Skip to main content

Electrodes for Nerve Recording and Stimulation

  • Reference work entry
  • First Online:
Micro Electro Mechanical Systems

Part of the book series: Micro/Nano Technologies ((MNT))

Abstract

With the rapid development of MEMS fabrication technologies, versatile microelectrodes with different structures and functions have been designed and fabricated. The flexible MEMS microelectrodes exhibit multiaspect excellent characteristics compared to stiff microelectrodes based on silicon or SU-8, which comprising: lighter weight, smaller volume, better conforming to neural tissue, and lower fabrication cost.

This chapter mainly reviewed key technologies on flexible MEMS microelectrodes for neural interface in recent years, including: design and fabrication technology, fluidic channels, μLEDs, and electrode-tissue interface modification technology for performance improvement. Furthermore, the future directions of flexible MEMS microelectrodes were described including transparent and stretchable microelectrodes with characteristics of multifunction, high-density, biodegradation, and next-generation electrode-tissue interface modifications facilitated electrode efficacy and implantation safety.

The goal of this chapter is to provide the reader a broader overview of flexible MEMS technologies that can be applied together to solve problems in neural interface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abidian MR, Martin DC (2009) Multifunctional Nanobiomaterials for neural interfaces. Adv Funct Mater 19(4):573–585

    Article  Google Scholar 

  • Abidian MR, Ludwig KA, Marzullo TC, Martin DC, Kipke DR (2009) Interfacing conducting polymer nanotubes with the central nervous system: chronic neural recording using poly (3, 4-ethylenedioxythiophene) nanotubes. Adv Mater 21(37):3764–3770

    Article  Google Scholar 

  • Abidian MR, Daneshvar ED, Egeland BM, Kipke DR, Cederna PS, Urbanchek MG (2012) Hybrid conducting polymer-hydrogel conduits for axonal growth and neural tissue engineering. Adv Healthcare Mater 1(6):762–767

    Article  Google Scholar 

  • Al-bahrani MR, Ahmad W, Mehnane HF, Chen Y, Cheng Z, Gao Y (2015) Enhanced electrocatalytic activity by RGO/MWCNTs/NiO counter electrode for dye-sensitized solar cells. Nano-Micro Lett 7(3):298–306

    Article  Google Scholar 

  • Altuna EB, Cid E, Aivar P, Gal B, Berganzo J, Gabriel G, Guimera A, Villa R, Fernandez LJ, Menendez de la Prida L (2013) SU-8 based microprobes for simultaneous neural depth recording and drug delivery in the brain. Lab Chip 13(7):1422–1430

    Article  Google Scholar 

  • Anthony TE, Dee N, Bernard A, Lerchner W, Heintz N, Anderson DJ (2014) Control of stress-induced persistent anxiety by an extra-amygdala septohypothalamic circuit. Cell 156(3):522–536

    Article  Google Scholar 

  • Aregueta-Robles UA, Woolley AJ, Poole-Warren LA, Lovell NH, Green RA (2014) Organic electrode coatings for next-generation neural interfaces. Front Neuroeng 7:15

    Article  Google Scholar 

  • Arter JA, Taggart DK, McIntire TM, Penner RM, Weiss GA (2010) Virus-PEDOT nanowires for biosensing. Nano Lett 10(12):4858–4862

    Article  Google Scholar 

  • Asplund M, von Holst H, Inganas O (2008) Composite biomolecule/PEDOT materials for neural electrodes. Biointerphases 3(3):83–93

    Article  Google Scholar 

  • Asplund M, Nyberg T, Inganäs O (2010) Electroactive polymers for neural interfaces. Polym Chem 1(9):1374–1391

    Article  Google Scholar 

  • Au KM, Lu Z, Matcher SJ, Armes SP (2013) Anti-biofouling conducting polymer nanoparticles as a label-free optical contrast agent for high resolution subsurface biomedical imaging. Biomaterials 34(35):8925–8940

    Article  Google Scholar 

  • Bangar MA, Shirale DJ, Chen W, Myung NV, Mulchandani A (2009) Single conducting polymer nanowire chemiresistive label-free immunosensor for cancer biomarker. Anal Chem 81(6):2168–2175

    Article  Google Scholar 

  • Bongo M, Winther-Jensen O, Himmelberger S, Strakosas X, Ramuz M, Hama A, Stavrinidou E, Malliaras GG, Salleo A, Winther-Jensen B (2013) PEDOT:gelatin composites mediate brain endothelial cell adhesion. J Mater Chem B 1:3860–3867

    Article  Google Scholar 

  • Cho Y, Borgens RB (2013) Electrically controlled release of the nerve growth factor from a collagen–carbon nanotube composite for supporting neuronal growth. J Mater Chem B 1(33):4166–4170

    Article  Google Scholar 

  • Cogan SF (2008) Neural stimulation and recording electrodes. Annu Rev Biomed Eng 10:275–309

    Article  Google Scholar 

  • Cogan SF, Guzelian AA, Agnew WF, Yuen TG, Mccreery DB (2004) Over-pulsing degrades activated iridium oxide films used for intracortical neural stimulation. J Neurosci Meth 137(2):141

    Article  Google Scholar 

  • Cui XY, Martin DC (2003) Electrochemical deposition and characterization of poly(3,4-ethylenedioxythiophene) on neural microelectrode arrays. Sensor Actuat B-Chem 89(1–2):92–102

    Article  Google Scholar 

  • Dobson J (2008) Remote control of cellular behaviour with magnetic nanoparticles. Nat Nanotechnol 3(3):139–143

    Article  Google Scholar 

  • Farina D, Yoshida K, Stieglitz T, Koch KP (2008) Multichannel thin-film electrode for intramuscular electromyographic recordings. J Appl Physiol 104(3):821–827

    Article  Google Scholar 

  • Ferguson JE, Boldt C, Redish AD (2009) Creating low-impedance tetrodes by electroplating with additives. Sensor Actuat A-Phys 156(2):388–393

    Article  Google Scholar 

  • Gao KP, Li G, Liao LY, Cheng J, Zhao JL, Xu YS (2013) Fabrication of flexible microelectrode arrays integrated with microfluidic channels for stable neural interfaces. Sensor Actuat A-Phys 197:9–14

    Article  Google Scholar 

  • Gomez N, Lee JY, Nickels JD, Schmidt CE (2007) Micropatterned polypyrrole: a combination of electrical and topographical characteristics for the stimulation of cells. Adv Funct Mater 17(10):1645–1653

    Article  Google Scholar 

  • Grill WM, Norman SE, Bellamkonda RV (2009) Implanted neural interfaces: biochallenges and engineered solutions. Annu Rev Biomed Eng 11:1–24

    Article  Google Scholar 

  • Hira R, Honkura NJ, Maruyama Y, Augustine G, Kasai H, Matsuzaki M (2009) Transcranial optogenetic stimulation for functional mapping of the motor cortex. J Neurosci Meth 179(2):258–263

    Article  Google Scholar 

  • Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D, Penn RD, Donoghue JP (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442(7099):164–171

    Article  Google Scholar 

  • Hong X, Wu Z, Chen L, Wu F, Wei L, Yuan W (2014) Hydrogel microneedle arrays for transdermal drug delivery. Nano-Micro Lett 6(3):191–199

    Article  Google Scholar 

  • Hsiao YS, Kuo CW, Chen P (2013) Multifunctional Graphene–PEDOT microelectrodes for on-Chip manipulation of human Mesenchymal stem cells. Adv Funct Mater 23(37):4649–4656

    Article  Google Scholar 

  • Huang YJ, Wu HC, Tai NH, Wang TW (2012) Carbon Nanotube rope with electrical stimulation promotes the differentiation and maturity of neural stem cells. Small 8(18):2869–2877

