Skip to main content

Optical Fibers for High-Power Lasers

  • Reference work entry
  • First Online:
Book cover Handbook of Optical Fibers
  • 2582 Accesses

Abstract

Lasers with high output powers are demanded for a wide variety of applications, ranging from material processing, remote sensing, medical surgery, to fundamental science. Across all these application scenarios, there are two main challenges: the scaling of output power and the quality of the laser beam. In the past decade, there have been tremendous research efforts to tackle these two issues in both continuous wave (CW) and pulsed lasers, to improve the power level, wavelength tunability, coherence, line width, etc. Among them, fiber technology has enabled the flexible delivery of high-power laser beams with precision beam quality (Jauregui et al., Nat Photonics 7:861–867, 2013). The technology development could be summarized in two approaches: passive fiber technology and active fiber technology. Passive fibers offer the last step manipulation of high-power laser beams from gas laser, semiconductor lasers, or other solid-state lasers. Active fibers are the gain component in the fiber oscillator or amplifier to generate the optical emission. Compared with traditionally step-index fibers, new fiber structure designs open new horizons in laser technology. In this book chapter, the main content has been arranged according to different fiber structure designs. Typical specialty fibers have been chosen, including double-cladding fibers, large mode area photonic crystal fibers, large pitch fibers, leakage channel fibers, chirally coupled core fibers, pixelated Bragg fibers, and hollow-core fibers. The design principle, manufacturability, and future outlook have been discussed in each subsections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 919.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • J. Bai, J. Zhang, J. Koponen, M. Kanskar, E. Towe, High pulse energy chirally-coupled-core Yb-doped fiber amplifier system, conference on lasers and electro-Optics 2017, OSA technical digest, paper JW2A.88, 2017

    Google Scholar 

  • A. Baz, G. Bouwmans, L. Bigot, Y. Quiquempois, Pixelated high-index ring Bragg fibers. Opt. Express 20, 18795–18802 (2012)

    Article  Google Scholar 

  • F. Couny, F. Benabid, P.J. Roberts, M.T. Burnett, S.A. Maier, Identification of Bloch-modes in hollow-core photonic crystal fiber cladding. Opt. Express 15, 325–338 (2007)

    Article  CAS  Google Scholar 

  • J.W. Dawson, M.J. Messerly, R.J. Beach, M.Y. Shverdin, E.A. Stappaerts, A.K. Sridharan, P.H. Pax, H.E. Heebner, C.W. Siders, C.P.J. Barty, Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power. Opt. Express 16, 13240 (2008)

    Article  CAS  Google Scholar 

  • L. Dong, J. Li, X. Peng, Bend resistant fundamental mode operation in ytterbium-doped leakage channel fibers with effective area up to 3160μm2. Opt. Express 14, 11512–11519 (2006)

    Article  CAS  Google Scholar 

  • L. Dong, H.A. McKay, L. Fu, M. Ohta, A. Marcinkevicius, S. Suzuki, M.E. Fermann, Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding. Opt. Express 17, 8962–8969 (2009)

    Article  CAS  Google Scholar 

  • M.A. Duguay, Y. Kukubun, T.L. Koch, L. Pfeiffer, Antiresonant reflecting optical waveguides in SiO2-Si multiplayer structures. Appl. Phys. Lett. 49, 13–15 (1986)

    Article  CAS  Google Scholar 

  • S. Février, B. Beaudou, P. Viale, Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design simplification. Opt. Express 18, 5142–5150 (2010)

    Article  Google Scholar 

  • I. Hu, C. Zhu, M. Haines, T. McComb, G. Fanning, R. Farrow, A. Galvanauskas, Nonlinear polarization switching and preservation effects in 55 μm core polygonal-CCC fibers, conference on lasers and electro-Optics 2015, OSA technical digest, paper JTh2A.94, 2015

    Google Scholar 

  • M. Javadimanesh, S. Ghavami Sabouri, A. Khorsandi, The effect of cladding geometry on the absorption efficiency of double-clad fiber lasers. Opt. Appl. XLVI, 2 (2016)

    Google Scholar 

  • Y. Jeong, J.K. Sahu, D.N. Payne, J. Nilsson, Ytterbium-doped large-core fiber laser with 1:36 kW continuous-wave output power. Opt. Express 12, 6088–6092 (2004)

    Article  CAS  Google Scholar 

  • J.C. Knight, T.A. Birks, P. St, J. Russell, D.M. Atkin, All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 21, 1547–1549 (1996)

    Article  CAS  Google Scholar 

  • D. Kouznetsov, J.V. Moloney, Efficiency of pump absorption in double-clad fiber amplifiers. II. Broken circular symmetry. J. Opt. Soc. Am. B 19, 1259–1263 (2002)

    Article  CAS  Google Scholar 

  • J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, C. Jakobsen, Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier. Opt. Express 12, 1313–1319 (2004)

    Article  CAS  Google Scholar 

  • J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, F. Röser, A. Liem, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, C. Jakobsen, High-power rod-type photonic crystal fiber laser. Opt. Express 13, 1055–1058 (2005)

    Article  CAS  Google Scholar 

  • J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, F. Salin, Extended single-mode photonic crystal fiber lasers. Opt. Express 14, 2715–2720 (2006)

    Article  CAS  Google Scholar 

  • C. Liu, G. Chang, N. Litchinitser, A. Galvanauskas, D. Guertin, N. Jabobson, K. Tankala, Effectively single-mode chirally-coupled core fiber, advanced solid-state photonics 2007, OSA technical digest, paper ME2, 2007

