Skip to main content

Crystalline Fibers for Fiber Lasers and Amplifiers

  • Reference work entry
  • First Online:

Abstract

Fiber lasers and amplifiers have revolutionary advancements in the past 20 years. Using crystalline core for fiber based devices is an extension to explore what glass fibers may have limitations. The mechanical strength and heat dissipation capability of crystalline materials makes them eminently suitable for high power or high brightness applications. To utilize these crystalline advantages, it is crucial to have high quality cladding for low transmission loss and low core/clad interface defects. Various glass-cladded crystalline fiber configurations and formation mechanisms are described. After cladding formation, the heterogeneous crystal/glass interface could result in residual strain in the crystalline core, which may deteriorate the active ion emission cross section. Proper design of the crystal waveguide structure with thermal treatment could effectively mitigate the strain-induced degradation. In this chapter, the growth thermodynamics, ion segregation, and optical transmission and amplification modeling are addressed. As an introduction, the yttrium aluminum garnet (YAG) and sapphire crystalline hosts with broadband active ion dopants will be emphasized even though quite a variety of crystals have been grown into fibers since the inception of the crystalline fiber technology 40 years ago. At present, broad and bright continuous-wave light sources with a center wavelength from visible to near infrared range have been well developed. Application wise, they could be adapted as active devices for biomedical imaging, optical metrology, as well as optical communications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   919.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • I.D. Abella, C.H. Townes, Mode characteristics and coherence in optical ruby masers. Nature 192, 957 (1961)

    Article  Google Scholar 

  • R.L. Aggarwal, A. Sanchez, M.M. Stuppi, R.E. Fahey, A.J. Strauss, W.R. Rapoport, C.P. Khattak, Residual infrared absorption in as-grown and annealed crystals of Ti:Al2O3. IEEE J. Quantum Electron. 24, 1003 (1988)

    Article  CAS  Google Scholar 

  • A.A. Anderson, R.W. Eason, L.M.B. Hickey, M. Jelinek, C. Grivas, D.S. Gill, N.A. Vainos, Ti:sapphire planar waveguide laser grown by pulsed laser deposition. Opt. Lett. 22, 1556 (1997)

    Article  CAS  Google Scholar 

  • V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R.P. Salathé, M. Pollnau, Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:sapphire. Appl. Phys. Lett. 85, 1122 (2004)

    Article  CAS  Google Scholar 

  • R. Autrata, P. Schauer, J. Kvapil, J. Kvapil, A single crystal of YAG-new fast scintillator in SEM. J. Phys. E11, 707 (1978)

    Google Scholar 

  • V. Bachmann, C. Ronda, A. Meijerink, Temperature quenching of yellow Ce3+ luminescence in YAG:Ce. Chem. Mater. 21, 2077 (2009)

    Article  CAS  Google Scholar 

  • G. Blasse, A. Bril, A new phosphor for flying-spot cathode-ray tubes for color television: yellow-emitting Y3Al5O12–Ce3+. Appl. Phys. Lett. 11, 53 (1967)

    Article  CAS  Google Scholar 

  • N.I. Borodin, V.A. Zhitnyuk, A.G. Okhrimchuk, A.V. Shestakov, Izv. Akad. Nauk SSSR, Ser. Fiz. 54, 1500 (1990.) (Eng)

    CAS  Google Scholar 

  • C.A. Burrus, L.A. Coldren, Growth of single-crystal sapphire-clad ruby fibers. Appl. Phys. Lett. 31, 383 (1977)

    Article  CAS  Google Scholar 

  • C.A. Burrus, J. Stone, Single-crystal fiber optical devices: a Nd:YAG fiber laser. Appl. Phys. Lett. 26, 318 (1975)

    Article  CAS  Google Scholar 

  • C.A. Burrus, J. Stone, A.G. Dentai, Room-temperature 1.3 μm CW operation of a glass-clad Nd:YAG single-crystal fiber laser end pumped with a single LED. Electron. Lett. 12, 600 (1976)

    Article  CAS  Google Scholar 

  • B. Chalmers, H.E. Labelle Jr., A.I. Mlavsky, Edge-defined, film-fed crystal growth. J. Cryst. Growth 13–14, 84 (1972)

    Article  Google Scholar 

  • C.L. Chang, S.L. Huang, C.Y. Lo, K.Y. Huang, C.W. Lan, W.H. Cheng, P.Y. Chen, Simulation and experiment on laser-heated pedestal growth of chromium-doped yttrium-aluminum-garnet single-crystal fiber. J. Cryst. Growth 318, 674 (2001)

