Skip to main content

Range Sensors: Ultrasonic Sensors, Kinect, and LiDAR

  • Reference work entry
  • First Online:
Humanoid Robotics: A Reference

Abstract

We present an introductory summary of range sensing technologies including ultrasonic sensors, RGB-D cameras, time-of-flight (TOF) cameras, and LiDAR sensors. For each technology, we briefly introduce the principle of the range sensors, representative commercial products, comparisons, and main applications. We also provide key algorithmic methods to process range data, such as point cloud registration, and some useful software tools. As the detailed knowledge can easily be found from the literature or the Internet, we focus on the big picture of the sensing technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Grosse, J. Buehl, H. Babovsky, A. Kiessling, R. Kowarschik, 3D shape measurement of macroscopic objects in digital off-axis holography using structured illumination. Opt. Lett. 35(8), 1233–1235 (2010)

    Article  Google Scholar 

  2. H.M. Frost, Electromagnetic-ultrasound transducers: principles, practice, and applications. Phys. Acoust. 14, 179–276 (2012)

    Google Scholar 

  3. B. Rafaely, Optimal Beam Pattern Design (Springer, Berlin/Heidelberg, 2015), pp. 125–153

    Google Scholar 

  4. J.A. Jiménez, M. Mazo, J. Urena, A. Hernández, F. Alvarez, J. Garcia, E. Santiso, Using PCA in time-of-flight vectors for reflector recognition and 3-D localization. IEEE Trans. Robot. 21(5), 909–924 (2005)

    Article  Google Scholar 

  5. S.A. Bouhamed, I.K. Kallel, D.S. Masmoudi, Stair case detection and recognition using ultrasonic signal, in 2013 36th International Conference on Telecommunications and Signal Processing (TSP) (IEEE, 2013), pp. 672–676

    Google Scholar 

  6. J. Schmidhuber, Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  7. H. Chen, D. Ni, J. Qin, S. Li, X. Yang, T. Wang, P.A. Heng, Standard plane localization in fetal ultrasound via domain transferred deep neural networks. IEEE J. Biomed. Health Inform. 19(5), 1627–1636 (2015)

    Article  Google Scholar 

  8. Wikipedia, Triangulation – Wikipedia, the free encyclopedia (2017). [Online; Accessed 1 July 2017]

    Google Scholar 

  9. R. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision. (Cambridge university press, Cambridge, 2003)

    Google Scholar 

  10. S. Lee, J. Choi, D. Kim, J. Na, S. Oh, Signal separation coding for robust depth imaging based on structured light, in Proceedings of the 2005 IEEE International Conference on Robotics and Automation (IEEE, 2005), pp. 4430–4436

    Google Scholar 

  11. D. Moreno, G. Taubin, Simple, accurate, and robust projector-camera calibration, in 2012 Second International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT) (IEEE, 2012), pp. 464–471

    Google Scholar 

  12. B. Freedman, A. Shpunt, M. Machline, Y. Arieli, Depth mapping using projected patterns, 3 Apr 2012. US Patent 8,150,142

    Google Scholar 

  13. R. Min, J. Choi, G. Medioni, and Jean-Luc Dugelay, Real-time 3D face identification from a depth camera, in 2012 21st International Conference on Pattern Recognition (ICPR) (IEEE, 2012), pp. 1739–1742

    Google Scholar 

  14. J. Suarez, R.R. Murphy, Hand gesture recognition with depth images: a review, in Ro-man, 2012 IEEE (IEEE, 2012), pp. 411–417

    Google Scholar 

  15. M. Hernandez, J. Choi, G. Medioni, Near laser-scan quality 3-D face reconstruction from a low-quality depth stream. Image Vis. Comput. 36, 61–69 (2015)

    Article  Google Scholar 

  16. R. Wang, J. Choi, G. Medioni, Accurate full body scanning from a single fixed 3D camera, in 2012 Second International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT) (IEEE, 2012), pp. 432–439

    Google Scholar 

  17. R.A. El-laithy, J. Huang, M. Yeh, Study on the use of microsoft kinect for robotics applications, in Position Location and Navigation Symposium (PLANS), 2012 IEEE/ION (IEEE, 2012), pp. 1280–1288

    Google Scholar 

  18. J.K. Aggarwal, L. Xia, Human activity recognition from 3D data: a review. Pattern Recogn. Lett. 48, 70–80 (2014)

    Article  Google Scholar 

  19. B. Schwarz, LiDAR: mapping the world in 3D. Nat. Photonics 4(7), 429–430 (2010)

    Article  Google Scholar 

  20. LiDAR: driving the future of autonomous navigation (a frost & sullivan exclusive whitepaper for analysis of LiDAR technology for advanced safety) (2016). http://velodynelidar.com/docs/papers/FROST-ON-LiDAR.pdf

  21. H. Moradi, J. Choi, E. Kim, S. Lee, A real-time wall detection method for indoor environments, in 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2006), pp. 4551–4557

    Google Scholar 

  22. Wikipedia, Interferometry – Wikipedia, the free encyclopedia, 2017. [Online; Accessed 1 July 2017]

    Google Scholar 

  23. A. Kadambi, J. Schiel, R. Raskar, Macroscopic interferometry: rethinking depth estimation with frequency-domain time-of-flight, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 893–902

    Google Scholar 

  24. S.R. Fanello, C. Rhemann, V. Tankovich, A. Kowdle, S.O. Escolano, D. Kim, S. Izadi, Hyperdepth: learning depth from structured light without matching, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 5441–5450

    Google Scholar 

  25. M.A. Fischler, R.C. Bolles, Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  26. J. Choi, G. Medioni, Starsac: stable random sample consensus for parameter estimation, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2009), pp. 675–682

    Google Scholar 

  27. R.B. Rusu, S. Cousins, 3D is here: point cloud library (PCL), in IEEE International Conference on Robotics and Automation (ICRA), Shanghai, 9–13 May 2011

    Google Scholar 

  28. Point cloud library (PCL) (2016), http://pointclouds.org/ [Online; Accessed 27 July 2016]

  29. CGAL: computational geometry algorithms library (2016), http://www.cgal.org/ [Online; Accessed 27 July 2016]

  30. CGAL: computational geometry algorithms library – documentation (2016), http://doc.cgal.org/latest/Poisson_surface_reconstruction_3/ [Online; Accessed 27 July 2016]

  31. O. Kreylos, G.W. Bawden, L.H. Kellogg, Immersive visualization and analysis of LiDAR data, in International Symposium on Visual Computing (Springer, 2008), pp. 846–855

    Google Scholar 

  32. R. Wang, J. Choi, G. Medioni, 3D modeling from wide baseline range scans using contour coherence, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2014), pp. 4018–4025

    Google Scholar 

  33. C. Jun, J. Youn, J. Choi, G. Medioni, N.L. Doh, Convex cut: a realtime pseudo-structure extraction algorithm for 3D point cloud data, in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2015), pp. 3922–3929

    Google Scholar 

  34. M. Hernandez, J. Choi, G. Medioni, Laser scan quality 3-D face modeling using a low-cost depth camera, in 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO) (IEEE, 2012), pp. 1995–1999

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jongmoo Choi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature B.V.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Choi, J. (2019). Range Sensors: Ultrasonic Sensors, Kinect, and LiDAR. In: Goswami, A., Vadakkepat, P. (eds) Humanoid Robotics: A Reference. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6046-2_108

Download citation

Publish with us

Policies and ethics