Advertisement

Optical Coherence Tomography

  • Ruikang K. Wang
  • Valery V. Tuchin
Reference work entry

Abstract

The fundamental aspects of optical coherence tomography and brief description of its applications in medicine and biology are presented. The impact of multiple scattering in tissues on the OCT imaging performances, and the developments in reducing the overwhelming multiple scattering effects and improving imaging capabilities by the use of immersion technique are discussed. A novel technique based on the usc of biocompatible and osmotically active chemical agents to impregnate the tissue and to enhance the OCT images is described. The mechanisms for improvements of imaging depth and contrast are discussed, primarily through the experimental examples.

Key words

optical coherence tomography multiple scattering osmotically active agents refractive index matching skin mucosa colon tooth ceramics 

References to Optical Coherence Tomography

  1. A. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Physics Today 48, 34–40 (1995).CrossRefGoogle Scholar
  2. D. Delpy, “Optical spectroscopy for diagnosis,” Physics World 7, 34–39 (1994).CrossRefGoogle Scholar
  3. D. W. Piston, B. R. Masters, and W. W. Webb, “3-dimensionally resolved NAD(P)H cellular metabolic redox imaging of the in-situ cornea with 2-photon excitation laser-scanning microscopy,” J. Microsc. 178, 20–27 (1995).CrossRefGoogle Scholar
  4. M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. Webb, and R. Anderson, “In-vivo confocal scanning laser microscopy of human skin-melanin provides strong contrast,” J. Invest. Dermatol. 104, 946–952 (1995).CrossRefGoogle Scholar
  5. A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1, 157–173 (1996).CrossRefADSGoogle Scholar
  6. J. M. Schmitt, “Optical coherence tomography (OCT): A review,” IEEE J. Sel. Top. Quant. Electron. 5, 1205–1215 (1999).CrossRefADSGoogle Scholar
  7. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).CrossRefADSGoogle Scholar
  8. A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Amer. J. Ophthalmol. 116, 113–114 (1993).CrossRefGoogle Scholar
  9. J. M. Schmitt, A. Knüttel, M. Yadlowsky, and R. F. Bonner, “Optical coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 42, 1427–1439 (1994).CrossRefGoogle Scholar
  10. J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nature Med. 1, 970–972 (1995).CrossRefGoogle Scholar
  11. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).CrossRefGoogle Scholar
  12. R. C. Youngquist, S. Carr, and D. E. N. Davies, “Optical coherence domain reflectometry: A new optical evaluation technique,” Opt. Lett. 12, 158–160 (1987).CrossRefADSGoogle Scholar
  13. K. Takada, I. Yokohama, K. Chida, and J. Noda, “New measurement system for fault location in optical waveguide devices based on an interferometric technique,” Appl. Opt. 26, 1603–1606 (1987).CrossRefADSGoogle Scholar
  14. A. F. Fercher, K. Mengedoht, and W. Werner, “Eye-length measurement by interferometry with partially coherent light,” Opt. Lett. 13, 1867–1869 (1988).CrossRefGoogle Scholar
  15. C. K. Hitzenberger, W. Drexler, and A. F. Fercher, “Measurement of corneal thickness by laser Doppler interferometry,” Invest. Ophthal. Vis. Sci. 33, 98–103 (1992).Google Scholar
  16. J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye with optical coherence tomography,” Arch. Ophthalmol. 112, 1584–1589 (1994).CrossRefGoogle Scholar
  17. W. Clivaz, F. Marquis-Weible, R. P. Salathe, R. P. Novak, and H. H. Gilgen, “High-resolution reflectometry in biological tissue,” Opt. Lett. 17, 4–6 (1992).CrossRefADSGoogle Scholar
  18. M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 326–332 (1995).Google Scholar
  19. S. A. Boppart, M. E. Brezinsk, B. E. Boump, G. J. Tearney, and J. G. Fujimoto, “Investigation of developing embryonic morphology using optical coherence tomography,” Dev. Biol. 177, 54–64 (1996).CrossRefGoogle Scholar
  20. C. A Puliafito, M. R. Hee, C. P. Lin, and J. G. Fujimoto, “Imaging of macular disease with optical coherence tomography,” Ophthalmology 102, 217–229 (1995).CrossRefGoogle Scholar
