Skip to main content

All Optical Fiber Optofluidic or Ferrofluidic Microsensors Fabricated by Femtosecond Laser Micromachining

  • Reference work entry
  • First Online:
  • 2569 Accesses

Abstract

Research and development in photonic micro-/nanostructures functioned as sensors have experienced significant growth in recent years, fueled by their broad applications in the fields of physical, chemical, and biological quantities. Compared with conventional sensors with bulky assemblies, recent progress in femtosecond (fs) laser three-dimensional (3D) micromachining technique has been proven an effective way for one-step fabrication of assembly-free microstructures in various transparent materials (i.e., fused silica). When used for fabrication, fs laser has many unique characteristics, such as negligible cracks, minimal heat-affected zone, low recast, high precision, and the capability of embedded 3D fabrication, compared with conventional long pulse lasers (i.e., ns laser). The merits of this advanced manufacturing technique enable the unique opportunity to fabricate integrated sensors with improved robustness, enriched functionality, enhanced intelligence, and unprecedented performance.

Recently, fiber-optic sensors have been widely used in many application areas, such as aeronautics and astronautics, petrochemical industry, chemical detection, biomedical science, homeland security, etc. In addition to the well-known advantages of miniaturized in size, high sensitivity, immunity to electromagnetic interference (EMI), and resistance to corrosion, fiber-optic sensors are becoming more and more desirable when designed with characteristics of assembly-free and operation in the reflection configuration. Additionally, such sensors are also needed in optofluidic/ferrofluidic systems for chemical/biomedical sensing applications.

In this chapter, liquid-assisted laser micromachining techniques were investigated for the fabrication of assembly-free, all-optical fiber sensor probes. All-in-fiber optofluidic sensor and fiber in-line ferrofluidic sensor were presented as examples with respect to these laser processing techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   919.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • R. An, Y. Li, Y. Dou, H. Yang, Q. Gong, Simultaneous multi-microhole drilling of soda-lime glass by water-assisted ablation with femtosecond laser pulses. Opt. Express 13, 1855–1859 (2005)

    Article  Google Scholar 

  • R.J. Bates, Optical Switching and Networking Handbook (McGraw-Hill, New York, 2001)

    Google Scholar 

  • Y. Bellouard, A. Said, M. Dugan, P. Bado, Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching. Opt. Express 12, 2120–2129 (2004)

    Article  CAS  Google Scholar 

  • M. Beresna, M. Gecevičius, P.G. Kazansky, Ultrafast laser direct writing and nanostructuring in transparent materials. Adv. Opt. Photon. 6, 293–339 (2014)

    Article  Google Scholar 

  • V. Bhardwaj, E. Simova, P. Rajeev, C. Hnatovsky, R. Taylor, D. Rayner, P. Corkum, Optically produced arrays of planar nanostructures inside fused silica. Phys. Rev. Lett. 96, 057404 (2006)

    Article  CAS  Google Scholar 

  • H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids, 2nd edn. (Clarendon Press, Oxford, 1959)

    Google Scholar 

  • Y. Chen, Q. Han, T. Liu, X. Lan, H. Xiao, Optical fiber magnetic field sensor based on single-mode-multimode-single-mode structure and magnetic fluid. Opt. Lett. 38, 3999–4001 (2013)

    Article  Google Scholar 

  • B.N. Chichkov, C. Momma, S. Nolte, F. Von Alvensleben, A. Tünnermann, Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 63, 109–115 (1996)

    Article  Google Scholar 

  • A. Chimmalgi, T. Choi, C. Grigoropoulos, K. Komvopoulos, Femtosecond laser aperturless near-field nanomachining of metals assisted by scanning probe microscopy. Appl. Phys. Lett. 82, 1146–1148 (2003)

    Article  CAS  Google Scholar 

  • A. Couairon, A. Mysyrowicz, Femtosecond filamentation in transparent media. Phys. Rep. 441, 47–189 (2007)

    Article  CAS  Google Scholar 

  • A. Crespi, Y. Gu, B. Ngamsom, H.J. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H.H. van den Vlekkert, P. Watts, G. Cerullo, Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection. Lab. Chip 10, 1167–1173 (2010)

