Skip to main content

Electrochemical Self-Assembly of Ordered Quantum Dot and Wire Arrays

  • Reference work entry
Handbook of Nanophase and Nanostructured Materials

Introduction

Ultrasmall nanometer-sized solid structures of superconductors, metals, semiconductors and even insulators are potential vehicles for implementing a large number of high-performance, multifunctional electronic, magnetic and optical devices. “Quantum dots”, which are entities whose every dimension is comparable to the De Broglie wavelength of charge carriers at the Fermi energy, are of particular interest in this context. Semiconductor dots, whose physical dimensions are on the order of the excitonic Bohr radius, exhibit strong non-linear optical properties that can be harnessed to produce vastly improved low-threshold non-linear optical components, such as couplers, mixers, frequency converters and limiters (Chemla, et al., 1987). Dots small enough to host only a single or few conduction electrons can be used for ultradense electronic or optical memory (Shields, et al., 1999; Tiwari, et al., 1996; Zhuang, et al., 1998) Cylindrical quantum dots of ferromagnetic materials...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    *Recently, parallel electron beam columns and arrayed nanoprobes have been implemented to increase the throughput of direct-write e-beam nanolithography, but the cost of such systems is usually prohibitive.

  2. 2.

    *There has been some very recent development where stacking of multiple layers of S-K quantum dots have resulted in improved regimentation, but the ordering is still far from periodic and not comparable to that obtained in electrochemical self-assembly.

References

  • Aktsipetrov, O. A., et. al.. Thin Solid Films. 294, 231. (1997)

    CAS  Google Scholar 

  • Alphenaar, B. W., Z. A. K. Durrani, A. P. Heberle, and M. Wagner, Appl. Phys. Lett.. 66, 1234. (1995)

    Article  CAS  Google Scholar 

  • Balandin, A.. Ph.D. Thesis, University of Notre Dame. (1996)

    Google Scholar 

  • Balandin, A., et. al.. Phys. Low Dim. Struct.. 11/12, 155. (1997)

    Google Scholar 

  • Bandyopadhyay, S., V. P. Roychowdhury, and X. Wang. Phys. Low Dim. Struct.. Vol. 8/9, 29. (1995a)

    Google Scholar 

  • Bandyopadhyay, S., A. E. Miller, and M. Chandrasekhar. Proc. SPIE, Vol. 2397, 11. (1995b)

    Google Scholar 

  • Bandyopadhyay, S., et. al.. Nanotechnology. 7, 360. (1996)

    Article  CAS  Google Scholar 

  • Bandyopadhyay, S., V. P. Roychowdhury, and D. B. Janes. in Quantum Based Electronic Devices and Systems. Eds. M. A. Stroscio and M. Dutta (World Scientific, Singapore) Ch. 1., pp. 1–35. (1998a)

    Google Scholar 

  • Bandyopadhyay, S., A. Balandin, V. P. Roychowdhury, and F. Vatan. Superlat. Microstruct. 23, 445. (1998b)

    Article  CAS  Google Scholar 

  • Bandyopadhyay, S., L. Menon, N. Kouklin, H. Zeng, and D. J. Sellmyer. J. Elec. Mat., Special Issue on Quantum Dots. 28, 515. (1999)

    CAS  Google Scholar 

  • Barabasi, L.. Phys. Rev. Lett.. 70, 4102. (1993)

    CAS  Google Scholar 

  • Bayer, R. L.. in Non-linear Optics, Eds. P. G. Harper and B. S. Wherrett (Academic Press, New York). p. 61. (1977)

    Google Scholar 

  • Bimberg, D., Grundmann, M., and Ledentsov, S.. Quantum Dot Heterostructures, (John Wiley & Sons, New York) and ample references therein. (1998)

    Google Scholar 

  • Chemla, D. S., D. A. Miller, and P. W. Smith. in Semiconductors and Semimetals. ed. R. Dingle. 24, pp. 279–318 (Academic Press, San Diego). (1987)

    Google Scholar 

  • Chen, E. H., D. McInturuff, T. P. Chin, M. R. Melloch, and J. M. Woodall. Appl. Phys. Lett.. 68, 1678. (1996)