    Article  Google Scholar 

  • P.Y. Chen, C.L. Chang, K.Y. Huang, C.W. Lan, W.H. Cheng, S.L. Huang, Experiment and simulation on interface shapes of an yttrium aluminium garnet miniature molten zone formed using the laser-heated pedestal growth method for single-crystal fibers. J. Appl. Crystallogr. 42, 553 (2009)

    Article  CAS  Google Scholar 

  • Y. Chi, H. Yang, S. Liu, M. Li, L. Wang, G. Zou, Compression ratio and red shift of the R1 line for YAG:Cr. High Pressure Res. 3, 153 (1990)

    Article  Google Scholar 

  • A. Crunteanu, M. Pollnau, G. Jänchen, C. Hibert, P. Hoffmann, R.P. Salathé, R.W. Eason, C. Grivas, D.P. Shepherd, Ti:sapphire rib channel waveguide fabricated by reactive ion etching of a planar waveguide. Appl. Phys. B Lasers Opt. 75, 15 (2002)

    Article  CAS  Google Scholar 

  • M.J.F. Digonnet, C.J. Gaeta, D. O’Meara, H.J. Shaw, Clad Nd:YAG fibers for laser applications. IEEE J. Lightwave Technol. LT-5, 642 (1987)

    Article  CAS  Google Scholar 

  • P. Dorenbos, The 5d level positions of the trivalent lanthanides in inorganic compounds. J. Lumin. 91, 155 (2000)

    Article  CAS  Google Scholar 

  • J.L. Duranceau, R.A. Brown, Thermal-capillary analysis of small-scale floating zone: steady-state calculations. J. Cryst. Growth 75, 367 (1986)

    Article  CAS  Google Scholar 

  • H. Eilers, W.M. Dennis, W.M. Yen, S. Kuck, K. Peterman, G. Huber, W. Jia, Performance of a Cr:YAG laser. IEEE J. Quantum Electron. 29, 2508 (1993)

    Article  CAS  Google Scholar 

  • R.S. Feigelson, Pulling optical fibers. J. Cryst. Growth 79, 669 (1986)

    Article  CAS  Google Scholar 

  • M.M. Fejer, J.L. Nightingale, G.A. Magel, R.L. Byer, Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers. Rev. Sci. Instrum. 55, 1791 (1984)

    Article  CAS  Google Scholar 

  • C. Grivas, T.C. May-Smith, D.P. Shepherd, R.W. Eason, M. Pollnau, M. Jelinek, Broadband single-transverse-mode fluorescence sources based on ribs fabricated in pulsed laser deposited Ti:sapphire waveguides. Appl. Phys. A Mater. Sci. Process. 79, 1195 (2004)

    Article  CAS  Google Scholar 

  • C. Grivas, D.P. Shepherd, T.C. May-Smith, R.W. Eason, Single-transverse-mode Ti:sapphire rib waveguide laser. Opt. Express 13, 210 (2005)

    Article  CAS  Google Scholar 

  • C. Grivas, D.P. Shepherd, R.W. Eason, L. Laversenne, P. Moretti, C.N. Borca, M. Pollnau, Room-temperature continuous-wave operation of Ti:sapphire buried channel-waveguide lasers fabricated via proton implantation. Opt. Lett. 31, 3450 (2006)

    Article  CAS  Google Scholar 

  • C. Grivas, C. Corbari, G. Brambilla, P.G. Lagoudakis, Tunable, continuous-wave Ti:sapphire channel waveguide lasers written by femtosecond and picosecond laser pulses. Opt. Lett. 37, 46302 (2012)

    Article  Google Scholar 

  • D. Hamilton, S. Gayen, G. Pogatshnik, R. Ghen, Optical-absorption and photoionization measurements from the excited states of Ce3+:Y3Al5O12. Phys. Rev. B 39, 8807 (1989)

    Article  CAS  Google Scholar 

  • L.M.B. Hickey, V. Apostolopoulos, R.W. Eason, J.S. Wilkinson, Diffused Ti:sapphire channel-waveguide lasers. J. Opt. Soc. Am. B 21, 1452 (2004)

    Article  CAS  Google Scholar 

  • K. Y. Hsu, Glass-clad crystal fibers based broadband light sources, Ph.D. dissertation, 2011

    Google Scholar 

  • K.Y. Hsu, D.Y. Jheng, Y.H. Liao, T.S. Ho, C.C. Lai, S.L. Huang, Diode- laser-pumped glass-clad Ti:sapphire crystal fiber based broadband light source. IEEE Photon. Technol. Lett. 24(10), 854 (2012)

    Article  CAS  Google Scholar 

  • K.Y. Hsu, M.H. Yang, D.Y. Jheng, C.C. Lai, S.L. Huang, K. Mennemann, V. Dietrich, Cladding YAG crystal fibers with high-index glasses for reducing the number of guided modes. Opt. Mater. Express 3, 813 (2013)