  21. C. Pitris, C. Jesser, S. A. Boppart, D. Stamper, M. E. Brezinski, and J. G. Fujimoto, “Feasibility of optical coherence tomography for high resolution imaging of human gastrointestinal tract malignancies,” J. Gastroenterology 35, 87–92 (2000).CrossRefGoogle Scholar
  22. S. Brand, J. M. Poneros, B. E. Bouma, G. J. Tearney, C. C. Compton, N. S. Nishioka, “Optical coherence tomography in the gastrointestinal tract,” Endoscopy 632, 796–803 (2000).CrossRefGoogle Scholar
  23. B. E. Bouma, G. J. Tearney, C. C. Compton, N. S. Nishioka, “High-resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography,” Gastrointest. Endosc. 51, 467–574 (2000).CrossRefGoogle Scholar
  24. S. Jackle, N. Gladkova, F. Feldchtein, A. Terentieva, B. Brand, G. Gelikonov, V. Gelikonov, A. Sergeev, A. Fritscher-Ravens, J. Freund, U. Seitz, S. Schroder, N. Soehendra, “In vivo endoscopic optical coherence tomography of the human gastrointestinal tract-toward optical biopsy,” Endoscopy 32, 743–749 (2000).CrossRefGoogle Scholar
  25. R. K. Wang and J. B. Elder, “Propylene glycol as a contrasting agent for optical coherence tomography to image gastro-intestinal tissues,” Lasers Surg. Med. 30, 201–208 (2002).CrossRefGoogle Scholar
  26. B. W. Colston, M. J. Everett, L. B. Da Silva, L. L. Otis, P. Stroeve, and H. Nathel, “Imaging of hard-and soft-tissue structure in the oral cavity by optical coherence tomography,” Appl. Opt. 37, 3582–3585 (1998).CrossRefADSGoogle Scholar
  27. J. M. Schmitt, M. Yadlowsky, and R. Bonner, “Subsurface imaging of living skin with optical coherence tomography,” Dermatology 191, 93–98 (1995).CrossRefGoogle Scholar
  28. N. D. Gladkova, G. A. Petrova, N. K. Nikulin, S. G. Radenska-Lopovok, L. B. Snopova, Y. P. Chumakov, V. A. Nasonova, V. M. Geilkonov, G. V. Geilkonov, R. V. Kuranov, A. M. Sergeev, and F. I. Feldchtein, “In vivo optical coherence tomography imaging of human skin: norm and pathology,” Skin Research and Technology 6, 6–16 (2000).CrossRefGoogle Scholar
  29. R. K. Wang and J. B. Elder, “High resolution optical tomographic imaging of soft biological tissues,” Laser Physics 12, 611–616 (2002).Google Scholar
  30. J. G. Fujimoto, B. Bouma, G. J. Tearney, S. A. Boppart, C. Pitris, J. F. Southern, M. E. Brezinski, “New technology for high speed and high resolution optical coherence tomography,” Annals New York Academy of Sciences 838, 95–107 (1998).CrossRefADSGoogle Scholar
  31. C. Passmann and H. Ermert, “A 100 MHz ultrasound imaging system for dermatologic and ophthalmologic diagnostics,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 43, 545–552 (1996).CrossRefGoogle Scholar
  32. P. A. Flournoy, “White light interferometric thickness gauge,” Appl. Opt. 11, 1907–1915 (1972).CrossRefADSGoogle Scholar
  33. T. Li, A. Wang, K. Murphy, and R. Claus, “White light scanning fibre Michelson interferometer for absolute position measurement,” Opt. Lett. 20, 785–787 (1995).CrossRefADSGoogle Scholar
  34. Y. J. Rao, Y. N. Ning, and D. A. Jackson, “Synthesised source for white light sensing system,” Opt. Lett. 18, 462–464 (1993).CrossRefADSGoogle Scholar
  35. J. W. Goodman, Statistical Optics (John Wiley and Sons, New York, 1985), 164–169.Google Scholar
  36. R. K. Wang, “Resolution improved optical coherence-gated tomography for imaging through biological tissues,” J. Modern Optics 46, 1905–1913 (1999).CrossRefADSGoogle Scholar
  37. A. Podolenau and D. A. Jackson, “Noise analysis of a combined optical coherence tomograph and a confocal scanning ophthalmoscope,” Appl. Opt. 38, 2116–2127 (1999).CrossRefADSGoogle Scholar
  38. P. R. Gray and R. G. Meyer, Analysis and Design of Integrated Circuits, 2nd ed. (Wiley, New York, 1984).Google Scholar
  39. A. Sergeev, V. Gelikonov, and A. Gelikonov, “High-spatial-resolution optical-coherence tomography of human skin and mucous membranes,” presented at the Conf. Lasers and Electro Optics'95, Anaheim, Ca, May 21–26, 1995.Google Scholar
  40. G. J. Tearney, B. E. Bouma, S. A. Boppart, B. Golubovic, E. A. Swanson, and J. G. Fujimoto, “Rapid acquisition of in vivo biological images by use of optical coherence tomography,” Opt. Lett. 21, 1408–1410 (1996).CrossRefADSGoogle Scholar
