Skip to main content

Free Simulation Software and Library

  • Living reference work entry
  • First Online:
Humanoid Robotics: A Reference
  • 677 Accesses

Abstract

With the advent of powerful computation technologies and efficient algorithms, simulators became an important tool in most engineering areas. The field of humanoid robotics is no exception; there have been numerous simulation tools developed over the last two decades to foster research and development activities. With this in mind, this chapter is written to introduce and discuss the current-day open-source simulators that are actively used in the field. Using a developer-based feedback, we provide an outline regarding the specific features and capabilities of the open-source simulators, with a special emphasis on how they correspond to recent research trends in humanoid robotics. The discussion is centered around the contemporary requirements in humanoid simulation technologies with regard to the future of the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. B. Lint, T. Agerwala, Communication issues in the design and analysis of parallel algorithms. IEEE Trans. Softw. Eng. SE-7(2), 174–188 (1981)

    Google Scholar 

  2. C.S.G. Lee, P.R. Chang, Efficient parallel algorithms for robot forward dynamics computation. IEEE Trans. Syst. Man Cybern. 18(2), 238–251 (1988)

    Google Scholar 

  3. A. Fijany, A. Bejczy, A class of parallel algorithms for computation of the manipulator inertia matrix. IEEE Trans. Robot. Autom. 5(2), 600–615 (1989)

    Google Scholar 

  4. S. McMillan, D.E. Orin, P. Sadayappan, Toward super-real-time simulation of robotic mechanisms using a parallel integration method. IEEE Trans. Syst. Man Cybern. 22(2):384–391 (1992)

    Google Scholar 

  5. A. Fijany, I. Sharf, G.M.T. D’Eleuterio, Parallel o(log n) algorithms for computation of manipulator forward dynamics. IEEE Trans. Robot. Autom. 11(3), 389–400 (1989)

    Google Scholar 

  6. A. Aghili, A unified approach for inverse and direct dynamics of constrained multibody systems based on linear projection operator: applications to control and simulation. IEEE Trans. Robot. 21(5), 834–849 (2005)

    Google Scholar 

  7. K. Yamane, Y. Nakamura, Comparative study on serial and parallel forward dynamics algorithms for kinematic chains. Int. J. Robot. Res. 28(5), 622–629 (2009)

    Google Scholar 

  8. J.Y.S. Luh, M.W. Walker, R.P. Paul, On-line computation scheme for mechanical manipulator. J. Dyn. Syst. Meas. Control ASME Trans. 102(2), 69–76 (1988)

    Google Scholar 

  9. R. Featherstone, The calculation of robot dynamics using articulated-body inertias. Int. J. Robot. Res. 2(1), 13–30 (1983)

    Google Scholar 

  10. O. Khatib, A unified approach for motion and force control of robot manipulators: the operational space formulation. IEEE Trans. Robot. Autom. 3(1), 43–53 (1988)

    Google Scholar 

  11. G. Rodriguez, Kalman filtering, smoothing, and recursive robot arm forward and inverse dynamics. IEEE Trans. Robot. Autom. 3(6), 624–639 (1988)

    Google Scholar 

  12. R. Featherstone, A beginner’s guide to 6-D vectors (part 1). IEEE Robot. Autom. Mag. 17(3), 83–94 (2010)

    Google Scholar 

  13. M.W. Walker, D.E. Orin, Efficient dynamic computer simulation of robotics mechanisms. J. Dyn. Syst. Meas. Control ASME Trans. 104(2), 205–211 (1988)

    Google Scholar 

  14. Y. Fujimoto, A. Kawamura, Robust biped walking with force interaction control between foot and ground, in Proceedings of IEEE International Conference on Robotics and Automation (ICRA), Leuven, May 1998, pp. 2030–2035

    Google Scholar 

  15. J. Nakanishi, M. Mistry, S. Schaal, Inverse dynamics control with floating base and constraints, in Proceedings of IEEE International Conference on Robotics and Automation(ICRA), Rome, May 2007, pp. 1942–1947

    Google Scholar 

  16. M. Mistry, J. Buchli, S. Schaal, Inverse dynamics control of floating base systems using orthogonal decomposition, in Proceedings IEEE International Conference on Robotics and Automation(ICRA), Anchorage, May 2010, pp. 3406–3412

    Google Scholar 

  17. Y. Nakamura, H. Hirukawa, K. Yamane, S. Kajta, K. Fujiwara, F. Kanehiro, F. Nagashima, Y. Murase, M. Inaba, Humanoid robot simulator for the Meti HRP project. Robot. Auton. Syst. 37(2-3), 101–114 (2001)