    Article  CAS  Google Scholar 

  • D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, J.G. Fujimoto, Optical coherence tomography. Science 254, 1178 (1991)

    Article  CAS  Google Scholar 

  • K.Y. Huang, K.Y. Hsu, D.Y. Jheng, W.J. Zhuo, P.Y. Chen, P.S. Yeh, S.L. Huang, Low-loss propagation in Cr4+:YAG double-clad crystal fiber fabricated by sapphire tube assisted CDLHPG technique. Opt. Express 16, 12264 (2008a)

    Article  CAS  Google Scholar 

  • K.Y. Huang, K.Y. Hsu, S.L. Huang, Analysis of ultra-broadband amplified spontaneous emissions generated by Cr4+:YAG single and glass-clad crystal fibers. IEEE/OSA J. Lightwave Technol. 26, 1632 (2008b)

    Article  CAS  Google Scholar 

  • T.P. Hughes, K.M. Young, Mode sequences in ruby laser emission. Nature 196, 332 (1962)

    Article  CAS  Google Scholar 

  • R.R. Jacobs, W.F. Krupke, M.J. Weber, Measurement of excited-state-absorption loss for Ce3+ in Y3Al5O12 and implications for tunable 5d→4f rare-earth lasers. Appl. Phys. Lett. 33, 410 (1978)

    Article  CAS  Google Scholar 

  • M. R. Kokta, Process for enhancing Ti:Al2O3 tunable laser crystal fluorescence by annealing, US Patent No. 4,587,035, 1986

    Google Scholar 

  • M. R. Kokta, Process for enhancing fluorescence of Ti:Al2O3 tunable laser crystals, US Patent No. 4,836,953, 1989

    Google Scholar 

  • S. Kück, Laser-related spectroscopy of ion-doped crystals for tunable solid-state lasers. Appl. Phys. B Lasers Opt. 72, 515 (2001)

    Article  Google Scholar 

  • H.E. LaBelle Jr., A.I. Mlavsky, Growth of Sapphire filaments from the melt. Nature 216, 574 (1967)

    Article  CAS  Google Scholar 

  • H.E. LaBelle Jr., A.I. Mlavsky, Growth of controlled profile crystals from the melt: part I – Sapphire filaments. Mater. Res. Bull. 6, 571 (1971)

    Article  CAS  Google Scholar 

  • C.C. Lai, H.J. Tsai, K.Y. Huang, K.Y. Hsu, Z.W. Lin, K.D. Ji, W.J. Zhuo, S.L. Huang, Cr4+:YAG double-clad crystal fiber laser. Opt. Lett. 33, 2919 (2008)

    Article  CAS  Google Scholar 

  • C.C. Lai, Y.S. Lin, K.Y. Huang, S.L. Huang, Study on the core/cladding interface in Cr:YAG double-clad crystal fibers grown by the co-drawing laser heated pedestal growth method. J. Appl. Phys. 108, 054308 (2010)

    Article  Google Scholar 

  • C.W. Lan, S. Kou, Thermocapllary flow and melt/solid interfaces in floatinf-zone crystal growth under microgravity. J. Cryst. Growth 102, 1043 (1990)

    Article  CAS  Google Scholar 

  • C.W. Lan, C.Y. Tu, Three-dimensional simulation of facet formation and the coupled heat flow and segregation in Bridgman growth of oxide crystals. J. Cryst. Growth 233, 523 (2001)

    Article  CAS  Google Scholar 

  • L. Laversenne, P. Hoffmann, M. Pollnau, P. Moretti, J. Mugnier, Designable buried waveguides in sapphire by proton implantation. Appl. Phys. Lett. 85, 5167 (2004)

    Article  CAS  Google Scholar 

  • Y.S. Lin, C.C. Lai, K.Y. Huang, J.C. Chen, C.Y. Lo, S.L. Huang, T.Y. Chang, J.Y. Ji, P. Shen, Nanostructure formation of double-clad Cr4+:YAG crystal fiber grown by co-drawing laser-heated pedestal. J. Cryst. Growth 289, 515 (2006)

    Article  CAS  Google Scholar 

  • Y.S. Lin, T.C. Cheng, C.C. Tsai, K.Y. Hsu, D.Y. Jheng, C.Y. Lo, P.S. Yeh, S.L. Huang, High-luminance white-light point source using Ce,Sm:YAG double-clad crystal fiber. IEEE Photon. Technol. Lett. 22, 1494 (2010)

