Advertisement

Quasi-Elastic Light Scattering in Ophthalmology

  • Rafat R. Ansari
Reference work entry

Abstract

The eye is not just a “window to the soul”, it can be considered a “window to the body” as well. The eye is built much like a camera. Light which travels from the cornea to the retina traverses through tissues that are representative of nearly every tissue type in the body. It is possible to diagnose ocular and systemic diseases through the eye. Quasi-elastic light scattering (QELS) is a laboratory technique routinely used in the characterization of macromolecular dispersions. In the past few years, QELS instrumentation has become compact, more sensitive, flexible, and easy to use. These developments have made QELS an important tool in ophthalmic research where diseases can be detected early and non-invasively before the clinical symptoms appear.

Key words

quasi-elastic light scattering (QELS) dynamic light scattering (DLS) ophthalmology non-invasive detection of diseases ophthalmic diagnostics ocular research optical technologies cataract vitreopathy diabetes glaucoma LASIK Alzheimer’s 

References to Quasi-Elastic Light Scattering in Ophthalmology

  1. B. Chu, Laser Light Scattering: Basic Principles and Practice (Academic Press, New York, 1991).Google Scholar
  2. T. Tanaka and G. B. Benedek, “Observation of protein diffusivity in intact human and bovine lenses with application to cataract,” Invest. Ophthal. Vis. Sci. 14 (6), 449–456 (1975).Google Scholar
  3. S. E. Bursell, P. C. Magnante, and L. T. Chylack, “In vivo uses of quasi-elastic light scattering spectroscopy as a molecular probe in the anterior segment of the eye,” Noninvasive Diagnostic Techniques in Ophthalmology, B. R. Masters ed. (Springer-Verlag, New York, 1990) 342–3CrossRefGoogle Scholar
  4. R. R. Ansari, “Ocular static and dynamic light scattering: A non-invasive diagnostic tool for eye research and clinical practice,” J. Biomed. Opt. 9 (1) (2004).Google Scholar
  5. Vision Problems in the U.S.: Prevalence of Adult Vision and Age-Related Eye Disease in America, National Eye Institute (National Institutes of Health) and Prevent Blindness America (2002). Also available at www.usvisionproblems.org.Google Scholar
  6. G. W. Tate and A. Safiz, “The slit lamp, history, principle, and practice,” Duane's Clinical Ophthalmology 1 (59), W. Tasman and E. A. Jaeger ed. (J. B. Lippincott Co, Philadelphia, PA, 1992Google Scholar
  7. R. H. Stock and W. H. Ray, “Interpretation of photon correlation data: A comparison of analysis methods,” J. Polym. Sci. 23, 1393–1147 (1985).Google Scholar
  8. H. S. Dhadwal, R. R. Ansari, and M. A. Dellavecchia, “Coherent fiber optic sensor for early detection of cataractogenesis in a human eye lens,” Opt. Eng. 32 (2), 233–238 (1993).ADSCrossRefGoogle Scholar
  9. L. Rovati, F. Fankhauser II, and J. Rick, “Design and performance of a new ophthalmic instrument for dynamic light scattering in the human eye,” Rev. Sci. Instrum. 67 (7) 2620 (1996).ADSCrossRefGoogle Scholar
  10. R. R. Ansari, K. I. Suh, A. Arabshahi, W. W. Wilson, T. L. Bray, and L. J. DeLucas, “A fiber optic probe for monitoring protein aggregation, nucleation and crystallization,” J. Crystal Growth 168, 216–226 (1996).ADSCrossRefGoogle Scholar
  11. L. Pollonini, L. Rovati, R. R. Ansari, “Dynamic light scattering and natural fluorescence measurements in healthy and pathological ocular tissues,” SPIE Proc. 4611, 213–219 (2002).ADSCrossRefGoogle Scholar
  12. M. B. Datiles III and R. R. Ansari, “Clinical evaluation of cataracts,” Duane's Clinical Ophthal. 73B, W. Tasman, and E. Jaeger eds. (Lippincott Co. Inc., Philadelphia, PA, 2003).Google Scholar