    Google Scholar 

  18. Y. Fujimoto, A. Kawamura, Simulation of an autonomous biped walking robot including environmental force interaction. IEEE Robot. Autom. Mag. 5(2), 33–42 (1998)

    Google Scholar 

  19. S. Ivaldi, J. Peters, V. Padois, F. Nori, Tools for simulating humanoid robot dynamics: a survey based on user feedback, in Proceedings of IEEE International Conference on Humanoid Robotics, Madrid, Dec 2014, pp. 842–849

    Google Scholar 

  20. N. Koenig, A. Howard, Design and use paradigms for Gazebo, an open-source multi-robot simulator, in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sendai, Sept 2004, pp. 2149–2154

    Google Scholar 

  21. E. Rohmer, S.P.N. Singh, M. Freese, V-rep: a versatile and scalable robot simulation framework, in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Tokyo, Nov 2013, pp. 1321–1326

    Google Scholar 

  22. O. Michel, Webots: professional mobile robot simulation. J. Adv. Robot. Syst. 1(1), 39–42 (2004)

    MathSciNet  Google Scholar 

  23. B. Ugurlu, J.A. Saglia, N.G. Tsagarakis, S. Morfey, D.G. Caldwell, Bipedal hopping pattern generation for passively compliant humanoids: exploiting the resonance. IEEE Trans. Ind. Electron. 61(10), 5431–5443 (2014)

    Google Scholar 

  24. K. Bouyarmane, J. Vaillant, F. Keith, A. Kheddar, Exploring humanoid robot locomotion capabilities in virtual disaster response scenarios, in Proceedings of IEEE International Conference on Humanoid Robotics, Osaka, Dec 2012, pp. 337–342

    Google Scholar 

  25. B. Ugurlu, A. Kawamura, A unified control frame for stable bipedal walking, in Proceedings of IEEE International Conference on Industrial Electronics and Control(IECON), Porto, Nov 2009, pp. 4167–4172

    Google Scholar 

  26. K. Hauser, Fast interpolation and time-optimization with contact. Int. J. Robot. Res. 33(9), 1231–1250 (2014)

    Google Scholar 

  27. F. Kanehiro, H. Hirukawa, S. Kajita, Openhrp: open architecture humanoid robotics platform. Int. J. Robot. Res. 23(2), 155–165 (2004)

    Google Scholar 

  28. K. Yamane, Y. Nakamura, Parallel o(log n) algorithm for dynamics simulation of humanoid robots, in Proceedings of IEEE International Conference on Humanoid Robotics, Genoa, Dec 2006, pp. 554–559

    Google Scholar 

  29. S. Nakaoka, S. Hattori, F. Kanehiro, S. Kajita, H. Hirukawa, Constraint-based dynamics simulator for humanoid robots with shock absorbing mechanisms, in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), San Diego, Oct 2007, pp. 3641–3647

    Google Scholar 

  30. P. Fisette, J.C. Samin, Robotran: symbolic generation of multi-body system dynamic equations. Adv. Multibody Syst. Dyn. 20, 373–378 (1993)

    MATH  Google Scholar 

  31. C.E. Aguero, N. Koenig, H. Boyer I. Chen, S. Peters, J. Hsu, B. Gerkey, S. Paepcke, J.L. Rivero, J. Manzo, E. Krotkov, G. Pratt, Inside the virtual robotics challenge: Simulating real-time robotic disaster response. IEEE Trans. Autom. Sci. Eng. 12(2), 494–506 (2015)

    Google Scholar 

  32. E. Mingo Hoffman, S. Traversaro, A. Rocchi, M. Ferrati, A. Settimi, F. Romano, L. Natale, A. Bicchi, F. Nori, N. Tsagarakis, Yarp based plugins for gazebo simulator, in Modelling and Simulation for Autonomous Systems Workshop (MESAS), Rome, 2014

    Google Scholar 

  33. G. Echeverria, S. Lemaignan, A. Degroote, S. Lacroix, M. Karg, P. Koch, C. Lesire, S. Stinckwich, Simulating complex robotic scenarios with Morse, in Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR), Tsukuba, 2012, pp. 197–208

    Google Scholar 

  34. M. Freese, S. Singh, A. Degroote, S. Ozaki, N. Matsuhira, Virtual robot experimentation platform v-rep: a versatile 3d robot simulator, in Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR), Darmstadt, 2010, pp. 51–62

    Google Scholar 

  35. S. Schaal, The SL simulation and real-time control software package. Technical report, University of Southern California, California, 2001

    Google Scholar 

  36. A. Billard, Y. Epars, S. Calinon, S. Schaal, G. Cheng, Discovering optimal imitation strategies. Robot. Auton. Syst. 47(2-3), 69–77 (2004)