  41. K. Takada, H. Yamada, and M. Horiguchi, “Optical low coherence reflectometer using [3 × 3] fiber coupler,” IEEE Photon. Technol. Lett. 6, 1014–1016 (1994).CrossRefADSGoogle Scholar
  42. B. E. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source,” Opt. Lett. 20, 1486–1488 (1995).CrossRefADSGoogle Scholar
  43. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).CrossRefGoogle Scholar
  44. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Efficient superfluorescent light sources with broad bandwidth,” IEEE J. Select. Topics Quantum Electron. 3, 1097–1099 (1997).CrossRefADSGoogle Scholar
  45. B. E. Bouma, L. E. Nelso, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomographic imaging of human tissue at 1.55 μm and 1.81 μm using Er-and Tm-doped fiber sources,” J. Biomed. Opt. 3, 76–79 (1998).CrossRefADSGoogle Scholar
  46. D. J. Derickson, P. A. Beck, T. L. Bagwell, D. M. Braun, J. E. Fouquet, F. G. Kellert, M. J. Ludowise, W. H. Perez, T. R. Ranganath, G. R. Trott, and S. R. Sloan, “High-power, low-internal-reflection, edge emitting light-emitting diodes,” Hewlett-Packard J. 46, 43–49 (1995).Google Scholar
  47. H. H. Liu, P. H. Cheng, and J. P. Wang, “Spatially coherent white-light interferometer based on a point fluorescent source,” Opt. Lett. 18, 678–680 (1993).CrossRefADSGoogle Scholar
  48. C. F. Lin and B. L. Lee, “Extremely broadband AlGaAs/GaAs superluminescent diodes,” Appl. Phys. Lett. 71, 1598–1600 (1997).CrossRefADSGoogle Scholar
  49. P. J. Poole, M. Davies, M. Dion, Y. Feng, S. Charbonneau, R. D. Goldberg, and I. V. Mitchell, “The fabrication of a broad-spectrum light-emitting diode using high-energy ion implantation,” IEEE Photon. Technol. Lett. 8, 1145–1147 (1996).CrossRefADSGoogle Scholar
  50. T. R. Cole and G. S. Kino, Confocal Scanning Optical Microscopy and Related Imaging Systems (Academic, San Diego, CA, 1990).Google Scholar
  51. J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical coherence tomography of a dense tissue: Statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705–1720 (1994).CrossRefGoogle Scholar
  52. C. B. Su, “Achieving variation of the optical path length by a few millimeters at millisecond rates for imaging of turbid media and optical interferometry: A new technique,” Opt. Lett. 22, 665–667 (1997).CrossRefADSMathSciNetGoogle Scholar
  53. G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, “High speed phase and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22, 1811–1813 (1997).CrossRefADSGoogle Scholar
  54. A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, and J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express 3, 219–229 (1998).CrossRefADSGoogle Scholar
  55. A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In-vivo optical coherence tomography,” Am. J. Ophthalmol. 116, 113–115 (1993).CrossRefGoogle Scholar
  56. W. Drexler, O. Findl, R. Menapace, A. Kruger, A. Wedrich, G. Rainer, A. Baumgartner, C. K. Hitzenberger, and A. F. Fercher, “Dual Beam Optical Coherence Tomography: Signal Identification for Ophthalmologic Diagnosis” J. Biomed. Opt. 3, 55–65 (1998)CrossRefADSGoogle Scholar
  57. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–592 (1994).CrossRefADSGoogle Scholar
  58. A. G. Podoleanu, “Unbalanced versus balanced operation in an optical coherence tomography system,” Appl. Opt. 39, 173–82 (2000).CrossRefADSGoogle Scholar
  59. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–8 (1995).CrossRefADSGoogle Scholar
  60. G. Hausler and M. W. Lindner, “Coherence Radar and Spectral Radar—New Tools for Dermatological Diagnosis” J. Biomed. Opt. 3, 21–31 (1998).CrossRefADSGoogle Scholar
  61. Y. Yasuno, Y. Sutoh, M. Nakama, S. Makita, M. Itoh, T. Yatagai, and M. Mori, “Spectral interferometric optical coherence tomography with nonlinear beta-barium borate time gating,” Opt. Lett. 27, 403–405 (2002).CrossRefADSGoogle Scholar
  62. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23, 244–2466 (1998).CrossRefADSGoogle Scholar
  63. L. Vabre, A. Dubois, and A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Opt. Lett. 27, 530–532 (2002).CrossRefADSGoogle Scholar