    Article  Google Scholar 

  • Iwai Y, Honda S, Ozeki H, Hashimoto M, Hirase H (2011) A simple head-mountable led device for chronic stimulation of optogenetic molecules in freely moving mice. Neurosci Res 70(1):124–127

    Article  Google Scholar 

  • Jarc M, Berniker M, Tresch MC (2013) FES control of isometric forces in the rat Hindlimb using many muscles. IEEE Trans Bio-Med Eng 60(5):1422–1430

    Article  Google Scholar 

  • Jeong JW, Mccall JG, Shin G, Zhang Y, Alhasani R, Kim M (2015) Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics. Cell 162(3):662–674

    Article  Google Scholar 

  • Jessin J, Yuefa L, Jinsheng Z, Jeffrey AL, Yong X (2011) Microfabrication of 3D neural probes with combined electrical and chemical interfaces. J Micromech Microeng 21(10):105011

    Article  Google Scholar 

  • Ji BW, Kang XY, Wang MH, Bao BF, Tian HC, Yang B, Chen X, Wang XL, Liu JQ (2017) Photoelectric neural interface combining wire-bondingμLEDS with iridium oxide microelectrodes for optogenetics, MEMS 2017, Las Vegas, 22–26 Jan

    Google Scholar 

  • Kang XY, Liu JQ, Tian HC, Zhang C, Yang B, NuLi Y, Zhu HY, Yang CS (2014a) Controlled activation of iridium film for AIROF microelectrodes. Sensor Actuat B-Chem 190:601–611

    Article  Google Scholar 

  • Kang XY, Liu JQ, Tian HC, Yang B, Nuli YN, Yang CS (2014b) Fabrication and electrochemical comparison of SIROF-AIROF-EIROF microelectrodes for neural interfaces. IEEE Eng Med Biol:478–481

    Google Scholar 

  • Kang XY, Liu JQ, Tian HC, Yang B, NuLi YN, Yang CS (2014c) Optimization and electrochemical characterization of RF-sputtered iridium oxide microelectrodes for electrical stimulation. J Microelectromech Syst 24(2)

    Article  Google Scholar 

  • Kang XY, Liu JQ, Tian HC, Du JC, Yang B, Zhu HY, NuLi YN Yang CS (2014d) Fabrication and degradation characteristic of sputtered iridium oxide neural microelectrodes for Fes application, MEMS 2014, San Francisco, 26–30 Jan, 616–619

    Google Scholar 

  • Kang XY, Liu JQ, Tian HC, Yang B, Nuli YN, Yang CS (2015) Self-closed Parylene cuff electrode for peripheral nerve recording. J Microelectromech Syst 24(2):319–332

    Article  Google Scholar 

  • Kim S, Bhandari R, Klein M, Negi S, Rieth L, Tathireddy P, Toepper M, Oppermann H, Solzbacher F (2009) Integrated wireless neural interface based on the Utah electrode array. Biomed Microdevices 11(2):453–466

    Article  Google Scholar 

  • Kim H, Viventi J, Amsden JJ, Xiao JL, Vigeland L, Kim YS, Blanco JA, Panilaitis B, Frechette ES, Contreras D, Kaplan DL, Omenetto FG, Huang YG, Hwang KC, Zakin MR, Litt B, Rogers JA (2010) Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat Mater 9(6):511–517

    Article  Google Scholar 

  • Kozai TDY, Langhals NB, Patel PR, Deng XP, Zhang HN, Smith KL, Lahann J, Kotov NA, Kipke DR (2012) Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. Nat Mater 11(12):1065–1073

    Article  Google Scholar 

  • Kwon KY, Lee HM, Ghovanloo M, Weber A, Li W (2014) A wireless slanted optrode array with intergrated micro LEDs for optogenetics, MEMS 2014, San Francisco, 26–30 Jan