    Article  CAS  Google Scholar 

  • C. Y. Lo, Growth, characterization, and applications of doped-YAG single-crystal fibers, Ph.D. dissertation, 1994

    Google Scholar 

  • C.Y. Lo, K.Y. Huang, J.C. Chen, S.Y. Tu, S.L. Huang, Glass-clad Cr4+:YAG crystal fiber for the generation of superwideband amplified spontaneous emission. Opt. Lett. 29, 439 (2004)

    Article  CAS  Google Scholar 

  • C.Y. Lo, K.Y. Huang, J.C. Chen, C.Y. Chuang, C.C. Lai, S.L. Huang, Y.S. Lin, P.S. Yeh, Double-clad Cr4+:YAG crystal fiber amplifier. Opt. Lett. 30, 129 (2005)

    Article  CAS  Google Scholar 

  • J.D. Love, W.M. Henry, W.J. Stewart, R.J. Black, S. Lacroix, F. Gonthier, Tapered single-mode fibres and devices. IEE Proc. J. Optoelecton. 138, 343 (1991)

    Article  Google Scholar 

  • D. Marcuse, Theory of dielectric optical waveguides (Academic Press, New York, 1991)

    Google Scholar 

  • P.F. Moulton, Spectroscopic and laser characteristics of Ti:Al2O3. J. Opt. Soc. Am. B: Opt. Phys. 3, 125 (1986)

    Article  CAS  Google Scholar 

  • N. Ohnish, T. Yao, A novel growth technique for single-crystal fibers: the micro-Czochralski (μ-CZ) method. Jap. J. Appl. Phys. 28, L278 (1989)

    Article  Google Scholar 

  • E.P. Ostby, L. Yang, K.J. Vahala, Ultralow-threshold Yb3+:SiO2 glass laser fabricated by the solgel process. Opt. Lett. 32, 2650 (2007)

    Article  CAS  Google Scholar 

  • D.P.S. Saini, Y. Shimoji, R.S.F. Chang, N. Djeu, Cladding of a crystal fiber by high-energy ion implantation. Opt. Lett. 16, 1074 (1991)

    Article  CAS  Google Scholar 

  • A. Sennaroglu, C.R. Pollock, H. Nathel, Continuous-wave self-mode-locked operation of a femtosecond Cr4+:YAG laser. Opt. Lett. 19, 390 (1994)

    Article  CAS  Google Scholar 

  • Y.R. Shen, U. Hömmerich, K.L. Bray, Observation of the 1E state of Cr4+ in yttrium aluminum garnet. Phys. Rev. B Condens. Matter 56, R473 (1997)

    Article  CAS  Google Scholar 

  • I.T. Sorokina, S. Naumov, E. Sorokin, E. Wintner, A.V. Shestakov, Directly diode-pumped tunable continuous-wave room-temperature Cr4+:YAG laser. Opt. Lett. 24, 1578 (1999)

    Article  CAS  Google Scholar 

  • J.L. Stevenson, R.B. Dyott, Optical fiber waveguide with a single-crystal core. Electron. Lett. 10, 449 (1974)

    Article  Google Scholar 

  • S. Sudo, A. Cordova-Plaza, R.L. Byer, H.J. Shaw, MgO:LiNbO3 single-crystal fiber with magnesium-ion in-diffused cladding. Opt. Lett. 12, 938 (1987)

    Article  CAS  Google Scholar 

  • J.C. Walling, O.G. Jenssen, H.P. Jenssen, R.C. Mirris, E.W. O’Dell, Tunable alexandrite lasers. IEEE J. Quantum Electron. QE-16, 1702 (1980)

    Google Scholar 

  • S.C. Wang, T.I. Yang, D.Y. Jheng, C.Y. Hsu, T.T. Yang, T.S. Ho, S.L. Huang, Broadband and high-brightness light source: glass-clad Ti:sapphire crystal fiber. Opt. Lett. 40, 5594 (2015)

    Article  CAS  Google Scholar 

  • L. Wu, A. Wang, J. Wu, L. Wei, G. Zhu, S. Ying, Growth and laser properties of Ti:sapphire single crystal fibres. Electron. Lett. 31, 1151 (1995)

    Article  CAS  Google Scholar 

  • D.H. Yoon, I. Yonenaga, T. Fukuda, N. Ohnishi, Crystal growth of dislocation-free LiNbO3 single crystals by micro pulling down method. J. Cryst. Growth 142, 339 (1994)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Lung Huang .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Huang, SL. (2019). Crystalline Fibers for Fiber Lasers and Amplifiers. In: Peng, GD. (eds) Handbook of Optical Fibers. Springer, Singapore. https://doi.org/10.1007/978-981-10-7087-7_52

Download citation

Publish with us

Policies and ethics