  64. C. E. Saxer, J. F. de Boer, B. Hyle Park, Y. Zhao, Z. Chen, and J. S. Nelson, “High-speed fiber-based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett. 25, 1257–355 (2000).CrossRefGoogle Scholar
  65. J. E. Roth, J. A. Kozak, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “Simplified method for polarization-sensitive optical coherence tomography,” Opt. Lett. 26, 1069–1071 (2001).CrossRefADSGoogle Scholar
  66. S. Jiao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography,” Opt. Lett. 27, 101–103 (2002).CrossRefADSGoogle Scholar
  67. Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett. 22, 64–66 (1997).CrossRefADSGoogle Scholar
  68. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomograghy,” Opt. Lett. 22, 1439–1441 (1997).CrossRefADSGoogle Scholar
  69. Y. Zhao, Z. Chen, C. Saxer, X. Shaohua, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25, 114–116 (2000).CrossRefADSGoogle Scholar
  70. Y. Zhao, Z. Chen, Z. Ding, H. Ren, and J. S. Nelson, “Real-time phase-resolved functional optical coherence tomography by use of optical Hilbert transformation,” Opt. Lett. 27, 98–100 (2002).CrossRefADSGoogle Scholar
  71. S. G. Proskurin, Y. He, and R. K. Wang, “Determination of flow-velocity vector based on Doppler shift and spectrum broadening with optical coherence tomography,” Opt. Lett. 28, 1224–1226 (2003).CrossRefADSGoogle Scholar
  72. S. G. Proskurin, I. A. Sokolova, and R. K. Wang, “Imaging of non-parabolic velocity profiles in converging flow with optical coherence tomography” Phy. Med. Biol. 48, 2907–2918 (2003).CrossRefGoogle Scholar
  73. U. Morgner, W. Drexler, F. X. Kartner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111–113 (2000).CrossRefADSGoogle Scholar
  74. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography–principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).CrossRefADSGoogle Scholar
  75. M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Opthalmol. 113, 325–332 (1995).CrossRefGoogle Scholar
  76. C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, J. G. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmol. 120, 217–229 (1995).CrossRefGoogle Scholar
  77. C. A. Puliafito, M. R. Hee, J. S. Schumann, and J. G. Fujimoto, Optical Coherence Tomography of Ocular Diseases (Slack, Thorofare, NJ, 1995).Google Scholar
  78. M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Optical coherence tomography for optical biopsy: Properties and demonstration of vascular pathology,” Circulation 93, 1206–1213 (1996).CrossRefGoogle Scholar
  79. J. M. Schmitt, M. Yadlowsky, and R. F. Bonner, “Subsurface imaging of living skin with optical coherence microscopy,” Dermatol. 191, 93–98 (1995).CrossRefGoogle Scholar
  80. V. V. Tuchin, X. Xu, and R. K. Wang, “Dynamic optical coherence tomography in optical clearing, sedimentation and aggregation study of immersed blood,” Appl. Opt. 41, 258–271 (2002).CrossRefADSGoogle Scholar
  81. Special section on Coherence Domain Optical Methods in Biomedical Science and Clinics, V. V. Tuchin, H. Podbielska, and C. K. Hitzenberger eds., J. Biomed. Opt. 4, 94–190 (1999).Google Scholar
  82. R. K. Wang, “Signal degradation by multiple scattering in optical coherence tomography of dense tissue: A Monte Carlo study towards optical clearing of biotissues,” Phys. Med. Biol. 47, 2281–2299 (2002).CrossRefGoogle Scholar
  83. D. Huang, J. Wang, C. P. Lin, C. A Puliafito, and J. G Fujimoto, “Micron-resolution ranging of cornea anterior chamber by optical reflectometry,” Lasers Surg. Med. 11, 419–425 (1991).CrossRefGoogle Scholar
  84. A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol. 116, 113–114 (1993).CrossRefGoogle Scholar
  85. A. F. Fercher, C. K. Hitzenberger, G. Kemp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).CrossRefADSGoogle Scholar
  86. K. Rohrschneider, R. O. Burk, F. E. Kruse, and H. E. Volcker, “Reproducibility of the optic nerve head topography with a new laser tomographic scanning device,” Ophthalmol. 101, 1044–1049 (1994).CrossRefGoogle Scholar
  87. M. R. Hee, C. A. Puliafitom C. Wong, E. Reichel, J. S. Duker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of central serous chorioretinopathy,” Am. J. Ophthalmol. 120, 65–74 (1995).CrossRefGoogle Scholar