    Google Scholar 

  • Lee JY, Bashur CA, Goldstein AS, Schmidt CE (2009) Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials 30(26):4325–4335

    Article  Google Scholar 

  • Luo X, Weaver CL, Zhou DD, Greenberg R, Cui XT (2011) Highly stable carbon nanotube doped poly (3, 4-ethylenedioxythiophene) for chronic neural stimulation. Biomaterials 32(24):5551–5557

    Article  Google Scholar 

  • Martins PM, Ribeiro S, Ribeiro C, Sencadas V, Gomes AC, Gama FM, Lanceros-Mendez S (2013) Effect of poling state and morphology of piezoelectric poly(vinylidene fluoride) membranes for skeletal muscle tissue engineering. RSC Adv 3(39):17938–17944

    Article  Google Scholar 

  • Memberg WD, Stage TG, Kirsch RF (2014) A fully implanted intramuscular bipolar Myoelectric signal recording electrode. Neuromodulation 17(8):794–799

    Article  Google Scholar 

  • Metz S, Bertsch A, Bertrand D, Renaud P (2004) Flexible polyimide probes with microelectrodes and embedded microfluidic channels for simultaneous drug delivery and multi-channel monitoring of bioelectric activity. Biosens Bioelectron 19(10):1309–1318

    Article  Google Scholar 

  • Midrio M (2006) The denervated muscle: facts and hypotheses. A historical review. Eur J Appl Physiol 98(1):1–21

    Article  Google Scholar 

  • Mitch WE, Goldberg AL (1996) Mechanisms of disease: mechanisms of muscle wasting: the role of the ubiquitin-proteasome pathway. New Engl J Med 335(25):1897–1905

    Article  Google Scholar 

  • Navarro X, Krueger TB, Lago N, Micera S, Stieglitz T, Dario P (2005) A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J Peripher Nerv Syst 10(3):229

    Article  Google Scholar 

  • Ortiz-Catalan M, Branemark R, Hakansson B, Delbeke J (2012) On the viability of implantable electrodes for the natural control of artificial limbs: review and discussion. Biomed Eng Online 11(1):33

    Article  Google Scholar 

  • Park SY, Park J, Sim SH, Sung MG, Kim KS, Hong BH, Hong S (2011) Enhanced differentiation of human neural stem cells into neurons on Graphene. Adv Mater 23(36),H263–H267

    Article  Google Scholar 

  • Plesse C, Vidal F, Teyssié D, Chevrot C (2010) Conducting polymer artificial muscle fibres: toward an open air linear actuation. Chem Commun 46(17):2910–2912

    Article  Google Scholar 

  • Pongrácz ZF, Márton G, Bérces Z, Ulbert I, Fürjes P (2013) Deep-brain silicon multielectrodes for simultaneous in vivo neural recording and drug delivery. Sensor Actuat B-Chem 189:97–105

    Article  Google Scholar 

  • Poole-Warren L, Lovell N, Baek S, Green R (2010) Development of bioactive conducting polymers for neural interfaces. Expert Rev Med Devices 7(1):35–49

    Article  Google Scholar 

  • Quigley F, Razal JM, Kita M, Jalili R, Gelmi A, Penington A, Ovalle-Robles R, Baughman RH, Clark GM, Wallace GG (2012) Electrical stimulation of myoblast proliferation and differentiation on aligned nanostructured conductive polymer platforms. Adv Healthc Mater 1(6):801–808

    Article  Google Scholar 

  • Radisic M, Park H, Shing H, Consi T, Schoen FJ, Langer R, Freed LE, Vunjak-Novakovic G (2004) From the cover:functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc Natl Acad Sci U S A 52:18129–18134

    Article  Google Scholar 

  • Receveur RAM, Lindemans FW, de Rooij NF (2007) Microsystem technologies for implantable applications. J Micromech Microeng 17(5):R50–R80