    CAS  Google Scholar 

  • Das, B., S. Subramaniam, and M. R. Melloch. Semicond. Sci. Tech.. 8, 1347. (1993)

    CAS  Google Scholar 

  • Denisov, V. N., B. N. Mavrin, V. B. Podobedov, Kh. Sterin, and B. G. Varshal. Opt. Spectrosc. (USSR). 49, 221. (1980)

    Google Scholar 

  • Diggle, J., T. Downing, and C. Goulding. Chem. Rev.. 69, 365. (1969)

    Article  CAS  Google Scholar 

  • Foss, C. L., G. L. Hornyak, J. A. Stockert, and C. R. Martin. J. Phys. Chem.. 98, 2963. (1994)

    Article  CAS  Google Scholar 

  • Goodisman, J.. Electrochemistry: Theoretical Foundations. Wiley Interscience, New York. (1987)

    Google Scholar 

  • Hong, S., D. B. Janes, D. McInturuff, R. Reifenberger, and J. M. Woodall. Appl. Phys. Lett.. 68, 2258. (1996)

    CAS  Google Scholar 

  • Huber, C. A., T. E. Huber, Mqio Sad, J. A. Lubin, S. Manalis, and C. B. Prater. Science. 263, 800. (1994)

    CAS  Google Scholar 

  • Kang, Y., and J. Jorné. J. Electrochem. Soc.. 8, 2258. (1993)

    Google Scholar 

  • Kardar, M., G. Parisi, and Y-C Zhang. Phys. Rev. Lett.. 56, 889. (1986)

    Article  CAS  Google Scholar 

  • Kawai, S., and R. Ueda. J. Electrochem. Soc.. 121, 32. (1975)

    Google Scholar 

  • Keller, K., M. S. Hunter, and D. L. Robinson. J. Electrochem. Soc.. 100, 411. (1953)

    CAS  Google Scholar 

  • Knoedler, C. M.. J. Appl. Phys.. 68, 1129. (1991)

    Google Scholar 

  • Look, D. C., D. C. Walters, C. E. Stutz, K. R. Evans, and J. R. Sizelove. J. Appl. Phys.. 12, 5981. (1992)

    Google Scholar 

  • Liu, J. L., et. al.. Appl. Phys. Lett.. 74, 1863. (1999)

    CAS  Google Scholar 

  • Liu, Yi. private communication. (1999)

    Google Scholar 

  • Martin, C. R.. Science. 266, 1961. (1994)

    CAS  Google Scholar 

  • Masuda, H., and K. Fukuda. Science. 268, 1466. (1995)

    CAS  Google Scholar 

  • Masuda, H., and M. Satoh. Jpn. J. Appl. Phys.. 35, L126. (1996)

    CAS  Google Scholar 

  • Masuda, H., H. Yamada, M. Satoh, H. Asoh, M. Nakao, and T. Tamamura. Appl. Phys. Lett.. 71, 2770. (1997)

    Article  CAS  Google Scholar 

  • Mawlawi, D. A., N. Coombs, and M. Moskovitz. J. Appl. Phys.. 70, 4421. (1991)

    Google Scholar 

  • Metzger, R. M.. private communication. (1999)

    Google Scholar 

  • MillerA. E., and S. Bandyopadhyay. US Patent #5,747,180, issued May 5. (1998)

    Google Scholar 

  • Moskovitz, M.. US Patent #5,202,290, issued April 13. (1993)

    Google Scholar 

  • See, for example, Moskovitz, M. and Schmid-Halter, B.. International Patent publication # WO 88/02538. (1998)

    Google Scholar 

  • Nicolis, G., and I. Pregogine. Self-Organization in Non-Equilibrium Systems. Wiley, New York. (1977)

    Google Scholar 

  • Ng, T-B, D. B. Janes, D. McInturuff, and J. M. Woodall. Appl. Phys. Lett.. 69, 3551. (1996)

    Article  CAS  Google Scholar 

  • Patermarakis, G., and N. Papandreadis. Electrochim. Acta, 38, 2351. (1993)

    CAS  Google Scholar 

  • Patermarakis, G., and K. Moussoutzanis. J. Electrochem. Soc.. 142, 737. (1995)

