Skip to main content

Principles Underlying Locomotor Trajectory Formation

  • Reference work entry
  • First Online:
Humanoid Robotics: A Reference

Abstract

Locomotion trajectories for anthropomorphic systems are the result of a complex interplay between perception of the goal, the environment, and physical characteristics. In humanoid robots, as in humans, perceptual requirements may arise due to the need to look at the walking goal or grasp target. Behaviors arising from physical characteristics are, for example, a preference to walk forward. This chapter provides the reader with comprehensive knowledge and tools to answer the question: What path should a humanoid robot take to reach a goal? We do this by introducing some models of locomotion trajectory formation and discussing their merits with reference to ease of implementation, movement realism, and the general link to humanoid perception. We also recall some of the major results related to locomotor trajectories coming from human movement research and discuss their potential impacts for humanoid robotics. Finally, we summarize studies where locomotion trajectory models have been implemented on the full-size humanoid robot HRP-2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Arechavaleta, J.P. Laumond, H. Hicheur, A. Berthoz, On the nonholonomic nature of human locomotion. Auton. Robot. 25, 25–35 (2008)

    Article  Google Scholar 

  2. V. Belmonti, G. Cioni, A. Berthoz, Development of anticipatory orienting strategies and trajectory formation in goal-oriented locomotion. Exp. Brain Res. 227(1), 131–147 (2013)

    Article  Google Scholar 

  3. D. Bernardin, H. Kadone, D. Bennequin, T. Sugar, M. Zaoui, A. Berthoz, Gaze anticipation during human locomotion. Exp. Brain Res. 223(1), 65–78 (2012)

    Article  Google Scholar 

  4. K. Bouyarmane, A. Kheddar, Multi-contact stances planning for multiple agents, in IEEE International Conference on Robotics and Automation, 2011

    Google Scholar 

  5. T. Bretl, S. Rock, J. Latombe, Motion planning for a three-limbed climbing robot in vertical natural terrain, in IEEE International Conference on Robotics and Automation, 2003

    Google Scholar 

  6. J. Chestnutt, P. Michel, K. Nishiwaki, J. Kuffner, S. Kagami, An intelligent joystick for biped control, in IEEE International Conference on Robotics and Automation, 2006, pp. 860–865

    Google Scholar 

  7. G. Courtine, M. Schieppati, Human walking along a curved path. I. Body trajectory, segment orientation and the effect of vision. Eur. J. Neurosci. 18, 177–190 (2003)

    Article  Google Scholar 

  8. J. Diedrichsen, R. Shadmehr, R. Ivry, The coordination of movement: optimal feedback control and beyond. Trends Cogn. Sci. 14(1), 31–39 (2009)

    Article  Google Scholar 

  9. C. Esteves, G. Arechavaleta, J. Pettré, J. Laumond, Animation planning for virtual characters cooperation. ACM Trans. Graph. 25(2), 319–339 (2006)

    Article  Google Scholar 

  10. B.R. Fajen, W.H. Warren, Behavioral dynamics of steering, obstacle avoidance, and route selection. J. Exp. Psychol. Hum. Percept. Perform. 29(2), 343–362 (2003)

    Google Scholar 

  11. B.R. Fajen, W.H. Warren, S. Temizer, L.P. Kaelbling, A dynamical model of visually-guided steering, obstacle avoidance, and route selection. Int. J. Comp. Vis. 54(1/2), 13–34 (2003)

    Google Scholar 

  12. T. Flash, N. Hogan, The coordination of arm movements: an experimentally confirmed mathematical model. J. Neurosci. 5, 1688–1703 (1985)

    Article  Google Scholar 

  13. K. Friston, What is optimal about motor control? Neuron 72, 488–498 (2011)

    Article  Google Scholar 

  14. J.J. Gibson, Visually controlled locomotion and visual orientation in animals*. Br. J. Psychol. 49(3), 182–194 (1958)

    Article  Google Scholar 

  15. R. Grasso, S. Glasauer, Y. Takei, A. Berthoz, The predictive brain: anticipatory control of head direction for the steering of locomotion. NeuroReport 7, 1170–1174 (1996)

    Article  Google Scholar 

  16. K. Hauser, T. Bretl, K. Harada, J. Latombe, Using motion primitives in probabilistic sample-based planning for humanoid robots, in Workshop on Algorithmic Foundations of Robotic (WAFR), 2006

    Google Scholar 

  17. K. Hauser, T. Bretl, J. Latombe, K. Harada, B. Wilcox, Motion planning for legged robots on varied terrain. Int. J. .Robot. Res. 27(11–12):1325–1349 (2008)

    Article  Google Scholar 

  18. H. Hicheur, S. Vieilledent, A. Berthoz, Head motion in humans alternating between straight and curved walking path: combination of stabilizing and anticipatory orienting mechanisms. Neurosci. Lett. 383, 87–92 (2005)

    Article  Google Scholar 

  19. H. Hicheur, Q.C. Pham, G. Arechavaleta, J.P. Laumond, A. Berthoz, The formation of trajectories during goal-oriented locomotion in humans I. A stereotyped behavior. Eur. J. Neurosci. 26(8), 2376–2390 (2007)

    Article  Google Scholar 

  20. N. Hogan, An organizing principle for a class of voluntary movements. J. Neurosci. 4, 2745–2754 (1984)

    Article  Google Scholar 

  21. M. Horn, M. Sreenivasa, K. Mombaur, Optimization model of the predictive head direction for humanoid robots, in IEEE-RAS International Conference on Humanoid Robots, 2014

    Google Scholar 

  22. K. Kaneko, F. Kanehiro, S. Kajita, H. Hirukawa, T. Kawasaki, M. Hirata, K. Akachi, T. Isozumi, Humanoid robot hrp-2, in International Conference on Robotics and Automation, 2004

    Google Scholar 

  23. O. Kanoun, E. Yoshida, J.P. Laumond, Planning foot placements for humanoid robots: a problem of inverse kinematics. Int. J. Robot. Res. (2011)

    Google Scholar 

  24. M.J. Kearns, W.H. Warren, A.P. Duchon, M.J. Tarr, Path integration from optic flow and body senses in a homing task. Perception 31, 349–374 (2002)

    Article  Google Scholar 

  25. J. Kuffner, J. Latombe, Fast synthetic vision, memory, and learning for virtual humans, in Proceedings of Computer Animation (IEEE, 1999), pp. 118–127

    Google Scholar 

  26. J. Kuffner, K. Nishiwaki, S. Kagami, Y. Kuniyoshi, M. Inaba, H. Inoue, Online footstep planning for humanoid robots, in IEEE International Conference on Robotics and Automation (ICRA’2003), 2003

    Google Scholar 

  27. J.C. Latombe, Robot Motion Planning (Kluwer Academic, Boston, 1991)

    Book  Google Scholar 

  28. J.P. Laumond, Robot Motion Planning and Control. Lecture Notes in Control and Information Sciences, vol. 229 (Springer, New York, 1998)

    Google Scholar 

  29. J.P. Laumond, M. Benallegue, J. Carpentier, A. Berthoz, The yoyo-Man. Int. J. Robot. Res. (2017). https://doi.org/10.1177/0278364917693292

    Article  Google Scholar 

  30. S.M. LaValle, Planning Algorithms (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  31. K. Mombaur, J.P. Laumond, A. Truong, An inverse optimal control approach to human motion modeling, in ISRR 2009 (14th International Symposium of Robotics Research) (Springer STAR, 2009)

    Google Scholar 

  32. K. Mombaur, J.P. Laumond, E. Yoshida, An optimal control-based formulation to determine natural locomotor paths for humanoid robots. Adv. Robot. 24, 515–535 (2010)

    Article  Google Scholar 

  33. K. Mombaur, A. Truong, J.P. Laumond, From human to humanoid locomotion – an inverse optimal control approach. Auton. Robot. 28, 369–383 (2010)

    Article  Google Scholar 

  34. A.H. Olivier, A. Marin, A. Crétual, J. Pettré, Minimal predicted distance: a common metric for collision avoidance during pairwise interactions between walkers. Gait Posture 36(3), 399–404 (2012)

    Article  Google Scholar 

  35. A.H. Olivier, A. Marin, A. Crétual, A. Berthoz, J. Pettré, Collision avoidance between two walkers: role-dependent strategies. Gait Posture 38, 751–756 (2013)

    Article  Google Scholar 

  36. J. Ondrej, J. Pettrè, A. Olivier, S. Donikian, A synthetic-vision based steering approach for crowd simulation. ACM Trans. Graph. 29(4) (2010)

    Article  Google Scholar 

  37. A.E. Patla, A. Adkin, T. Ballard, Online steering: coordination and control of body center of mass, head and body reorientation. Exp. Brain Res. 129(4), 629–634 (1999)

    Article  Google Scholar 

  38. N. Perrin, O. Stasse, L. Baudouin, F. Lamiraux, E. Yoshida, Fast humanoid robot collision-free footstep planning using swept volume approximations. IEEE Trans. Robot. (T-RO) 28(2), 427–439 (2012)

    Article  Google Scholar 

  39. J. Pettré, J. Laumond, A motion capture based control-space approach for walking mannequins. Comput. Anim. Virtual Worlds 17(2), 109–126 (2006)

    Article  Google Scholar 

  40. J. Pettré, J. Ondřej, A.H. Olivier, A. Crétual, S. Donikian, Experiment-based modeling, simulation and validation of interactions between virtual walkers, in Eurographics/ACM SIGGRAPH Symposium on Computer Animation, 2009, pp. 189–198

    Google Scholar 

  41. Q.C. Pham, H. Hicheur, On the open-loop and feedback processes that underlie the formation of trajectories during visual and nonvisual locomotion in humans. J. Neurophysiol. 102(5), 2800–2815 (2009)

    Article  Google Scholar 

  42. Q.C. Pham, H. Hicheur, G. Arechavaleta, J.P. Laumond, A. Berthoz, The formation of trajectories during goal-oriented locomotion in humans. II. A maximum smoothness model. Eur. J. Neurosci. 26, 2391–2403 (2007)

    Article  Google Scholar 

  43. Q.C. Pham, A. Berthoz, H. Hicheur, Invariance of locomotor trajectories across visual and gait direction conditions. Exp. Brain Res. 210, 207–215 (2011)

    Article  Google Scholar 

  44. S.K. Rushton, R.S. Allison, Biologically-inspired heuristics for human-like walking trajectories toward targets and around obstacles. Displays 34, 105–113 (2013)

    Article  Google Scholar 

  45. S.K. Rushton, J.M. Harris, M.R. Lloyd, J.P. Wann, Guidance of locomotion on foot uses perceived target location rather than optic flow. Curr. Biol. 8, 1191–1194 (1998)

    Article  Google Scholar 

  46. P. Salaris, C. Vassallo, P. Soueres, J.P. Laumond, The geometry of confocal curves for passing through a door. IEEE Trans. Robot. 31(5), 1180–1193 (2015)

    Article  Google Scholar 

  47. S. Schaal, Dynamic movement primitives – a framework for motor control in humans and humanoid robotics, in The International Symposium on Adaptive Motion of Animals and Machines, vol. 73, 2006, pp. 261–280

    Google Scholar 

  48. J.L. Souman, I. Frissen, M.N. Sreenivasa, M.O. Ernst, Walking straight into circles. Curr. Biol. 19(18), 1538–1542 (2009)

    Article  Google Scholar 

  49. M. Sreenivasa, P. Soueres, J.P. Laumond, A. Berthoz, Steering a humanoid robot by its head, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009

    Google Scholar 

  50. M. Sreenivasa, P. Soueres, J.P. Laumond, Walking to grasp: modeling of human movements as invariants and an application to humanoid robotics. IEEE Trans. Syst. Man. Cybern. Part A Syst. Hum. 42(4), 880–893 (2012)

    Article  Google Scholar 

  51. M. Sreenivasa, K. Mombaur, J.P. Laumond, Walking paths to and from a goal differ: on the role of bearing angle in the formation of human locomotion paths. PLOS One (2015)

    Google Scholar 

  52. M.N. Sreenivasa, I. Frissen, J.L. Souman, M.O. Ernst, Walking along curved paths of different angles: the relationship between head and trunk turning. Exp. Brain Res. 191(3), 313–320 (2008)

    Article  Google Scholar 

  53. O. Stasse, B. Verrelst, A. Davison, N. Mansard, F. Saidi, B. Vanderborght, C. Esteves, K. Yokoi, Integrating walking and vision to increase humanoid autonomy. Int. J. Humanoid Rob. 5, 287–310 (2008)

    Google Scholar 

  54. E. Todorov, M. Jordan, Optimal feedback control as a theory of motor coordination. Nat. Neurosci. 5, 1226–35 (2002)

    Article  Google Scholar 

  55. C. Vassallo, A.H. Olivier, P. Souères, A. Crétual, O. Stasse, J. Pettré, How do walkers avoid a mobile robot crossing their way? Gait Posture 51, 97–103 (2017)

    Article  Google Scholar 

  56. S. Vieilledent, Y. Kerlirzin, S. Dalbera, A. Berthoz, Relationship between velocity and curvature of a human locomotor trajectory. Neurosci. Lett. 305, 65–69 (2001)

    Article  Google Scholar 

  57. W.H. Warren Jr, B.A. Kay, W.D. Zosh, A.P. Duchon, S. Sahuc, Optic flow is used to control human walking. Nat. Neurosci. 4(2), 213–216 (2001)

    Article  Google Scholar 

  58. R.M. Wilkie, J.P. Wann, Judgements of path, not heading, guide locomotion. J. Exp. Psychol. 32(1), 88–96 (2006)

    Google Scholar 

  59. R.M. Wilkie, G.K. Kountouriotis, N. Merat, J.P. Wann, Using vision to control locomotion: looking where you want to go. Exp. Brain Res. 204, 539–547 (2010)

    Article  Google Scholar 

  60. E. Yoshida, C. Esteves, I. Belousov, J.P. Laumond, T. Sakaguchi, K. Yokoi, Planning 3D collision-free dynamic robotic motion through iterative reshaping. IEEE Trans. Robot. 24(5) (2008)

    Article  Google Scholar 

  61. E. Yoshida, J. Laumond, C. Esteves, O. Kanoun, A. Mallet, T. Sakaguchi, K. Yokoi, Motion autonomy for humanoids, experiments on HRP-2 No. 14. Comput. Anim. Virtual Worlds 20(5–6), 511–522 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Sreenivasa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature B.V.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sreenivasa, M., Laumond, JP., Mombaur, K., Berthoz, A. (2019). Principles Underlying Locomotor Trajectory Formation. In: Goswami, A., Vadakkepat, P. (eds) Humanoid Robotics: A Reference. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6046-2_57

Download citation

Publish with us

Policies and ethics