    Article  Google Scholar 

  • Robblee LS, Mchardy J, Agnew WF, Bullara LA (1983) Electrical stimulation with pt electrodes. Vii. Dissolution of pt electrodes during electrical stimulation of the cat cerebral cortex. J Neurosci Meth 9(4):301–308

    Article  Google Scholar 

  • Rui YF, Liu JQ, Wang YJ, Yang CS (2011) Parylene-based implantable pt-black coated flexible 3-D hemispherical microelectrode arrays for improved neural interfaces. Microsyst Technol 17(3):437–442

    Article  Google Scholar 

  • Rui YF, Liu JQ, Yang B, Li KY, Yang CS (2012) Parylene-based implantable platinum-black coated wire microelectrode for orbicularis oculi muscle electrical stimulation. Biomed Microdevices 14(2):367–373

    Article  Google Scholar 

  • Simon T, Kurup S, Larsson KC, Hori R, Tybrandt K, Goiny M, Jager EW, Berggren M, Canlon B, Richter-Dahlfors A (2009) Organic electronics for precise delivery of neurotransmitters to modulate mammalian sensory function. Nat Mater 8(9):742–746

    Article  Google Scholar 

  • Svennersten K, Berggren M, Richter-Dahlfors A, Jager EWH (2011) Mechanical stimulation of epithelial cells using polypyrrole microactuators. Lab Chip 11(19):3287–3293

    Article  Google Scholar 

  • Takeuchi S, Ziegler D, Yoshida Y, Mabuchi K, Suzuki T (2005) Parylene flexible neural probes integrated with microfluidic channels. Lab Chip 5(5):519–523

    Article  Google Scholar 

  • Tandon N, Cannizzaro C, Chao PHG, Maidhof R, Marsano A, Au HTH, Radisic M, Vunjak-Novakovic G (2009) Electrical stimulation systems for cardiac tissue engineering. Nat Protoc 4(2):155–173

    Article  Google Scholar 

  • Thomas CK, Zaidner EY, Calancie B, Broton JG, Bigland-Ritchie BR (1997) Muscle weakness, paralysis, and atrophy after human cervical spinal cord injury. Exp Neurol 148(2):414–423

    Article  Google Scholar 

  • Tian HC, Liu JQ, Du JC, Kang XY, Zhang C, Yang B, Chen X, Yang CS (2014a) Flexible intramuscular micro tube electrode combining electrical and chemical Interface. IEEE Eng Med Biol:6949–6952

    Google Scholar 

  • Tian HC, Liu JQ, Wei DX, Kang XY, Zhang C, Du JC, Yang B, Chen X, Zhu HY, NuLi YN, Yang CS (2014b) Graphene oxide doped conducting polymer nanocomposite film for electrode-tissue interface. Biomaterials 35(7):2120–2129

    Article  Google Scholar 

  • Tian HC, Liu JQ, Kang XY, Wei DX, Zhang C, Du JC, Yang B, Chen X, Yang CS (2014c) Biotic and abiotic molecule dopants determining the electrochemical performance, stability and fibroblast behavior of conducting polymer for tissue interface. RSC Adv 4(88):47461–47471

    Article  Google Scholar 

  • Tian HC, Liu JQ, Kang XY, Wei DX, Zhang C, Du JC, Yang B, Chen X, Yang CS (2014d) Poly(3,4-ethylenedioxythiophene)/Graphene oxide composite coating for electrode-tissue Interface. IEEE Eng Med Biol:1571–1574

    Google Scholar 

  • Tian HC, Liu JQ, Kang XY, He Q, Yang B, Chen X, Yang CS (2015) Flexible multi-channel microelectrode with fluidic paths for intramuscular stimulation and recording. Sensor Actuat A-Phys 228:28–39

    Article  Google Scholar 

  • Vallejo-Giraldo AK, Biggs MJP (2014) Biofunctionalisation of electrically conducting polymers. Drug Discov Today 19(1):88–94