    Article  CAS  Google Scholar 

  • K.M. Davis, K. Miura, N. Sugimoto, K. Hirao, Writing waveguides in glass with a femtosecond laser. Opt. Lett. 21, 1729–1731 (1996)

    Article  CAS  Google Scholar 

  • M. Deng, C. Huang, D. Liu, W. Jin, T. Zhu, All fiber magnetic field sensor with Ferrofluid-filled tapered microstructured optical fiber interferometer. Opt. Express 23, 20668–20674 (2015)

    Article  CAS  Google Scholar 

  • P. Domachuk, I. Littler, M. Cronin-Golomb, B. Eggleton, Compact resonant integrated microfluidic refractometer. Appl. Phys. Lett. 88, 093513-1–093513-3 (2006)

    Article  Google Scholar 

  • D. Du, X. Liu, G. Korn, J. Squier, G. Mourou, Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs. Appl. Phys. Lett. 64, 3071–3073 (1994)

    Article  Google Scholar 

  • X. Fan, I.M. White, Optofluidic microsystems for chemical and biological analysis. Nat. Photonics 5, 591–597 (2011)

    Article  CAS  Google Scholar 

  • E.G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, V.T. Tikhonchuk, Laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation. Phys. Rev. B 73, 214101 (2006)

    Article  Google Scholar 

  • R.R. Gattass, E. Mazur, Femtosecond laser micromachining in transparent materials. Nat. Photonics 2, 219–225 (2008)

    Article  CAS  Google Scholar 

  • E.N. Glezer, E. Mazur, Ultrafast-laser driven micro-explosions in transparent materials. Appl. Phys. Lett. 71, 882–884 (1997)

    Article  CAS  Google Scholar 

  • Y. Gong, Y.-J. Rao, Y. Guo, Z.-L. Ran, Y. Wu, Temperature-insensitive micro Fabry–Pérot strain sensor fabricated by chemically etching Er-doped fiber. IEEE Photon. Technol. Lett. 21, 1725–1727 (2009)

    Article  CAS  Google Scholar 

  • S. Gross, M. Withford, Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications. Nanophotonics 4, 332–352 (2015)

    Article  Google Scholar 

  • M. Haque, K.K. Lee, S. Ho, L.A. Fernandes, P.R. Herman, Chemical-assisted femtosecond laser writing of lab-in-fibers. Lab. Chip 14, 3817–3829 (2014)

    Article  CAS  Google Scholar 

  • J. Hecht, City of Light: The Story of Fiber Optics (Oxford University Press on Demand, Oxford, 2004)

    Google Scholar 

  • S. Ho, P.R. Herman, J.S. Aitchison, Single-and multi-scan femtosecond laser writing for selective chemical etching of cross section patternable glass micro-channels. Appl. Phys. A 106, 5–13 (2012)

    Article  CAS  Google Scholar 

  • K. Itoh, W. Watanabe, S. Nolte, C.B. Schaffer, Ultrafast processes for bulk modification of transparent materials. MRS Bull. 31, 620–625 (2006)

    Article  CAS  Google Scholar 

  • J.B. Jensen, L.H. Pedersen, P.E. Hoiby, L.B. Nielsen, T.P. Hansen, J.R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions. Opt. Lett. 29, 1974–1976 (2004)

    Article  CAS  Google Scholar 

  • S. Kawata, H.-B. Sun, T. Tanaka, K. Takada, Finer features for functional microdevices. Nature 412, 697–698 (2001)

    Article  CAS  Google Scholar 

  • S. Kiyama, S. Matsuo, S. Hashimoto, Y. Morihira, Examination of etching agent and etching mechanism on femtosecond laser microfabrication of channels inside vitreous silica substrates. J. Phys. Chem. C 113, 11560–11566 (2009)

    Article  CAS  Google Scholar 

  • T. Kruse, H.-G. Krauthäuser, A. Spanoudaki, R. Pelster, Agglomeration and chain formation in ferrofluids: two-dimensional x-ray scattering. Phys. Rev. B 67, 094206 (2003)