    Google Scholar 

  • R. Maurer, Optical waveguide light source, U.S. Patent 3,808,549, 1974

    Google Scholar 

  • A. Mizrahi, L. Schächter, Bragg reflection waveguides with a matching layer. Opt. Express 12, 3156–3170 (2004)

    Article  Google Scholar 

  • M. Nisoli, S.D. Silvestri, O. Svelto, Generation of high energy 10 fs pulses by a new pulse compression technique. Appl. Phys. Lett. 68, 2793–2795 (1996)

    Article  CAS  Google Scholar 

  • D.G. Ouzounov, C.J. Hensley, A.L. Gaeta, N. Venkateraman, M.T. Gallagher, K.W. Koch, Soliton pulse compression in photonic band-gap fibers. Opt. Express 13, 6153–6159 (2005)

    Article  Google Scholar 

  • G. Overton, IPG photonics offers world’s first 10 kW single-mode production laser, Laser Focus World, 2015.

    Google Scholar 

  • H. Pei, J. Ruppe, S. Chen, M. Sheikhsofla, J. Nees, Y. Yang, R. Wilcox, W. Leemans, A. Galvanauskas, 10mJ energy extraction from Yb-doped 85μm core CCC fiber using coherent pulse stacking amplification of fs pulses, Laser Congress 2017 (ASSL, LAC), OSA technical digest, paper AW4A.4, 2017

    Google Scholar 

  • X. Peng, L. Dong, Fundamental-mode operation in polarization-maintaining ytterbium-doped fiber with an effective area of 1400 μm2. Opt. Lett. 32, 358–360 (2007)

    Article  CAS  Google Scholar 

  • M.A. Popenda, H.I. Stawska, L.M. Mazur, K. Jakubowski, A. Kosolapov, A. Kolyadin, E. Bereś-Pawlik, Application of negative curvature hollow-core fiber in an optical fiber sensor setup for multiphoton spectroscopy. Sensors 17, 2278 (2017)

    Article  Google Scholar 

  • P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, Ultimate low loss of hollow-core photonic crystal fibres. Opt. Express 13, 236–244 (2005)

    Article  CAS  Google Scholar 

  • P.S.J. Russell, P. Holzer, W. Chang, A. Abdolvand, J.C. Travers, Hollow-core photonic crystal fibres for gas-based nonlinear optics. Nat. Photonics 8, 278–286 (2014)

    Article  CAS  Google Scholar 

  • J.D. Shephard, A. Urich, R.M. Carter, P. Jaworski, R.R. Maier, W. Belardi, F. Yu, W.J. Wadsworth, J.C. Knight, D.P. Hand, Silica hollow core microstructured fibers for beam delivery in industrial and medical applications. Front. Phys. 3(24) (2015)

    Google Scholar 

  • E. Snitzer, H. Po, F. Hakimi, R. Tumminelli, B.C. McCollum, Double clad, offset core Nd fibre laser, paper PD5, in Proc. Opt. Fib. Sensors 2, OSA, 1988

    Google Scholar 

  • F. Stutzki, J. Florian, A. Liem, C. Jauregui, J. Limpert, A. Tünnermann, 26mJ, 130W Q-switched fiber-laser system with near-diffraction-limited beam quality. Opt. Lett. 37, 1073–1075 (2012)

    Article  Google Scholar 

  • F. Stutzki, F. Jansen, H.J. Otto, C. Jauregui, J. Limpert, A. Tünnermann, Designing advanced very-large-mode-area fibers for power scaling of fiber-laser systems. Optica 1, 233–242 (2014)

    Article  Google Scholar 

  • Z. Várallyay, K. Saitoh, Photonic crystal fibre for dispersion control, in Frontiers in guided wave optics and optoelectronics (InTech), 2010

    Google Scholar 

  • Y.Y. Wang, N.V. Wheeler, F. Couny, P.J. Roberts, F. Benabid, Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber. Opt. Lett. 36, 669–671 (2011)

    Article  CAS  Google Scholar 

  • C. Wei, R. Joseph Weiblen, C.R. Menyuk, J. Hu, Negative curvature fibers. Adv. Opt. Photon. 9, 504–561 (2017)

    Article  Google Scholar 

  • W.S. Wong, X. Peng, J.M. McLaughlin, L. Dong, Breaking the limit of maximum effective area for robust single-mode propagation in optical fibers. Opt. Lett. 30, 2855–2857 (2005)

    Article  Google Scholar 

  • J.P. Yehouessi, A. Baz, L. Bigot, G. Bouwmans, O. Vanvincq, M. Douay, Y. Quiquempois, Design and realization of flexible very large mode area pixelated Bragg fibers. Opt. Lett. 40, 363–366 (2015)

    Article  CAS  Google Scholar 

  • J.P. Yehouessi, G. Bouwmans, O. Vanvincq, A. Cassez, R. Habert, Y. Quiquempois, L. Bigot, Ultra large mode area pixelated Bragg fiber, in Fiber Lasers XIII: Technology, Systems, and Applications, Proc. SPIE 9728 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Yu .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yu, X., Sun, B., Luo, J., Lee, E. (2019). Optical Fibers for High-Power Lasers. In: Peng, GD. (eds) Handbook of Optical Fibers. Springer, Singapore. https://doi.org/10.1007/978-981-10-7087-7_39

Download citation

Publish with us

Policies and ethics