  88. M. R. Hee, C. A. Puliafitom C. Wong, E. Reichel, J. S. Duker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of macular holes,” Ophthalmol. 102, 748–756 (1995).CrossRefGoogle Scholar
  89. J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedutkloizman, C. P. Lin, E. Hertzmark, J. A Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of nerve fibre layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113, 586–596 (1995).CrossRefGoogle Scholar
  90. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nature Medicine 7, 502–507 (2001).CrossRefGoogle Scholar
  91. I. Hartl, T. Ko, R. K. Ghanta, W. Drexler, A. Clermont, S. E. Bursell, and J. G. Fujimoto, “In vivo ultrahigh resolution optical coherence tomography for the quantification of retinal structure in normal and transgenic mice,” Invest. Ophthal. Vis. Sci. 42 (4), 4252 Suppl. (2001)Google Scholar
  92. S. A. Boppart, M. E. Brezinski, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, “Investigation of developing embryonic morphology using optical coherence tomography,” Develop. Biol. 177, 54–63 (1996).CrossRefGoogle Scholar
  93. S. A. Boppart, B. E. Bouma, M. E. Brezinski, G. J. Tearney, and J. G. Fujimoto, “Imaging developing neural morphology using optical coherence tomography,” J. Neurosci. Methods, 70, 65–72 (1996).CrossRefGoogle Scholar
  94. S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography,” PNAS 94, 4256–4261 (1997).CrossRefADSGoogle Scholar
  95. J. M. Schmitt, M. J. Yadlowsky, and R. F. Bonner, “Subsurface imaging of living skin with optical coherence microscopy,” Dermatology 191, 93–98 (1995).CrossRefGoogle Scholar
  96. N. D. Gladkova, G. A. Petrova, N. K. Nikulin, S. G. Radenska-Lopovok, L. B. Snopova, Y. P. Chumakov, V. A. Nasonova, V. M. Gelikonov, G. V. Gelikonov, R. V. Kuranov, A. M. Sergeev, and F. I. Feldchtein “In vivo optical coherence tomography imaging of human skin: norm and pathology,” Skin Res. Technol. 6, 6–16 (2000).CrossRefGoogle Scholar
  97. J. Welzel, “Optical coherence tomography in dermatology: a review,” Skin Res. Technol. 7, 1–9 (2001).CrossRefGoogle Scholar
  98. C. B. Williams, J. E. Whiteway, and J. R. Jass, “Practical aspects of endoscopic management of malignant polyps,” Endoscopy 19, 31–37 Suppl. 1 (1987).CrossRefGoogle Scholar
  99. K. Kobayashi, H. S. Wang, M. V. Sivak, and J. A. Izatt, “Micron-resolution sub-surface imaging of the gastrointestinal tract wall with optical coherence tomography,” Gastrointestinal Endoscopy 43, 29–29 (1996).CrossRefGoogle Scholar
  100. J. A. Izatt, “Micron scale in vivo imaging of gastrointestinal cancer using optical coherence tomography,” Radiology 217, 385 Suppl. S (2000).CrossRefGoogle Scholar
  101. A. Das, M. V. Sivak, A. Chak, R. C. K. Wong, V. Westphal, A. M. Rollins, J. Willis, G. Isenberg, and J. A. Izatt, “High-resolution endoscopic imaging of the GI tract: a comparative study of optical coherence tomography versus high-frequency catheter probe EUS,” Gastrointestinal Endoscopy 54, 219–224 (2001).CrossRefGoogle Scholar
  102. J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nature Med. 1, 970–972 (1995).CrossRefGoogle Scholar
  103. M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Optical coherence tomography for optical biopsy-Properties and demonstration of vascular pathology,” Circulation 93, 1206–1213 (1996).CrossRefGoogle Scholar
  104. M. E. Brezinski, G. J. Tearney, N. J. Weissman, S. A. Boppart, B. E. Bouma, M. R. Hee, A. E. Weyman, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Assessing atherosclerotic plaque morphology: Comparison of optical coherence tomography and high frequency intravascular ultrasound,” Heart 77, 397–403 (1997).CrossRefGoogle Scholar
  105. J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, and M. E. Brezinski, “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart 82, 128–133 (1999).CrossRefGoogle Scholar
  106. B. W. Colston, U. S. Sathyam, L. B. DaSilva, M. J. Everett, P. Stroeve, and L. L. Otis, “Dental OCT,” Opt. Express 3, 230–238 (1998).CrossRefADSGoogle Scholar