    Article  Google Scholar 

  • Wang MH, Nikaido K, Kim Y, Ji BW, Tian HC, Kang XY, Yang CS, Yang B, Chen X, Wang XL, Zhang Y, Liu JQ (2017) Flexible cylindrical neural probe with graphene enchenced conductiive polymer for multi-mode BCI applications, MEMS 2017, Las Vegas, 22–26 Jan

    Google Scholar 

  • Warden MR, Cardin JA, Deisseroth K (2014) Optical neural interfaces. Annu Rev Biomed Eng 16(16):103–129

    Article  Google Scholar 

  • Wells J, Kao C, Mariappan K, Albea J, Jansen ED, Konrad P, Mahadevan-Jansen A (2005) Optical stimulation of neural tissue in vivo. Opt Lett 30(5):504–506

    Article  Google Scholar 

  • Wise KD, Sodagar AM, Yao Y, Gulari MN, Perlin GE, Najafi K (2008) Microelectrodes, microelectronics, and implantable neural microsystems. Proc IEEE 96(7):1184–1202

    Article  Google Scholar 

  • Yang SY, Kim BN, Zakhidov AA, Taylor PG, Lee JK, Ober CK, Lindau M, Malliaras GG (2011) Detection of transmitter release from single living cells using conducting polymer microelectrodes. Adv Mater 23(24):H184–H188

    Article  Google Scholar 

  • Yang Z, Gao RG, Hu NT, Chai J, Cheng YW, Zhang LY, Wei H, Kong ESW, Zhang YF (2012) The prospective two-dimensional Graphene Nanosheets: preparation, Functionalization, and applications. Nano-Micro Lett 4(1):1–9

    Article  Google Scholar 

  • Yang Z, Zhang Y, Itoh T, Maeda R (2014) Flexible implantable microtemperature sensor fabricated on polymer capillary by programmable UV lithography with multilayer alignment for biomedical applications. J Microelectromech Syst 20:21–29

    Article  Google Scholar 

  • Yoon H, Jang J (2009) Conducting-polymer Nanomaterials for high-performance sensor applications: issues and challenges. Adv Funct Mater 19(10):1567–1576

    Article  Google Scholar 

  • Yoshida K, Farina D, Akay M, Jensen W (2010) Multichannel Intraneural and intramuscular techniques for multiunit recording and use in active prostheses. Proc IEEE 98(3):432–449

    Article  Google Scholar 

  • Yu L, Wu H, Wu B, Wang Z, Cao H, Fu C, Jia N (2014) Magnetic Fe3O4-reduced graphene oxide nanocomposites-based electrochemical biosensing. Nano-Micro Lett 6(3):258–267

    Article  Google Scholar 

  • Zhang AMA, Adamantidis A, De LL, Deisseroth K (2007) Circuit-breakers: optical technologies for probing neural signals and systems. Nat Rev Neurosci 8(8):577

    Article  Google Scholar 

  • Zhang Z, Li SW, Xue C, Yang S, Zhang W (2014) A bionic fish cilia median-low frequency three-dimensional piezoresistive MEMS vector hydrophone. Nano-Micro Lett 6(2):136–142

    Article  Google Scholar 

  • Zhao Y (2009) Investigating electrical field-affected skeletal myogenesis using a microfabricated electrode array. Sensor Actuat A-Phys 154(2):281–287

    Article  Google Scholar 

  • Ziegler TS, Takeuchi S (2006) Fabrication of flexible neural probes with built-in microfluidic channels by thermal bonding of Parylene. j. Microelectromech Syst 15(6):1477–1482

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Quan Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Liu, JQ., Tian, HC., Kang, XY., Wang, MH. (2018). Electrodes for Nerve Recording and Stimulation. In: Huang, QA. (eds) Micro Electro Mechanical Systems. Micro/Nano Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-10-5945-2_43

Download citation

Publish with us

Policies and ethics