. Soc. Am. 65, 524–530 (1975).CrossRefADSGoogle Scholar
- R. Barer, K. F. Ross, and S. Tkaczyk, “Refractometry of living cells,” Nature 171, 720–724 (1953).CrossRefADSGoogle Scholar
- P. Brunsting and P. Mullaney, “Differential light scattering from spherical mammalian cells,” Biophys. J. 14, 439–453 (1974).CrossRefGoogle Scholar
- C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).Google Scholar
- R. Graaff, J. G. Aarnoudse, J. R. Zijp, P. M. A. Sloot, F F Demul, J Greve, M H Koelink, “Reduced light scattering properties for mixtures of the optical properties: A simple approximation derived from Mie calculation,” Appl. Opt. 31, 1370–1376 (1992).CrossRefADSGoogle Scholar
- J. Firm and P. Mazur, “Interactions of cooling rate, warming rate, glycerol concentration and dilution procedure on the viability of frozen-thawed human granulocytes,” Cryobiology 20, 657–676 (1983).CrossRefGoogle Scholar
- N. Songsasen, B. C. Bucknell, C. Plante, and S. P. Leibo, “In vitro and in vivo survival of cryopreserved sheep embryos,” Cryobiology 32, 78–91 (1995).CrossRefGoogle Scholar
- D. Martin and H. Hauthal, Dimethyl Sulphoxide (Wiley, New York, 1975).Google Scholar
- W. M. Bourne, D. R. Shearer, and L. R. Nelson, “Human corneal endothelial tolerance to glycerol, dimethysulphoxide, 1,2-propanediol, and 2,3-butanediol,” Cryobiology 31, 1–9 (1994).CrossRefGoogle Scholar
- J. O. M. Karlsson and M. Toner, “Long term storage of tissue by cryopreservation: Critical issues,” Biomaterials 17, 243–256 (1996).CrossRefGoogle Scholar
- K. H. Kolb, G. Janicke, M. Kramer, P. E. Schulze, and G. Raspe, “Absorption, distribution and elimination of labeled dimethyl sulfoxide in man and animals,” Ann. N. Y. Acad. Sci. 141, 85–95 (1967).CrossRefADSGoogle Scholar
- R. Herschler, S. W. Jacob, “The case of dimethyl sulfoxide,” in Controversies in Therapeutics, L. Lasagna ed. (W.B. Saunders, Philadelphia, 1980).Google Scholar
- A. Walter and J. Gutknecht. “Permeability of small nonelectrolytes through lipid bilayer membranes,” J. Membrane Biol. 90, 207–217 (1986).CrossRefGoogle Scholar
- P. Patwari, N. J. Weissman, S. A. Boppart, C. A. Jesser, D. Stamper, J. G. Fujimoto, and M. E. Brezinski, “Assessment of coronary plaque with optical coherence tomography and high frequency ultrasound,” Am. J. Card. 85, 641–644 (2000).CrossRefGoogle Scholar
- A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Mueller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).CrossRefADSGoogle Scholar
- S. Yu. Shchyogolev, “Inverse problems of spectroturbidimetry of biological disperse systems: an overview,” J. Biomed. Opt. 4, 490–503 (1999).CrossRefADSGoogle Scholar
- A. V. Priezzhev, O. M. Ryaboshapka, N. N. Firsov, and I. V. Sirko, “Aggregation and disaggregation of erythrocytes in whole blood: study by backscattering technique,” J. Biomed. Opt. 4, 76–84 (1999).CrossRefADSGoogle Scholar
- S. M. Bertoluzzo, A. Bollini, M. Rsia, and A. Raynal, “Kinetic model for erythrocyte aggregation,” Blood Cells, Molecules, and Diseases 2522), 339–349 (1999).CrossRefGoogle Scholar