    Article  Google Scholar 

  • S. Küper, M. Stuke, Femtosecond UV excimer laser ablation. Appl. Phys. B Lasers Opt. 44, 199–204 (1987)

    Article  Google Scholar 

  • Y. Lai, K. Zhou, L. Zhang, I. Bennion, Microchannels in conventional single-mode fibers. Opt. Lett. 31, 2559–2561 (2006)

    Article  CAS  Google Scholar 

  • Y. Liu, S. Qu, Y. Li, Single microchannel high-temperature fiber sensor by femtosecond laser-induced water breakdown. Opt. Lett. 38, 335–337 (2013)

    Article  Google Scholar 

  • R.-Q. Lv, Y. Zhao, D. Wang, Q. Wang, Magnetic fluid-filled optical fiber Fabry–Pérot sensor for magnetic field measurement. IEEE Photon. Technol. Lett. 26, 217–219 (2014)

    Article  Google Scholar 

  • T. H. Maiman, Stimulated optical radiation in ruby, 1960

    Article  Google Scholar 

  • S. Mao, F. Quéré, S. Guizard, X. Mao, R. Russo, G. Petite, P. Martin, Dynamics of femtosecond laser interactions with dielectrics. Appl. Phys. A Mater. Sci. Process. 79, 1695–1709 (2004)

    Article  CAS  Google Scholar 

  • C. Monat, P. Domachuk, B. Eggleton, Integrated optofluidics: a new river of light. Nat. Photonics 1, 106–114 (2007)

    Article  CAS  Google Scholar 

  • R. Osellame, V. Maselli, R.M. Vazquez, R. Ramponi, G. Cerullo, Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation. Appl. Phys. Lett. 90, 231118-1–231118-3 (2007)

    Google Scholar 

  • M.D. Perry, G. Mourou, Terawatt to petawatt subpicosecond lasers. Sci.-AAAS-Wkly. Pap. Ed.-Incl. Guide Sci. Inf. 264, 917–923 (1994)

    CAS  Google Scholar 

  • P. Pronko, S. Dutta, J. Squier, J. Rudd, D. Du, G. Mourou, Machining of sub-micron holes using a femtosecond laser at 800 nm. Opt. Commun. 114, 106–110 (1995)

    Article  CAS  Google Scholar 

  • D. Psaltis, S.R. Quake, C. Yang, Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442, 381–386 (2006)

    Article  CAS  Google Scholar 

  • B. Rethfeld, A. Kaiser, M. Vicanek, G. Simon, Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation. Phys. Rev. B 65, 214303 (2002)

    Article  Google Scholar 

  • B. Rethfeld, K. Sokolowski-Tinten, D. Von Der Linde, S. Anisimov, Timescales in the response of materials to femtosecond laser excitation. Appl. Phys. A Mater. Sci. Process. 79, 767–769 (2004)

    Article  CAS  Google Scholar 

  • C.B. Schaffer, A. Brodeur, E. Mazur, Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses. Meas. Sci. Technol. 12, 1784 (2001)

    Article  CAS  Google Scholar 

  • C.B. Schaffer, J.F. García, E. Mazur, Bulk heating of transparent materials using a high-repetition-rate femtosecond laser. Appl. Phys. A 76, 351–354 (2003)

    Article  CAS  Google Scholar 

  • Y.-R. Shen, The Principles of Nonlinear Optics, vol 1 (Wiley-Interscience, New York, 1984), p. 575

    Google Scholar 

  • D.E. Spence, P.N. Kean, W. Sibbett, 60-fsec pulse generation from a self-mode-locked Ti: sapphire laser. Opt. Lett. 16, 42–44 (1991)

    Article  CAS  Google Scholar 

  • R. Stoian, D. Ashkenasi, A. Rosenfeld, E. Campbell, Coulomb explosion in ultrashort pulsed laser ablation of Al2O3. Phys. Rev. B 62, 13167 (2000)

    Article  CAS  Google Scholar 

  • D. Strickland, G. Mourou, Compression of amplified chirped optical pulses. Opt. Commun. 55, 447–449 (1985)