  107. Y. Yang, L. Wu, Y. Feng, R. K. Wang, “Observations of birefringence in tissues from optic-fibre based optical coherence tomography,” Measur. Sci. Technol. 14, 41–46 (2003).CrossRefADSGoogle Scholar
  108. A. Baumgartner, C. K. Hitzenberger, H. Sattmann, W. Drexler, and A. F. Fercher, “Signal and resolution enhancements in dual beam optical coherence tomography of the human eye” J. Biomed. Opt. 3, 45–54 (1998).CrossRefADSGoogle Scholar
  109. G. Yao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography,” Opt. Lett. 24, 537–539 (1999).CrossRefADSGoogle Scholar
  110. J. P. Dunkers, R. S. Parnas, C. G. Zimba, R. C. Peterson, K. M. Flynn, J. G. Fujimoto, and B. E. Bouma, “Optical coherence tomography of glass reinforced polymer composites,” Composites 30A, 139–145 (1999).CrossRefGoogle Scholar
  111. M. Bashkansky, D. Lewis III, V. Pujari, J. Reintjes, and H. Y. Yu, “Subsurface detection and characterization of Hertzian cracks in Si3N4 balls using optical coherence tomography,” NDT E-International 34, 547–555 (2001).CrossRefGoogle Scholar
  112. F. Xu, H. E. Pudavar, and P. N. Prasad, “Confocal enhanced optical coherence tomography for nondestructive evaluation of paints and coatings,” Opt. Lett. 24 1808–1810 (1999).CrossRefADSGoogle Scholar
  113. R. K. Wang and J. B. Elder, “Optical coherence tomography: a new approach to medical imaging with resolution at cellular level,” Proc. MBNT, ISSBN 0951584235, 1–4 (1999).Google Scholar
  114. D. J. Smithies, T. Lindmo, Z. Chen, J. S. Nelson, and T. Miller, “Signal attenuation and localisation in optical coherence tomography by Monte Carlo simulation,” Phys. Med. Biol. 43, 3025–3044 (1998).CrossRefGoogle Scholar
  115. G. Yao and L. V. Wang, “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44, 2307–2320 (1999).CrossRefGoogle Scholar
  116. J. M. Schmitt, A. Knüttle, M. J. Yadlowsky, and M. A. Eckhaus, “Optical coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705–1720 (1994).CrossRefGoogle Scholar
  117. X. Xu, R. K. Wang, J. B. Elder, and V. V. Tuchin, “Effect on dextran-induced changes in refractive index and aggregation on optical properties of whole blood,” Phys. Med. Biol. 48, 1205–1221 (2003).CrossRefGoogle Scholar
  118. J. M. Schmitt and A. Knüttel, “Model of optical coherence tomography of heterogeneous tissue,” J. Opt. Soc. Am. A 14, 1231–1242 (1997).CrossRefADSGoogle Scholar
  119. L. Thrane, H. T. Yura, and P. E. Andersen, “Analysis of optical coherence tomography systems based on the extended Huygens-Fresenel principle,” J. Opt. Soc. Am. A 17, 484–490 (2000).CrossRefADSGoogle Scholar
  120. Y. Feng, R. K. Wang, and J. B. Elder, “A theoretical model of optical coherence tomography for system optimization and characterization,” J. Opt. Soc. Am. A, 20, 1792–1803 (2003).CrossRefADSGoogle Scholar
  121. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, SPIE Tutorial Texts in Optical Engineering, TT38 (SPIE Press, Bellingham, 2000).Google Scholar
  122. V. V. Tuchin, “Light scattering study of tissue,” Physics-Uspekhi 40, 495–515 (1997).CrossRefADSGoogle Scholar
  123. V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlutov, and A. A. Mishin, “Light propagation in tissues with controlled optical properties,” J. Biomed. Opt. 2, 401–417 (1997).CrossRefADSGoogle Scholar
  124. V. V. Tuchin, “Coherent optical techniques for the analysis of tissue structure and dynamics,” J. Biomed. Opt. 4, 106–124 (1999).CrossRefADSGoogle Scholar
  125. Handbook of Optical Biomedical Diagnostics, PM107, V. V. Tuchin, ed. (SPIE Press, Bellingham, 2002).Google Scholar
  126. B. Beauvoit, T. Kitai, and B. Chance, “Contribution of the mitochondrial compartment to the optical properties of rat liver: a theoretical and practical approach,” Biophys. J. 67, 2501–2510 (1994).CrossRefADSGoogle Scholar
  127. J. T. Bruulsema, J. E. Hayward, T. J. Farrell, M. S. Patterson, L. Heinemann, M. Berger, T. Koschinsky, J. S. Christiansen, H. Orskov, “Correlation between blood glucose concentration in diabetics and noninvasively measured tissue optical scattering coefficient,” Opt. Lett. 22, 190–192 (1997).CrossRefADSGoogle Scholar
