Skip to main content

Minimax Game Tree Searching

  • Reference work entry
  • 104 Accesses

With the introduction of computers, also started the interest in having machines play games. Programming a computer such that it could play, for example chess, was seen as giving it some kind of intelligence. Starting in the mid fifties, a theory on how to play two player zero sum perfect information games, like chess or go, was developed. This theory is essentially based on traversing a tree called minimax or game tree. An edge in the tree represents a move by either of the players and a node a configuration of the game.

Two major algorithms have emerged to compute the best sequence of moves in such a minimax tree. On one hand, there is the alpha-beta algorithm suggested around 1956 by I. McCarthy and first published in [27]. On the other hand, G.C. Stockman [29] introduced the SSS∗ algorithm. Both methods try to minimize the number of nodes explored in the game tree using special traversal strategies and cut conditions.

Minimax Trees

A SeeSee Minimax game tree searching...

  • 49J35
  • 49K35
  • 62C20
  • 91A05
  • 91A40
  • algorithms
  • games
  • SeeMinimax game tree searchingminimax
  • SeeMinimax game tree searchingsearching

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/0-306-48332-7_280
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   1,699.00
Price excludes VAT (USA)
  • ISBN: 978-0-306-48332-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout

References

  1. Akl, S. G., Barnard, D. T., and Doran, R. J.: ‘Searching game trees in parallel’: Proc. 3rd Biennial Conf. Canad. Soc. Computation Studies of Intelligence, 1979, pp. 224–231.

    Google Scholar 

  2. Akl, S. G., Barnard, D. T., and Doran, R. J.: ‘Design, analysis, and implementation of a parallel tree search algorithm’, IEEE Trans. Pattern Anal. Machine Intell.PAMI-4, no. 2 (1982), 192–203.

    Google Scholar 

  3. Almquist, K., McKenzie, N., and Sloan, K.: ‘An inquiry into parallel algorithms for searching game trees’, Techn. Report Univ. Washington, Seattle, WA12, no. 3 (1988).

    Google Scholar 

  4. Althöfer, I.: ‘On the complexity of searching game trees and other recursion trees’, J. Algorithms9 (1988), 538–567.

    MathSciNet  MATH  Google Scholar 

  5. Althöfer, I.: ‘An incremental negamax algorithm’, Artif. Intell.43 (1990), 57–65.

    MATH  Google Scholar 

  6. Ballard, B. W.: ‘The ∗-minimax search procedure for trees containing chance nodes’, Artif. Intell.21 (1983), 327–350.

    MATH  Google Scholar 

  7. Baudet, G. M.: ‘The design and analysis of algorithms for asynchronous multiprocessors’, PhD Thesis Carnegie-Mellon Univ. Pittsburgh, PA no. CMU-CS-78-116 (1978).

    Google Scholar 

  8. Böhm, M., and Speckenmeyer, E.: ‘A dynamic processor tree for solving game trees in parallel’, Proc. SOR’89, 1989.

    Google Scholar 

  9. Cung, V.-D, and Roucairol, C.: ‘Parallel minimax tree searching’, Res. Report INRIA1549 (1991). (In French.)

    Google Scholar 

  10. Diderich, C. G.: ‘Evaluation des performances de l’algorithme SSS∗ avec phases de synchronisation sur une machine parallèle à mémoires distribuées’, Techn. Report Computer Sci. Dept. Swiss Federal Inst. Techn. Lausanne, Switzerland no. LiTH-99 (July 1992). (In French.)

    Google Scholar 

  11. Feigenbaum, E. A., and Feldman, J.: Computers and thought, McGraw–Hill, 1963.

    Google Scholar 

  12. Feldmann, R., Monien, B., Mysliwietz, P., and Vornberger, O.: ‘Distributed game tree search’, ICCA J.12 no. 2 (1989), 65–73.

    Google Scholar 

  13. Feldmann, R., Mysliwietz, P., and Monien, B.: ‘Game tree search on a massively parallel system’, in H. J. van den Herik, I. S. Herschberg, and J. W.H.M. Uiterwijk, (eds.): Advances in Computer Chess, Vol. 7 Univ. Limburg, 1994, pp. 203–218.

