Skip to main content

Existence and Uniqueness: Solutions of Thermoelastodynamics

  • Reference work entry
Encyclopedia of Thermal Stresses
  • 125 Accesses

Synonyms

Well-posedness in thermoelasticity

Overview

We are concerned with a linear one-dimensional thermoelastic system where the hyperbolic elastic system is joined with the parabolic heat equation. In order to study the well posedness of the associated initial boundary value problem, a basic procedure is analyzed by means of semigroup techniques. For a detailed study in more general cases, some references are given at the end of this section.

A Simple Model in Thermoelasticity

The One-Dimensional Linear Thermoelastic System

For \( T>0 \), we consider the following one-dimensional linear thermoelastic system

$$ {u_{tt }}-\alpha {\,}{u_{xx }}+\gamma {\,}{\theta_x}=0\, \quad\mathrm{ in}\ (0,\ell )\times (0,T) $$
(1)
$$ {\theta_t}-k{\,}{\theta_{xx }}+\gamma {\,}{u_{xt }}=0\,\quad \mathrm{ in}\ (0,\ell )\times (0,T) $$
(2)

supplemented with initial conditions

$$ u(x,0)={u_0}(x),\,{u_t}(x,0)={u_1}(x)\, \quad \mathrm{ in}\ (0,\ell ) $$
(3)
$$ \theta (x,0)={\theta_0}(x)\, \quad \mathrm{...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brezis H (1983) Analyse fonctionnelle. Collection mathématiques appliquées pour la maîtrise. [Collection of applied mathematics for the master’s degree], Masson, Paris, théorie et applications. [Theory and applications]

    Google Scholar 

  2. Carlson DE (1972) Linear thermoelasticity. In: Truesdell C (ed) Handbuch der physik, vol VIA/2. Springer, Berlin, pp 297–345

    Google Scholar 

  3. Dafermos C (1976) Contraction semigroups and trend to equilibrium in continuum mechanics. In: Germain P, Nayroles B (eds) Applications of methods of functional analysis to problems in mechanics, lecture notes in mathematics, vol 503. Springer, Berlin/Heidelberg, pp 295–306

    Google Scholar 

  4. Dafermos CM (1968) On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity. Arch Ration Mech Anal 29:241–271

    MATH  MathSciNet  Google Scholar 

  5. Hsiao L, Jiang S (2004) Nonlinear hyperbolic-parabolic coupled systems. In: Dafermos CM, Feireisl E (eds) Evolutionary equations. Vol. I, Handb. Differ. Equ., North-Holland, Amsterdam, pp 287–384

    Google Scholar 

  6. Jiang S, Racke R (2000) Evolution equations in thermoelasticity, Chapman & Hall/CRC monographs and surveys in pure and applied mathematics, vol 112. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  7. Leis R (1980) Außenraumaufgaben in der linearen elastizitätstheorie. Math Method Appl Sci 2(4):379–396

    MATH  MathSciNet  Google Scholar 

  8. Leis R (1986) Initial-boundary value problems in mathematical physics. B. G. Teubner, Stuttgart

    MATH  Google Scholar 

  9. Pazy A (1983) Semigroups of linear operators and applications to partial differential equations, applied mathematical sciences, vol 44. Springer, New York

    Google Scholar 

  10. Racke R (1987) On the time-asymptotic behaviour of solutions in thermoelasticity. Proc Roy Soc Edinburgh Sect A 107(3–4):289–298

    MATH  MathSciNet  Google Scholar 

  11. Racke R (2009) Thermoelasticity. In: Dafermos CM, Pokorný M (eds) Handbook of differential equations: evolutionary equations. Vol. V, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, pp 315–420

    Google Scholar 

  12. Slemrod M (1981) Global existence, uniqueness, and asymptotic stability of classical smooth solutions in one-dimensional nonlinear thermoelasticity. Arch Ration Mech Anal 76(2):97–133

    MATH  MathSciNet  Google Scholar 

Further Reading

  • Bonfanti G, Muñoz Rivera JE, Naso MG (2008) Global existence and exponential stability for a contact problem between two thermoelastic beams. J Math Anal Appl 345(1):186–202

    MATH  MathSciNet  Google Scholar 

  • Bonfanti G, Fabrizio M, Muñoz Rivera JE, Naso MG (2010) On the energy decay for a thermoelastic contact problem involving heat transfer. J Therm Stresses 33(11):1049–1065

    Google Scholar 

  • Chiriţă S, Ciarletta M (2010) Spatial behavior for some non-standard problems in linear thermoelasticity without energy dissipation. J Math Anal Appl 367(1):58–68

    MATH  MathSciNet  Google Scholar 

  • Ciarletta M (2002) On the uniqueness and continuous dependence of solutions in dynamical thermoelasticity backward in time. J Therm Stresses 25(10):969–984

    MathSciNet  Google Scholar 

  • Ciarletta M, Scalia A (1994) Theory of thermoelastic dielectrics with voids. J Therm Stresses 17(4):529–548

    MathSciNet  Google Scholar 

  • Ciarletta M, Scalia A, Svanadze M (2007) Fundamental solution in the theory of micropolar thermoelasticity for materials with voids. J Therm Stresses 30(3):213–229

    MathSciNet  Google Scholar 

  • Ciarletta M, Svanadze M, Buonanno L (2009) Plane waves and vibrations in the theory of micropolar thermoelasticity for materials with voids. Eur J Mech A Solids 28(4):897–903

    MATH  MathSciNet  Google Scholar 

  • Henry DB, Perissinitto A Jr, Lopes O (1993) On the essential spectrum of a semigroup of thermoelasticity. Nonlinear Anal 21(1):65–75

    MATH  MathSciNet  Google Scholar 

  • Jiang S (1992) Global solutions of the Neumann problem in one-dimensional nonlinear thermoelasticity. Nonlinear Anal 19(2):107–121

    MathSciNet  Google Scholar 

  • Kawashima S, Shibata Y (1995) On the Neumann problem of one-dimensional nonlinear thermoelasticity with time-independent external forces. Czechoslovak Math J 45(120/1):39–67

    MATH  MathSciNet  Google Scholar 

  • Muñoz Rivera JE, Qin Y (2002) Global existence and exponential stability in one-dimensional nonlinear thermoelasticity with thermal memory. Nonlinear Anal 51(1):11–32, Ser. A: Theory Methods

    MATH  MathSciNet  Google Scholar 

  • Racke R (1986) Eigenfunction expansions in thermoelasticity. J Math Anal Appl 120(2):596–609

    MATH  MathSciNet  Google Scholar 

  • Racke R (1988) Initial boundary value problems in one-dimensional nonlinear thermoelasticity. Math Meth Appl Sci 10(5):517–529

    MATH  MathSciNet  Google Scholar 

  • Racke R, Shibata Y (1991) Global smooth solutions and asymptotic stability in one-dimensional nonlinear thermoelasticity. Arch Ration Mech Anal 116(1):1–34

    MATH  MathSciNet  Google Scholar 

  • Racke R, Shibata Y, Zheng S (1993) Global solvability and exponential stability in one-dimensional nonlinear thermoelasticity. Quart Appl Math 51(4):751–763

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Grazia Naso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Naso, M.G. (2014). Existence and Uniqueness: Solutions of Thermoelastodynamics. In: Hetnarski, R.B. (eds) Encyclopedia of Thermal Stresses. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2739-7_535

Download citation

Publish with us

Policies and ethics