    Article  CAS  Google Scholar 

  • B. Stuart, M. Feit, A. Rubenchik, B. Shore, M. Perry, Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses. Phys. Rev. Lett. 74, 2248 (1995)

    Article  CAS  Google Scholar 

  • B.C. Stuart, M.D. Feit, S. Herman, A. Rubenchik, B. Shore, M. Perry, Nanosecond-to-femtosecond laser-induced breakdown in dielectrics. Phys. Rev. B 53, 1749 (1996)

    Article  CAS  Google Scholar 

  • L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses. Opt. Commun. 171, 279–284 (1999)

    Article  CAS  Google Scholar 

  • L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, A. Mysyrowicz, Femtosecond laser-induced damage and filamentary propagation in fused silica. Phys. Rev. Lett. 89, 186601 (2002)

    Article  CAS  Google Scholar 

  • C.J. Tuck, R. Hague, C. Doyle, Low cost optical fibre based Fabry–Perot strain sensor production. Meas. Sci. Technol. 17, 2206 (2006)

    Article  CAS  Google Scholar 

  • E. Udd, An overview of fiber-optic sensors. Rev. Sci. Instrum. 66, 4015–4030 (1995)

    Article  CAS  Google Scholar 

  • A. Wang, L. Jiang, X. Li, Y. Liu, X. Dong, L. Qu, X. Duan, Y. Lu, Mask-free patterning of high-conductivity metal nanowires in open air by spatially modulated femtosecond laser pulses. Adv. Mater. 27, 6238–6243 (2015)

    Article  CAS  Google Scholar 

  • T. Wei, Y. Han, Y. Li, H.-L. Tsai, H. Xiao, Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement. Opt. Express 16, 5764–5769 (2008)

    Article  CAS  Google Scholar 

  • A.T. Woolley, R.A. Mathies, Ultra-high-speed DNA fragment separations using microfabricated capillary array electrophoresis chips. Proc. Natl. Acad. Sci. 91, 11348–11352 (1994)

    Article  CAS  Google Scholar 

  • E. Yablonovitch, N. Bloembergen, Avalanche ionization and the limiting diameter of filaments induced by light pulses in transparent media. Phys. Rev. Lett. 29, 907 (1972)

    Article  CAS  Google Scholar 

  • S.Y. Yang, Y.F. Chen, H.E. Horng, C.-Y. Hong, W.S. Tse, H.C. Yang, Magnetically-modulated refractive index of magnetic fluid films. Appl. Phys. Lett. 81, 4931 (2002)

    Article  CAS  Google Scholar 

  • Y. Zhang, Y. Li, T. Wei, X. Lan, Y. Huang, G. Chen, H. Xiao, Fringe visibility enhanced extrinsic Fabry–Perot interferometer using a graded index fiber collimator. IEEE Photonics J. 2, 469–481 (2010)

    Article  Google Scholar 

  • Y. Zhang, L. Yuan, X. Lan, A. Kaur, J. Huang, H. Xiao, High-temperature fiber-optic Fabry–Perot interferometric pressure sensor fabricated by femtosecond laser. Opt. Lett. 38, 4609–4612 (2013)

    Article  Google Scholar 

  • K. Zhou, L. Zhang, X. Chen, V. Mezentsev, I. Bennion, Microstructures made in optical fiber with femtosecond laser. Int. J. Smart Nano Mater. 1, 237–248 (2010)

    Article  CAS  Google Scholar 

  • H. Zhu, I.M. White, J.D. Suter, M. Zourob, X. Fan, Opto-fluidic micro-ring resonator for sensitive label-free viral detection. Analyst 133, 356–360 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Xiao .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Xiao, H., Yuan, L., Cheng, B., Song, Y. (2019). All Optical Fiber Optofluidic or Ferrofluidic Microsensors Fabricated by Femtosecond Laser Micromachining. In: Peng, GD. (eds) Handbook of Optical Fibers. Springer, Singapore. https://doi.org/10.1007/978-981-10-7087-7_63

Download citation

Publish with us

Policies and ethics