  128. E. K. Chan, B. Sorg, D. Protsenko, M. O'Neil, M. Motamedi, and A. J. Welch, “Effects of compression on soft tissue optical properties,” IEEE J. Sel. Top. Quant. Electron. 2, 943–950 (1996).CrossRefADSGoogle Scholar
  129. B. Chance, H. Liu, T. Kitai, and Y. Zhang, “Effects of solutes on optical properties of biological materials: models, cells, and tissues,” Anal. Biochem. 227, 351–362 (1995).CrossRefGoogle Scholar
  130. I. F. Cilesiz and A. J. Welch, “Light dosimetry: effects of dehydration and thermal damage on the optical properties of the human aorta,” Appl. Opt. 32, 477–487 (1993).CrossRefADSGoogle Scholar
  131. M. Kohl, M. Esseupreis, and M. Cope, “The influence of glucose concentration upon the transport of light in tissue-simulating phantoms,” Phys. Med. Biol. 40, 1267–1287 (1995).CrossRefGoogle Scholar
  132. H. Liu, B. Beauvoit, M. Kimura, and B. Chance, “Dependence of tissue optical properties on solute-induced changes in refractive index and osmolarity,” J. Biomed. Opt. 1, 200–211 (1996).CrossRefADSGoogle Scholar
  133. J. S. Maier, S. A. Walker, S. Fantini, M. A. Franceschini, and E. Gratton, “Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared,” Opt. Lett. 19, 2062–2064 (1994).CrossRefADSGoogle Scholar
  134. X. Xu, R. K. Wang, and A. El Haj, “Investigation of changes in optical attenuation of bone and neuronal cells in organ culture or 3 dimensional constructs in vitro with optical coherence tomography: relevance to cytochrome-oxidase monitoring,” Europ. Biophys. J. 32, 355–362 (2003).CrossRefGoogle Scholar
  135. V. V. Tuchin, A. N. Bashkatov, E. A. Genina, Yu. P. Sinichkin, and N. A. Lakodina. “In vivo investigation of the immersion-liquid-induced human skin clearing dynamics,” Tech. Phys. Lett. 27, 489–490 (2001).CrossRefADSGoogle Scholar
  136. G. Vargas, E. K. Chan, J. K. Barton, H. G. Rylander III, and A. J. Welch, “Use of an agent to reduce scattering in skin,” Lasers Surg. Med. 24, 133–141 (1999).CrossRefGoogle Scholar
  137. R. K. Wang, X. Xu, V. V. Tuchin, and J. B. Elder, “Concurrent enhancement of imaging depth and contrast for optical coherence tomography by hyperosmotic agents,” J. Opt. Soc. Am. B18, 948–953 (2001).CrossRefADSGoogle Scholar
  138. M. Brezinski, K. Saunders, C. Jesser, X. Li, and J. Fujimoto, “Index matching to improve OCT imaging through blood,” Circulation 103, 1999–2003 (2001).CrossRefGoogle Scholar
  139. G. Vargas, K. F. Chan, S. L. Thomsen, and A. J. Welch, “Use of osmotically active agents to alter optical properties of tissue: effects on the detected fluorescence signal measured through skin,” Lasers Surg. Med. 29, 213–220 (2001).CrossRefGoogle Scholar
  140. R. K. Wang and J. B. Elder, “Propylene glycol as a contrasting agent for optical coherence tomography to image gastro-intestinal tissues,” Lasers Surg. Med. 30, 201–208 (2002).CrossRefGoogle Scholar
  141. R. K. Wang and V. V. Tuchin, “Enhance light penetration in tissue for high resolution optical imaging techniques by use of biocompatible chemical agents,” J. X-Ray Sci. Tech. 10, 167–176 (2002).Google Scholar
  142. Y. He, and R. K. Wang, “Dynamic optical clearing effect of tissue impregnated by hyperosmotic agents: studied with optical coherence tomography,” J. Biomed. Opt. 9 (1) (2004).Google Scholar
  143. R. K. Wang, X. Xu, Y. He, and J. B. Elder, “Investigation of optical clearing of gastric tissue immersed with the hyperosmotic agents,” IEEE J. Sel. Top. Quant. Electron. (2003). In pressGoogle Scholar
  144. X. Xu and R. K. Wang, “The role of water desorption on optical clearing of biotissue: studied with near infrared reflectance spectroscopy,” Medical Physics, 30, 1246–1253 (2003).CrossRefADSGoogle Scholar
  145. X. Xu, R. K. Wang, and J. B. Elder, “Optical clearing effect on gastric tissues immersed with biocompatible chemical agents studied by near infrared reflectance spectroscopy,” J. Phys. D: Appl. Phys. 36, 1707–1713 (2003).CrossRefADSGoogle Scholar
  146. A. N. Bashkatov, E. A. Genina, Yu. P. Sinichkin, V. I. Kochubey, N. A. Lakodina, and V. V. Tuchin, “Glucose and mannitol diffusion in human dura mater,” Biophys. J. 85 (5) (2003).Google Scholar