    CAS  Google Scholar 

  • Patkar, M. P., T. P. Chin, J. M. Woodall, M. S. Lundstrom, and M. R. Melloch. Appl. Phys. Lett.. 66, 1412. (1995)

    Article  CAS  Google Scholar 

  • Preston, C. K., and M. Moskovitz. J. Phys. Chem.. 97, 8495. (1993)

    Article  CAS  Google Scholar 

  • Ricker, R. E., A. E. Miller, G. Yue, D-F Banerjee, and S. Bandyopadhyay. J. Elec. Mat.. 25, 1585. (1996)

    CAS  Google Scholar 

  • Roychowdhury, V. P., D. B. Janes, S. Bandyopadhyay, and X. Wang. IEEE Trans. Elec. Dev., Special Issue on Present and Future Trends in Device Science and Technology. 43, 1688. (1996)

    CAS  Google Scholar 

  • Roychowdhury, V. P., D. B. Janes, and S. Bandyopadhyay. Proc. of the IEEE, Special Issue on Nanoelectronics. Vol. 85, 574. (1997)

    Article  CAS  Google Scholar 

  • Sellmyer, D. J., M. Yu, R. A. Thomas, Y. Liu, and R. D. Kirby. Phys. Low Dim. Struct.. 1/2, 155. (1998)

    Google Scholar 

  • Sheik-Bahae, M., et. al.. Phys. Rev. Lett.. 65, 96–99. (1990)

    Article  CAS  Google Scholar 

  • Sheik-Bahae, M., et. al.. IEEE J. Quantum Electron. 27, 1296–1309. (1991)

    Article  CAS  Google Scholar 

  • Shields, A. J., et. al.. Appl. Phys. Lett.. 74, 735. (1999)

    Article  CAS  Google Scholar 

  • Shimizu, K., K. Kobyashi, G. E. Thompson, and G. C. Wood. Phil. Mag.. A, 66, 643. (1992)

    CAS  Google Scholar 

  • Svizhenko, A., A. Balandin, and S. Bandyopadhyay. J. Appl. Phys.. 81, 7927. (1997)

    Article  CAS  Google Scholar 

  • Tada, T., et. al.. J. Phys.. D, 31, L21. (1998)

    Article  CAS  Google Scholar 

  • Tiwari, S., et. al.. Appl. Phys. Lett.. 68, 1377. (1996)

    Article  CAS  Google Scholar 

  • Turing, A.. Philos. Trans. Royal Soc.. B 237, 37. (1952)

    Google Scholar 

  • Verdasca, J., A. de Wit, G. Dewel, and P. Borckmans. Phys. Lett.. A, 168, 194. (1992)

    Article  Google Scholar 

  • Welsh, N. C.. J. Inst. Met.. 85, 129. (1956)

    Google Scholar 

  • Young, L.. Anodic Oxide Films. Academic Press, London. (1961)

    Google Scholar 

  • Yue, D-F, G. Banerjee, A. E. Miller, and S. Bandyopadhyay. Superlat. Microstruct.. 19, 191. (1996)

    Article  CAS  Google Scholar 

  • Yuzhakov, V. V., H-C Chang, and A. E. Miller. Phys. Rev.. B, 56, 12608. (1997)

    Article  CAS  Google Scholar 

  • Yuzhakov, V. V., P. V. Takhistov, A. E. Miller, and H-C Chang. Chaos. 9, 62. (1999)

    Article  CAS  Google Scholar 

  • Zhang, L., H. S. Cho, F. Li, R. M. Metzger, and W. D. Doyle. J. Mater. Sci. Lett.. 17, 291. (1998)

    CAS  Google Scholar 

  • Zhuang, L., L. Guo, and S. Y. Chou. Appl. Phys. Lett.. 72, 1205. (1998)

    Article  CAS  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers/Plenum Publishers

About this entry

Cite this entry

(2003). Electrochemical Self-Assembly of Ordered Quantum Dot and Wire Arrays. In: Wang, Z., Liu, Y., Zhang, Z. (eds) Handbook of Nanophase and Nanostructured Materials. Springer, Boston, MA. https://doi.org/10.1007/0-387-23814-X_24

Download citation

  • DOI: https://doi.org/10.1007/0-387-23814-X_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-47249-7

  • Online ISBN: 978-0-387-23814-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics