Skip to main content

On the Decentralized Cooperative Control of Multiple Autonomous Vehicles

  • Reference work entry
  • First Online:
Handbook of Unmanned Aerial Vehicles

Abstract

This chapter is concerned with dynamically determining appropriate flight patterns for a set of autonomous UAVs in an urban environment, with multiple mission goals. The UAVs are tasked with searching the urban region for targets of interest and tracking those targets that have been detected. It is assumed that there are limited communication capabilities between the UAVs and that there exist possible line of sight constraints between the UAVs and the targets. Each UAV (i) operates its own dynamic feedback loop, in a receding-horizon framework, incorporating local information (from UAV i perspective) as well as remote information (from the perspective of the “neighbor” UAVs) to determine the task to perform and the optimal flight path of UAV i over the planning horizon. This results in a decentralized and more realistic model of the real- world situation. As the coupled task assignment and flight route optimization formulation is NP-hard, a hybrid heuristic for continuous global optimization is developed to solve for the flight plan and tasking over the planning horizon. Experiments are considered as communication range between UAVs varies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,399.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • A. Ahmadzadeh, G. Buchman, P. Cheng, A. Jadbabaie, J. Keller, V. Kumar, G. Pappas, Cooperative control of UAVs for search and coverage, in Proceedings of the AUVSI Conference on Unmanned Systems, (Orlando, Florida, 2006)

    Google Scholar 

  • D. Akselrod, A. Sinha, T. Kirubarajan, Collaborative distributed sensor management to multitarget tracking using hierarchical Markov decision processes, in Proceedings of SPIE: Signal and Data Processing of Small Targets, San Diego, vol. 6699, ed. by O.E. Drummond, R.D. Teich- graeber (SPIE, Bellingham, 2007), pp. 1–14

    Google Scholar 

  • R.J. Bamburger, D.P. Watson, D.H. Scheidt, K.L. Moore, Flight demonstrations of unmanned aerial vehicle swarming concepts. Johns Hopkins APL Tech. Dig. 27(1), 41–55 (2006)

    Google Scholar 

  • A. Bicchi, G. Casalino, C. Santilli, Planning shortest bounded-curvature paths for a class of nonholonomic vehicles among obstacles, in Proceedings of the IEEE International Conference on Robotics and Automation, Nagoya, 1995, pp. 1349–1354

    Google Scholar 

  • S. Blackman, R. Popoli, Design and Analysis of Modern Tracking Systems (Artech House, Boston, 1999)

    MATH  Google Scholar 

  • E. A. Doucette, A.J. Sinclair, D.E. Jeffcoat, Simultaneous localization and planning for cooperative air munitions via dynamic programming, in Optimization and Cooperative Control Strategies, ed. by M.J. Hirsch, C.W. Commander, P.M. Pardalos, R. Murphey (Springer, Berlin/London, 2009), pp. 69–79

    Chapter  Google Scholar 

  • L.E. Dubins, On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. Am. J. Math. 79(3), 497–516 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  • T.A. Feo, M.G.C. Resende, A probabilistic heuristic for a computationally difficult set covering problem. Oper. Res. Lett. 8, 67–71 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  • T.A. Feo, M.G.C. Resende, Greedy randomized adaptive search procedures. J. Global Optim. 6, 109–133 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  • P. Festa, M.G.C. Resende, GRASP: an annotated bibliography, in Essays and Surveys in Meta-heuristics, ed. by C.C. Ribeiro, P. Hansen (Kluwer, Boston, 2002), pp. 325–367

    Chapter  Google Scholar 

  • M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP- Completeness (W.H. Freeman, San Francisco, 1979)

    MATH  Google Scholar 

  • A. Gelb, Applied Optimal Estimation (MIT, Cambridge, 1974)

    Google Scholar 

  • G. Gu, P.R. Chandler, C.J. Schumacher, A. Sparks, M. Pachter, Optimal cooperative sensing using a team of UAVs. IEEE Trans. Aerosp. Electron. Syst. 42(4), 1446–1458 (2006)

    Article  Google Scholar 

  • M.J. Hirsch, H. Ortiz-Pena, Autonomous network connectivity and cooperative control for multiple target tracking, in Proceedings of the 27th Army Science Conference, Orlando, 2010

    Google Scholar 

  • M.J. Hirsch, H. Ortiz-Pena, N. Sapankevych, R. Neese, Efficient flight formation for tracking of a ground target, in Proceedings of the National Fire Control Symposium, San Diego, 2007, pp. 1–16

    Google Scholar 

  • M.J. Hirsch, H. Ortiz-Pena, M. Sudit, Decentralized cooperative urban tracking of multiple ground targets by a team of autonomous UAVs, in Proceedings of the 14th International Conference on Information Fusion, Chicago, 2011, pp. 1196–1202

    Google Scholar 

  • M.J. Hirsch, H. Ortiz-Pena, C. Eck, Cooperative tracking of multiple targets by a team of autonomous UAVs. Int. J. Oper. Res. Inf. Syst. 3(1), 53–73 (2012)

    Article  Google Scholar 

  • ILOG CPLEX, http://www.ilog.com/products/cplex. Accessed Oct 2008

  • K. Jiang, L.D. Seneviratne, S.W.E. Earles, A shortest path based path planning algorithm for nonholonomic mobile robots. J. Intell. Rob. Syst. 24, 347–366 (1999)

    Article  MATH  Google Scholar 

  • R.J. Kenefic, Finding good Dubins tours for UAVs using particle swarm optimization. J. Aerosp. Comput. Inf. Commun. 5, 47–56 (2008)

    Google Scholar 

  • J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of the IEEE International Conference on Neural Neworks, Australia, 1995, pp. 1942–1948

    Chapter  Google Scholar 

  • D. Kingston, R. Beard, UAV splay state configuration for moving targets in wind, in Advances in Cooperative Control and Optimization, ed. by M.J. Hirsch, P.M. Pardalos, R. Murphey, D. Grundel (Springer, Berlin, 2007), pp. 109–129

    Chapter  Google Scholar 

  • S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  • S.M. LaValle, Planning Algorithms (Cambridge University Press, Cambridge, 2006)

    Book  MATH  Google Scholar 

  • D. Lerro, Y. Bar-Shalom, Tracking with debiased consistent converted measurements versus EKF. IEEE Trans. Aerosp. Electron. Syst. 29(3), 1015–1022 (1993)

    Article  Google Scholar 

  • Z. Liang, W.A. Chaovalitwongse, A.D. Rodriguez, D.E. Jeffcoat, D.A. Grundel, J.K. O’Neal, Optimization of spatiotemporal clustering for target tracking from multi-sensor data. IEEE Trans. Syst. Man Cybern. (C) 40(2), 176–188 (2010)

    Article  Google Scholar 

  • C.S. Ma, R.H. Miller, Mixed integer linear programming trajectory generation for autonomous nap- of-the-earth flight in a threat environment, in Proceedings of the IEEE Aerospace Conference,Big Sky, 2005, pp. 1–9

    Google Scholar 

  • M. Matsumoto, T. Nishimura, Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul. 8(1), 3–30 (1998)

    Article  MATH  Google Scholar 

  • P.S. Maybeck, Stochastic Models, Estimation, and Control, vol. I (Navtech Press, Arlington, 1994)

    Google Scholar 

  • T.W. McLain, P.R. Chandler, M. Pachter, A decomposition strategy for optimal coordination of unmanned air vehicles, in Proceedings of American Control Conference, Chicago, 2000, pp. 369–373

    Google Scholar 

  • F. Rafi, S. Khan, K. Shafiq, M. Shah, Autonomous target following by unmanned aerial vehicles, in Proceedings of SPIE: Unmanned Systems Technology VIII, Orlando, vol. 6230, ed. by G.R. Gerhart, C.M. Shoemaker, D.W. Gage (SPIE, Bellingham, 2006), pp. 1–8

    Google Scholar 

  • C. Santilli, A. Bicchi, G. Casalino, A. Balestrino, Nonholonomic, bounded curvature path planning in cluttered environments, in Proceedings of the Conference on Emerging Technologies and Factory Automation, Paris, vol. 2, 1995, pp. 363–372

    Google Scholar 

  • T. Schouwenaars, B. De Moor, E. Feron, J. How, Mixed-integer programming for multivehicle path planning, in Proceedings of the European Control Conference, Porto, 2001, pp. 2603–2608

    Google Scholar 

  • C. Schumacher, T. Shima, Single-task tours, in UAV Cooperative Decision and Control, ed. by T. Shima, S. Rasmussen (SIAM, Philadelphia, 2009), pp. 15–36

    Google Scholar 

  • J.G. Semple, G.T. Kneebone, Algebraic Projective Geometry (Oxford University Press, New York, 1952)

    MATH  Google Scholar 

  • V.K. Shetty, M. Sudit, R. Nagi, Priority-based assignment and routing of a fleet of unmanned combat aerial vehicles. Comput. Oper. Res. 35(6), 1813–1828 (2008)

    Article  MATH  Google Scholar 

  • T. Shima, S. Rasmussen, UAV Cooperative Decision and Control (SIAM, Philadelphia, 2009)

    Book  MATH  Google Scholar 

  • A.J. Sinclair, R.J. Prazenica, D.E. Jeffcoat, Simultaneous localization and planning for cooperative air munitions, in Advances in Cooperative Control and Optimization, ed. by M.J. Hirsch, P.M. Pardalos, R. Murphey, D. Grundel (Springer, Berlin, 2007), pp. 81–94

    Chapter  Google Scholar 

  • A. Sinha, T. Kirubarajan, Y. Bar-Shalom, Optimal cooperative placement of UAVs for ground target tracking with doppler radar, in Proceedings of SPIE: Signal processing, Sensor Fusion, and Target Recognition XIII, Orlando, vol. 5429, ed. by I. Kadar (SPIE, Bellingham, 2004), pp. 95–104

    Google Scholar 

  • A. Sinha, T. Kirubarajan, Y. Bar-Shalom, Autonomous ground target tracking by multiple cooperative UAVs. Proceedings of the IEEE Aerospace Conference, Big Sky, 2005, pp. 1–9

    Google Scholar 

  • M. Steinberg, Intelligent autonomy for unmanned naval vehicles, in Proceedings of SPIE: Unmanned Systems Technology VIII, Kissimmee, vol. 230, ed. by G.R. Gerhart, C.M. Shoemaker, D.W. Gage (SPIE, Bellingham, 2006), pp. 1–12

    Google Scholar 

  • J. Stolfi, Oriented Projective Geometry: A Framework for Geometric Computations (Elsevier, Palo Alto, California, 1991)

    MATH  Google Scholar 

  • C.A. Sylvester, G.J. Wiens, N.G. Fitz-Coy, Control of collaborative mobile robots subject to nonholonomic constraints, in Proceedings of the International Symposium on Collaborative Technologies and Systems, San Diego, 2004

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael J. Hirsch or Daniel Schroeder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Hirsch, M.J., Schroeder, D. (2015). On the Decentralized Cooperative Control of Multiple Autonomous Vehicles. In: Valavanis, K., Vachtsevanos, G. (eds) Handbook of Unmanned Aerial Vehicles. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9707-1_112

Download citation

Publish with us

Policies and ethics