  13. M. B. Datiles III, R. R. Ansari, and G. F. Reed, “A Clinical study of the human lens with a dynamic light scattering device,” Exp. Eye Res. 74 (1), 93–102 (2002).CrossRefGoogle Scholar
  14. A. Foster, “Cataract-A global perspective: output, outcome and outlay,” Eye 3, 449–53 (1999).CrossRefGoogle Scholar
  15. C. Kupfer, “Bowman lecture. The Conquest of Cataract: A Global Challenge,” Trans. Ophthal. Soc. 104 (1), 1–10 (1984).MathSciNetGoogle Scholar
  16. J. J. Harding, “Drugs,” Aging 18 (7), 473–86 (2001).Google Scholar
  17. G. B. Benedek, J. Pande, G. M. Thurston, and J. L. Clark, “Theoretical and experimental basis for the inhibition of cataract,” Prog. Retin. Eye Res. 18, 391–402 (1999).CrossRefGoogle Scholar
  18. G. M. Thurston, D. L. Hayden, P. Burrows, J. I. Clark, V. G. Taret, J. Kandel, M. Courogen, J. A. Peetermans, M. S. Bowen, D. Miller, K. M. Sullivan, R. Storb, H. Stern, and G. B. Benedek, “Quasielastic light scattering study of the living human lens as a function of age,” Curr. Eye Res. 16 (3), 197–207 (1997).CrossRefGoogle Scholar
  19. H. Dhadwal and J. Wittpen, “In vivo dynamic light scattering characterization of the human lens: cataract index,” Curr. Eye Res. 20 (6), 502–510 (2000).CrossRefGoogle Scholar
  20. R. R. Ansari, J. I. Clark, J. F. King, and T. Seeberger, “Early detection of cataracts and response to therapy with non-invasive static and dynamic light scattering,” Proc. SPIE 4951, 168–176 (2003).ADSCrossRefGoogle Scholar
  21. J. I. Clark, J. C. Livesey, and J. E. Steele, “Delay or inhibition of rat lens opacification using pantethine and WR-77913,” Exp. Eye Res. 62, 75–85 (1996).CrossRefGoogle Scholar
  22. F. A. Bettelheim, R. R. Ansari, Q-F. Cheng, and J. S. Zigler Jr., “The mode of chaperoning of dithiothreitol-denatured alpha lactalbumin by alpha crystallin,” Biochem. Biophys. Res. Commun. 261, 292–297 (1999).CrossRefGoogle Scholar
  23. J. S. Zigler Jr., P. Russel, S. Tumminia, C. Qin, and C. M. Krishna, “Hydroxylamine compositions for the prevention or retardation of cataracts,” U.S. Patent 6,001,853 (Dec. 14, 1999).Google Scholar
  24. J. S. Zigler Jr., C. Qin, T. Kamiya, M. C. Krishna, Q. Cheng, S. Tumminia, and P. Russell, “Tempol-H inhibits opacification of lenses in organ culture,” Free Radical Biol. Med., in press (2003).Google Scholar
  25. V. M. Chenault, M. N. Ediger, and R. R. Ansari, “In vivo assessment of diabetic lenses using dynamic light scattering,” Diab Tech & Ther. 4 (5), 651–659 (2002).CrossRefGoogle Scholar
  26. R. R. Ansari, K. I. Suh, S. Dunker, N. Kitaya, and J. Sebag, “Quantitative molecular characterization of bovine vitreous and lens with non-invasive dynamic light scattering,” Exp. Eye Res. 73, 859–866 (2001).CrossRefGoogle Scholar
  27. L. Rovati, F. Fankhauser II, F. Docchio, and J. Van Best, “Diabetic retinopathy assessed by dynamic light scattering and corneal autofluorescence,” J. Biomed. Opt. 3 (3), 357–363 (1998).ADSCrossRefGoogle Scholar
  28. R. Klein, B. E. K. Klein, and S. E. Moss, “Visual impairment in diabetes,” Ophthalmol. 91, 1–9 (1984).CrossRefGoogle Scholar
  29. M. Brownlee, “The role of nonenzymatic glycosylation in the pathogenesis of diabetic angiopathy,” Complications of Diabetes Mellitus, B. Drazin, S. Melmed, and LeRioth eds. (Alan R. Liss, New York, 1989), 9–Google Scholar
  30. J. Sebag, “Abnormalities of human vitreous structure in diabetes,” Graef. Arch. Clin. Exp. Ophthalmol. 231, 257–260 (1993).CrossRefGoogle Scholar
  31. J. Sebag “Diabetic vitreopathy [guest editorial],” Ophthalmol. 103, 205–206 (1996).CrossRefGoogle Scholar