    Google Scholar 

  14. Finkel, R. A., and Fishburn, J. P.: ‘Parallelism in alpha-beta search’, Artif. Intell.19 (1982), 89–106.

    MathSciNet  MATH  Google Scholar 

  15. Hewett, R., and Krishnamurthy, G.: ‘Consistent linear speedup in parallel alpha-beta search’, Proc. ICCI’92, Computing and Information, IEEE Computer Soc. Press, 1992, pp. 237–240.

    Google Scholar 

  16. Ibaraki, T.: ‘Generalization of alpha-beta and {SSS*} search procedures’, Artif. Intell.29 (1986), 73–117.

    MathSciNet  MATH  Google Scholar 

  17. Karp, R. M., and Zhang, Y.: ‘On parallel evaluation of game trees’: ACM Annual Symp. Parallel Algorithms and Architectures (SPAA’89), ACM, 1989, pp. 409–420.

    Google Scholar 

  18. Knuth, D. E., and Moore, R. W.: ‘An analysis of alpha-beta pruning’, Artif. Intell., 6 no. 4 (1975), 293–326.

    MathSciNet  MATH  Google Scholar 

  19. Marsland, T. A., and Campbell, M. S.: ‘Parallel search of strongly ordered game trees’, ACM Computing Surveys14 no. 4 (1982), 533–551.

    Google Scholar 

  20. Marsland, T. A., and Popowich, F.: ‘Parallel game-tree search’, IEEE Trans. Pattern Anal. Machine Intell. PAMI-7 no. 4 (July 1985), 442–452.

    Google Scholar 

  21. Marsland, T. A., Reinefeld, A., and Schaeffer, J.: ‘Low overhead alternatives to SSS∗’, Artif. Intell.31 (1987), 185–199.

    Google Scholar 

  22. McAllester, D. A.: ‘Conspiracy numbers for min-max searching’, Artif. Intell.35 (1988), 287–310.

    MathSciNet  MATH  Google Scholar 

  23. Pearl, J.: ‘Asymptotical properties of minimax trees and game searching procedures’, Artif. Intell.14 no. 2 (1980), 113–138.

    MathSciNet  MATH  Google Scholar 

  24. Pijls, W., and de Bruin, A.: ‘Another view of the SSS∗ algorithm’: Proc. Internat. Symp. (SIGAL’90), Aug. 1990.

    Google Scholar 

  25. Rivest, R. L.: ‘Game tree searching by min/max approximation’, Artif. Intell.34, no. 1 (1987), 77–96.

    MathSciNet  MATH  Google Scholar 

  26. Roizen, I., and Pearl, J.: ‘A minimax algorithm better than alpha-beta? Yes and no’, Artif. Intell.21 (1983), 199–230.

    MathSciNet  MATH  Google Scholar 

  27. Slagle, J. H., and Dixon, J. K.: ‘Experiments with some programs that search game trees’, J. ACM16 no. 2 (Apr. 1969), 189–207.

    MATH  Google Scholar 

  28. Steinberg, I. R., and Solomon, M.: ‘Searching game trees in parallel’, Proc. IEEE Internat. Conf. Parallel Processing, Vol. III, 1990, III–9–III–17.

    Google Scholar 

  29. Stockman, G. C.: ‘A minimax algorithm better than alpha-beta?’, Artif. Intell.12 no. 2 (1979), 179–196.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this entry

Cite this entry

Diderich, C.G., Gengler, M. (2001). Minimax Game Tree Searching . In: Floudas, C.A., Pardalos, P.M. (eds) Encyclopedia of Optimization. Springer, Boston, MA. https://doi.org/10.1007/0-306-48332-7_280

Download citation

  • DOI: https://doi.org/10.1007/0-306-48332-7_280

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-6932-5

  • Online ISBN: 978-0-306-48332-5

  • eBook Packages: Springer Book Archive