  147. J. M. Schmitt and G. Kumar. “Optical scattering properties of soft tissue: a discrete particle model,” Appl. Opt. 37, 2788–2797 (1998).CrossRefADSGoogle Scholar
  148. R. K. Wang, “Modeling optical properties of soft tissue by fractal distribution of scatters, J. Modern Opt. 47, 103–120 (2000).CrossRefADSGoogle Scholar
  149. A. Dunn and R. Richards-Kortum, “Three-dimensional computation of light scattering from cells,” IEEE J. Sel. Top. Quant. Electron. 2, 898–905 (1996).CrossRefADSGoogle Scholar
  150. R. Drezek, A. Dunn, and R. Richards-Kortum, “Light scattering from cells: finite-difference time-domain simulations and goniometric measurements,” Appl. Opt. 38, 3651–3661 (1999).CrossRefADSGoogle Scholar
  151. V. Twersky, “Transparency of pair-correlated, random distributions of small scatters, with applications to the cornea,” J. Opt. Soc. Am. 65, 524–530 (1975).CrossRefADSGoogle Scholar
  152. R. Barer, K. F. Ross, and S. Tkaczyk, “Refractometry of living cells,” Nature 171, 720–724 (1953).CrossRefADSGoogle Scholar
  153. P. Brunsting and P. Mullaney, “Differential light scattering from spherical mammalian cells,” Biophys. J. 14, 439–453 (1974).CrossRefGoogle Scholar
  154. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).Google Scholar
  155. R. Graaff, J. G. Aarnoudse, J. R. Zijp, P. M. A. Sloot, F F Demul, J Greve, M H Koelink, “Reduced light scattering properties for mixtures of the optical properties: A simple approximation derived from Mie calculation,” Appl. Opt. 31, 1370–1376 (1992).CrossRefADSGoogle Scholar
  156. J. Firm and P. Mazur, “Interactions of cooling rate, warming rate, glycerol concentration and dilution procedure on the viability of frozen-thawed human granulocytes,” Cryobiology 20, 657–676 (1983).CrossRefGoogle Scholar
  157. N. Songsasen, B. C. Bucknell, C. Plante, and S. P. Leibo, “In vitro and in vivo survival of cryopreserved sheep embryos,” Cryobiology 32, 78–91 (1995).CrossRefGoogle Scholar
  158. D. Martin and H. Hauthal, Dimethyl Sulphoxide (Wiley, New York, 1975).Google Scholar
  159. W. M. Bourne, D. R. Shearer, and L. R. Nelson, “Human corneal endothelial tolerance to glycerol, dimethysulphoxide, 1,2-propanediol, and 2,3-butanediol,” Cryobiology 31, 1–9 (1994).CrossRefGoogle Scholar
  160. J. O. M. Karlsson and M. Toner, “Long term storage of tissue by cryopreservation: Critical issues,” Biomaterials 17, 243–256 (1996).CrossRefGoogle Scholar
  161. K. H. Kolb, G. Janicke, M. Kramer, P. E. Schulze, and G. Raspe, “Absorption, distribution and elimination of labeled dimethyl sulfoxide in man and animals,” Ann. N. Y. Acad. Sci. 141, 85–95 (1967).CrossRefADSGoogle Scholar
  162. R. Herschler, S. W. Jacob, “The case of dimethyl sulfoxide,” in Controversies in Therapeutics, L. Lasagna ed. (W.B. Saunders, Philadelphia, 1980).Google Scholar
  163. A. Walter and J. Gutknecht. “Permeability of small nonelectrolytes through lipid bilayer membranes,” J. Membrane Biol. 90, 207–217 (1986).CrossRefGoogle Scholar
  164. P. Patwari, N. J. Weissman, S. A. Boppart, C. A. Jesser, D. Stamper, J. G. Fujimoto, and M. E. Brezinski, “Assessment of coronary plaque with optical coherence tomography and high frequency ultrasound,” Am. J. Card. 85, 641–644 (2000).CrossRefGoogle Scholar
  165. A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Mueller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).CrossRefADSGoogle Scholar
  166. S. Yu. Shchyogolev, “Inverse problems of spectroturbidimetry of biological disperse systems: an overview,” J. Biomed. Opt. 4, 490–503 (1999).CrossRefADSGoogle Scholar
  167. A. V. Priezzhev, O. M. Ryaboshapka, N. N. Firsov, and I. V. Sirko, “Aggregation and disaggregation of erythrocytes in whole blood: study by backscattering technique,” J. Biomed. Opt. 4, 76–84 (1999).CrossRefADSGoogle Scholar
  168. S. M. Bertoluzzo, A. Bollini, M. Rsia, and A. Raynal, “Kinetic model for erythrocyte aggregation,” Blood Cells, Molecules, and Diseases 2522), 339–349 (1999).CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Ruikang K. Wang
    • 1
  • Valery V. Tuchin
    • 2
  1. 1.Cranfield University at SilsoeBedfordshireUK
  2. 2.Saratov State UniversitySaratovRussian Federation

Personalised recommendations