  32. J. Sebag, The Vitreous–Structure, Function, and Pathobiology (Springer-Verlag, New York, 1989).Google Scholar
  33. J. Sebag, “Age-related changes in human vitreous structure,” Graef. Arch. Clin. Exp. Ophthalmol. 225, 89–93 (1987).CrossRefGoogle Scholar
  34. J. Sebag, R. R. Ansari, S. Dunker, and K. I. Suh, “Dynamic light scattering of diabetic vitreopathy,” Diabetes Technology & Therapeutics 1 (2), 169–176 (1999).CrossRefGoogle Scholar
  35. J. Aguayo, B. Glaser, A. Mildvan, H. M. Cheng, R. G. Gonzalez, and T. Brady, “Study of the vitreous liquefaction by NMR spectroscopy and imaging,” Invest. Ophthal. Vis. Sci. 26, 692–697 (1985).Google Scholar
  36. C. W. Oyster, The Human Eye Structure and Function (Sinauer Associates, Inc., Sunderland, MA, 1999).Google Scholar
  37. S. D. McLeod, “Beyond Snellen acuity: The assessment of visual function after refractive surgery,” Arch. Ophthalmol. 119, 1371–1373 (2001).CrossRefGoogle Scholar
  38. L. B. Sabbagh, “Dynamic light scattering focuses on the cornea,” Rev. Ref. Surgery. (5) 28–31 (2002).Google Scholar
  39. R. R. Ansari, A. K. Misra, A. B. Leung, J. F. King, and M. B. Datiles III, “Noninvasive evaluation of corneal abnormalities using static and dynamic light scattering,” Proc. SPIE 4611, 220–229 (2002).ADSCrossRefGoogle Scholar
  40. B. M. Palmquist, B. Philipson, and P. O. Barr, “Nuclear cataract and myopia during hyperbaric oxygen therapy,” British J. Ophthalmol. 68, 113–117 (1984).CrossRefGoogle Scholar
  41. V. A. Padgaonkar, L. R. Lin, V. R. Leverenz, A. Rinke, V. N. Reddy, and F. J. Goblin, “Hyperbaric oxygen in vivo accelerates the loss of cytoskeletal proteins and MIP26 in guinea pig lens nucleus,” Exp. Eye. Res. 68, 493–504 (1999).CrossRefGoogle Scholar
  42. P. H. Frederikse, D. Garland, J. S. Zigler, and J. Piatigorsky, “Oxidative stress increases production of beta-amyloid precursor protein and beta-amyloid (A beta) in mammalian lenses, and A beta has toxic effects on lens epithelial cells, J. Biol. Chem. 271 (17), 10169–10174 (1996).CrossRefGoogle Scholar
  43. P. H. Frederikse, “Amyloid-like protein structure in mammalian ocular lenses,” Curr. Eye Res. 20 (6), 462–468 (2000).CrossRefGoogle Scholar
  44. L. Goldstein, J. Muffat, R. Cherny, K. Faget, J. Coccia, F. Fraser, C. Masters, R. Tanzi, L. Chylack Jr., and A. Bush, “α Beta peptides in human and amyloyd-bering transgenic mouse lenses: implications for alzheimer's disease and cataracts,” Invest. Ophthalmol. Vis. Sci. 42 (2) ARVO abstract 1614 (2001).Google Scholar
  45. F. A. Cucinotta, F. K. Manuel, J. Jones, G. Izard, J. Murrey, B. Djojonegro, and M. Wear, “Space radiation and cataracts in astronauts.” Radiation Research 156 (5), 460–466 (2001)ADSCrossRefGoogle Scholar
  46. Z. N. Rastegar, P. Eckart, and M. Mertz, “Radiation-induced cataract in astronauts and cosmonauts,” Graef. Arch. Clinl Exp. Ophthalmol. 240 (7), 543–7 (2002).CrossRefGoogle Scholar
  47. R. R. Ansari, L. Rovati, and J. Sebag, “Non-invasive and remote detection of cataracts during space exploration with dynamic light scattering,” Ophthalmic Technologies XI 4245, F. Manns, P. G. Soderberg, and A. Ho, eds. (SPIE, Bellingham, 2001) 129–134.CrossRefGoogle Scholar
  48. R. R. Ansari, L. Rovati, and J. Sebag, “Celestial and terrestrial tele-ophthalmology: A health monitoring helmet for astronauts/cosmonauts and general public use,” Ophthalmic Technologies XI 4245, F. Manns, P. G. Soderberg, and A. Ho, eds. (SPIE, Bellingham, 2001), 177–1CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Rafat R. Ansari
    • 1
  1. 1.NASA Glenn Research Center at Lewis FieldClevelandUSA

Personalised recommendations