Skip to main content

Microfluidic Optomechanics

  • Living reference work entry
  • First Online:
Encyclopedia of Nanotechnology
  • 348 Accesses

Synonyms

OMFR; Opto-mechano-fluidics; uFOM

Definition

Microfluidic optomechanical resonators (opto-mechano-fluidic resonators or OMFRs) enable coupling between light, solids, and fluids by means of optical forces and opto-acoustic scattering. This is achieved through solid–fluid hybrid modes that span vibrational frequencies in the MHz–GHz range. Using these interactions, microfluidic optomechanical devices can be used to perform acoustic rheological measurements on fluids using only light.

Principle of Operation

OMFRs are hollow silica microcapillary devices of diameter typically around 50–300 um, with diameter modulation along their length. These regions of larger diameter simultaneously host ultrahigh-Q optical resonant modes and high-Q acoustic resonant modes in the solid shell (see Fig. 1). Fluids infused into the hollow core of OMFRs do not directly interact with light in the shell (see optofluidics), provided the shell is made sufficiently thick. As a result, high optical Q can...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Bahl, G., Zehnpfennig, J., Tomes, M., Carmon, T.: Stimulated optomechanical excitation of surface acoustic waves in a microdevice. Nat. Commun. 2, 403 (2011)

    Article  Google Scholar 

  2. Kim, K.H., Bahl, G., Lee, W., Liu, J., Tomes, M., Fan, X., Carmon, T.: Cavity optomechanics on a microfluidic resonator with water and viscous liquids. Light Sci. Appl. 2, e110 (2013)

    Article  Google Scholar 

  3. Bahl, G., Kim, K.H., Lee, W., Liu, J., Fan, X., Carmon, T.: Brillouin cavity optomechanics with microfluidic devices. Nat. Commun. 4, 2994 (2013)

    Article  Google Scholar 

  4. Chiao, R.Y., Townes, C.H., Stoicheff, B.P.: Stimulated brillouin scattering and coherent generation of intense hypersonic waves. Physical Review Letters, 12(21), 592–595 (1964)

    Google Scholar 

  5. Han, K., Kim, K.H., Kim, J., Lee, W., Liu, J., Fan, X., Carmon, T., Bahl, G.: Fabrication and testing of microfluidic optomechanical oscillators. J. Vis. Exp. 87, e51497 (2014)

    Google Scholar 

  6. Lacey, S., White, I.M., Sun, Y., Shopova, S.I., Cupps, J.M., Zhang, P., Fan, X.: Versatile opto-fluidic ring resonator lasers with ultra-low threshold. Opt. Express 15(23), 15523–15530 (2007)

    Article  Google Scholar 

  7. Berneschi, S., Farnesi, D., Cosi, F., Conti, G.N., Pelli, S., Righini, G.C., Soria, S.: High Q silica microbubble resonators fabricated by arc discharge. Opt. Lett. 36(17), 3521–3523 (2011)

    Article  Google Scholar 

  8. Watkins, A., Ward, J., Wu, Y., Chormaic, S.N.: Single-input spherical microbubble resonator. Opt. Lett. 36(11), 2113–2115 (2011)

    Article  Google Scholar 

  9. Lee, W., Sun, Y., Li, H., Reddy, K., Sumetsky, M., Fan, X.: A quasi-droplet optofluidic ring resonator laser using a micro-bubble. Applied Physics Letters, vol. 99, p. 091102 (2011)

    Google Scholar 

  10. Arcizet, O., Riviere, R., Schliesser, A., Anetsberger, G., Kippenberg, T.J.: Cryogenic properties of optomechanical silica microcavities. Phys. Rev. A 80(2), 021803 (2009)

    Article  Google Scholar 

  11. Burg, T.P., Manalis, S.R.: Suspended microchannel resonators for biomolecular detection. Appl. Phys. Lett. 83(13), 2698 (2003)

    Article  Google Scholar 

  12. Burg, T.P., Godin, M., Knudsen, S.M., Shen, W., Carlson, G., Foster, J.S., Babcock, K., Manalis, S.R.: Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature 446(7139), 1066–1069 (2007)

    Article  Google Scholar 

  13. Bahl, G., Kim, K.H., Lee, W., Liu, J., Tomes, M., Fan, X., Carmon, T.: Bridging two worlds: microfluidic optomechanics. Opt. Photonics News 24(12), 39 (2013)

    Article  Google Scholar 

  14. Han, K., Kim, J., Bahl, G.: Aerostatically tunable optomechanical oscillators. Opt. Express 22(2), 1267–1276 (2014)

    Article  Google Scholar 

  15. Han, K., Zhu, K., Bahl, G.: Opto-mechano-fluidic viscometer. Appl. Phys. Lett. 105(1), 014103 (2014)

    Article  Google Scholar 

  16. Kim, K.H., Fan, X.: Surface sensitive microfluidic optomechanical ring resonator sensors. Appl. Phys. Lett. 105(19), 191101 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaurav Bahl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Bahl, G. (2015). Microfluidic Optomechanics. In: Bhushan, B. (eds) Encyclopedia of Nanotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6178-0_100963-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6178-0_100963-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6178-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics