Skip to main content

Landscape Genetics: Wetlands

  • Reference work entry
  • First Online:
The Wetland Book
  • 125 Accesses

Abstract

Landscape genetics is defined as research that explicitly quantifies how landscape variables (such as configuration and matrix quality) affect patterns of genetic variation and gene flow. Landscape genetic questions are typically focused on recent gene flow and landscape changes, and therefore, landscape genetic studies are often used to address ecological and conservation questions (e.g., barriers and corridors, source-sink dynamics, influence of landscape change) that are difficult to answer with more traditional demographic methods. Landscape genetics uses genetic data as the dependent variable and typically attempts to correlate genetic relationships with several independent variables representing landscape or environmental data, usually from a geographical information systems (GIS) computer environment that allows the landscape data to be visualized and analyzed using spatial statistics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Akaike H. A new look at the statistical model identification. IEEE Trans Automat Contr. 1974;19:716–23.

    Article  Google Scholar 

  • Balkenhol N, Gugerli F, Cushman SA, Waits LP, Coulon A, Arntzen JW, Holderegger R, Wagner HH. Identifying future research needs in landscape genetics: where to from here? Landscape Ecol. 2009a;24:455–63.

    Article  Google Scholar 

  • Balkenhol N, Waits LP, Dezzani RJ. Statistical approaches in landscape genetics: an evaluation of methods for linking landscape and genetic data. Ecography. 2009b;32:818–30.

    Article  Google Scholar 

  • Burnham KP, Anderson DR. Model selection and multimodel inference. A practical information-theoretic approach. New York: Springer; 2002.

    Google Scholar 

  • Dominguez-Dominguez O, Boto L, Alda F, Perez-Ponce de Leon G, Doadrio I. Human impacts on drainages of the Mesa Central, Mexico, and its genetic effects on an endangered fish, Zoogoneticus quitzeoensis. Conserv Biol. 2007;21:168–80.

    Article  Google Scholar 

  • Emaresi G, Pellet J, Dubey S, Hirzel AH, Fumagalli L. Landscape genetics of the alpine newt (Mesotriton alpestris) inferred from a strip-based approach. Conserv Genet. 2011;12:41–50.

    Article  Google Scholar 

  • Giordano AR, Ridenhour BJ, Storfer A. The influence of altitude and topography on genetic structure in the long-toed salamander (Ambystoma macrodactylum). Mol Ecol. 2007;16:1625–37.

    Article  CAS  Google Scholar 

  • Goldberg CS, Waits LP. Comparative landscape genetics of two pond-breeding amphibian species in a highly modified agricultural landscape. Mol Ecol. 2010;19:3650–63.

    Article  Google Scholar 

  • Howeth JG, McGaugh SE, Hendrickson DA. Contrasting demographic and genetic estimates of dispersal in the endangered Coahuilan box turtle: a contemporary approach to conservation. Mol Ecol. 2008;17:4209–21.

    Article  Google Scholar 

  • Kohn MH, Murphy WJ, Ostrander EA, Wayne RK. Genomics and conservation genetics. Trends Ecol Evol. 2006;21:629–37.

    Article  Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P. Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol. 2003;18:189–97.

    Article  Google Scholar 

  • Manel S, Joost S, Epperson BK, Holderegger R, Storfer A, Rosenberg MS, Scribner KT, Bonin A, Fortin M-J. Perspectives on the use of landscape genetics to detect genetic adaptive variation in the field. Mol Ecol. 2010;19:3760–72.

    Article  CAS  Google Scholar 

  • McRae BH. Isolation by resistance. Evolution. 2006;60:1551–61.

    Article  Google Scholar 

  • McRae BH, Shah VB. Circuitscape user’s guide. Online. The University of California-Santa Barbara; 2009. www.circuitscape.org.

  • Michels E, Cottenie K, Neys L, De Gelas K, Coppin P, De Meester L. Geographical and genetic distances among zooplankton populations in a set of interconnected ponds: a plea for using GIS modeling of the effective geographical distance. Mol Ecol. 2001;10:1929–38.

    Article  CAS  Google Scholar 

  • Mockford SW, Herman TB, Snyder M, Wright JM. Conservation genetics of Blanding’s turtle and its application in the identification of evolutionarily significant units. Conserv Genet. 2007;8:209–19.

    Article  Google Scholar 

  • Murphy MA, Evans JS, Storfer A. Quantifying Bufo boreas connectivity in Yellowstone National Park with landscape genetics. Ecology. 2010a;91:252–61.

    Article  Google Scholar 

  • Murphy MA, Dezzani R, Pilliod DS, Storfer A. Landscape genetics of high mountain frog metapopulations. Mol Ecol. 2010b;19:3634–49.

    Article  Google Scholar 

  • Schlötterer C. Evolutionary dynamics of microsatellite DNA. Chromosoma. 2000;109:365–71.

    Article  Google Scholar 

  • Spear SF, Peterson CR, Matocq MD, Storfer A. Landscape genetics of the blotched tiger salamander (Ambystoma tigrinum melanostictum). Mol Ecol. 2005;14:2553–64.

    Article  CAS  Google Scholar 

  • Spear SF, Balkenhol N, Fortin M-J, McRae BH, Scribner K. Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis. Mol Ecol. 2010;19:3576–91.

    Article  Google Scholar 

  • Storfer A, Murphy MA, Evans JS, Goldberg CS, Robinson S, Spear SF, Dezzani R, Delmelle E, Vierling L, Waits LP. Putting the “landscape” in landscape genetics. Heredity. 2007;98:128–42.

    Article  CAS  Google Scholar 

  • Storfer A, Murphy MA, Spear SF, Holderegger R, Waits LP. Landscape genetics: where are we now? Mol Ecol. 2010;19:3496–514.

    Article  Google Scholar 

  • Van Strien M, Keller D, Holderegger R. A new analytical approach to landscape genetic modeling: least-cost transect analysis and linear mixed models. Mol Ecol. 2012;21:4010–23.

    Article  Google Scholar 

  • Wilmer JW, Elkin C, Wilcox C, Murray L, Niejalke D, Possingham H. The influence of multiple dispersal mechanisms and landscape structure on population clustering and connectivity in fragmented artesian spring snail populations. Mol Ecol. 2008;17:3733–51.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen F. Spear .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media B.V., part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Spear, S.F. (2018). Landscape Genetics: Wetlands. In: Finlayson, C.M., et al. The Wetland Book. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9659-3_58

Download citation

Publish with us

Policies and ethics