    Google Scholar 

  37. R. Diankov, J. Kuffner, OpenRAVE: a planning architecture for autonomous robotics. Technical report, Robotics Institute, Carnegie Mellon University, Pittsburgh, 2008

    Google Scholar 

  38. Q.-C Pham, Y. Nakamura, Time-optimal path parameterization for critically dynamic motions of humanoid robots, in Proceedings of IEEE International Conference on Humanoid Robotics, Osaka, Nov 2012, pp. 165–170

    Google Scholar 

  39. R. Featherstone, Rigid Body Dynamics Algorithms (Springer, Secaucus, 2007)

    MATH  Google Scholar 

  40. R. Tedrake, Drake – A planning, control, and analysis toolbox for nonlinear dynamical systems. Technical report, Massachusetts Institute of Technology, Massachusetts, 2014

    Google Scholar 

  41. K. Caluwaerts, J. Despraz, A. Iscen, A.P. Sabelhaus, J. Bruce, B. Schrauwen, V. SunSpiral, Design and control of compliant tensegrity robots through simulation and hardware validation. J. R. Soc. Interface 11(98), 1742–1757 (2014)

    Google Scholar 

  42. T. Koolen, S. Bertrand, G. Thomas, T. Wu, J. Smith, J. Englsberger, J. Pratt, Design of a momentum-based control framework and application to the humanoid robot atlas. Int. J. Humanoid Rob. 13(1), 1650007–1650034 (2016)

    Google Scholar 

  43. S.L. Delp, F.C. Anderson, A.S. Arnold, P. Loan, A. Habib, C.T. John, E. Guendelman, D.G. Thelen, Opensim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54(11), 1940–1950 (2007)

    Google Scholar 

  44. E. Drumwright, A fast and stable penalty method for rigid body simulation. IEEE Trans. Vis. Comput. Graph. 14(1), 231–240 (2008)

    Google Scholar 

  45. V. Tikhanoff, A. Cangelosi, G. Metta, Integration of speech and action in humanoid robots: icub simulation experiments. IEEE Trans Auton. Ment. Dev. 3(1), 17–29 (2010)

    Google Scholar 

  46. E. Drumwright, D.A. Shell, Extensive analysis of linear complementarity problem (LCP) solver performance on randomly generated rigid body contact problems, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, 2012, pp. 5034–5039

    Google Scholar 

  47. E. Todorov, T. Erez, Y. Tassa, MuJoCo: a physics engine for model-based control, in Proceedings of IEEE International Conference on Intelligent Robots and Systems (IROS), Algarve, Oct 2012, pp. 5026–5033

    Google Scholar 

  48. R. Featherstone, D.E. Orin, Dynamics, in Handbook of Robotics, ed. by B. Siciliano, O. Khatib, 2nd edn. (Springer International Publishing, 2008), pp. 35–65. ISBN 978-3-319-32950-7

    Google Scholar 

  49. C. Canudas de Wit, H. Olsson, K.J. Astrom, P. Lischinsky, A new model for control of systems with friction. IEEE Trans. Autom. Control 40(3), 419–425 (1995)

    MathSciNet  MATH  Google Scholar 

  50. T. Erez, Y. Tassa, E. Todorov, Simulation tools for model-based robotics: comparison of Bullet, Havok, MuJoCo, ODE and PhysX, in Proceedings of IEEE International Conference on Robotics and Automation (ICRA), Seattle, May 2015

    Google Scholar 

  51. F. Largilliere, V. Verona, E. Coevoet, M. Sanz-Lopez, J. Dequidt, C. Duriez, Real-time control of soft-robots using asynchronous finite element modeling, in ICRA 2015, Seattle, 2015, p. 6

    Google Scholar 

  52. A. Del Prete, N. Mansard, Robustness to joint-torque tracking errors in task-space inverse dynamics. IEEE Trans. Robot. 32(5), 1091–1105 (2016)

    Google Scholar 

  53. A. Cully, J. Clune, D. Tarapore, J.B. Mouret, Robots that can adapt like animals. Nature 521, 503–507 (2015)

    Google Scholar 

  54. S. Ivaldi, J. Babič, M. Mistry, R. Murphy, Special issue on whole-body control of contacts and dynamics for humanoid robots. Auton. Robots 40(3), 425–428 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barkan Ugurlu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this entry

Cite this entry

Ugurlu, B., Ivaldi, S. (2017). Free Simulation Software and Library. In: Goswami, A., Vadakkepat, P. (eds) Humanoid Robotics: A Reference. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7194-9_27-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7194-9_27-1

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7194-9

  • Online ISBN: 978-94-007-7194-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics