Skip to main content

Growth of Crystalline Silicon for Solar Cells: Mono-Like Method

  • Reference work entry
  • First Online:
Handbook of Photovoltaic Silicon

Abstract

The mono-like method, also known as the mono cast, seed cast, and quasi-mono methods, is a candidate next-generation method of casting Si ingots for solar cell applications, replacing conventional casting methods. The mono-like method provides single crystalline Si ingots with the use of almost the same facilities as those used for growth of multicrystalline Si ingots. Hence, the mono-like method has potential to achieve Si ingots with both high quality and low cost. However, the mono-like method faces challenges owing to its crystal growth processes, such as multicrystallization, dislocation generation, and impurity contamination. To address these problems, advanced mono-like methods have been developed. In this chapter, advanced mono-like methods are reviewed from the viewpoint of crystal growth and the fundamentals of the mono-like method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • M. Mrcarica, Photo-Dermatology 19, 28 (2013)

    Google Scholar 

  • F. Jay, D. Muñoz, T. Desrues, E. Pihan, V. Amaral de Oliveira, N. Enjalbert, A. Jouini, Solar Energ. Mater. Solar Cells 130, 690 (2014)

    Article  CAS  Google Scholar 

  • A. Jouini, in Abstract of the 10th International Workshop on Crystalline Silicon for Solar Cells (CSSC-10) (2018), p. 9

    Google Scholar 

  • N. Stoddard, B. Wu, L. Witting, M. Wagener, Y. Park, G. Rozgonyi, R. Clark, Solid State Phenom. 1, 131–133 (2008)

    Google Scholar 

  • T.F. Ciszek, G.H. Schwuttke, K.H. Yang, J. Cryst. Growth 46, 527 (1979)

    Article  CAS  Google Scholar 

  • K.E. Ekstrøm, G. Stokkan, R. SøndenÃ¥, H. Dalaker, T. Lehmann, L. Arnberg, M. Di Sabation, Phys. Status Solidi A 212, 2278 (2015)

    Article  Google Scholar 

  • Y.C. Wu, A. Lan, C.F. Yang, C.W. Hsu, C.M. Lu, A. Yang, C.W. Lan, Cryst. Growth Des. 16, 6641 (2016)

    Article  CAS  Google Scholar 

  • M. Trempa, C. Reimann, J. Friedrich, G. Mueller, A. Krause, L. Sylla, T. Richter, J. Cryst. Growth 405, 131 (2014)

    Article  CAS  Google Scholar 

  • I. Takahashi, N. Usami, K. Kutsukake, G. Stokkan, K. Morishita, K. Nakajima, J. Cryst. Growth 312, 897 (2010)

    Article  CAS  Google Scholar 

  • K. Jiptner, Y. Miyamura, H. Harada, B. Gao, K. Kakimoto, T. Sekiguchi, Prog. Photovolt. Res. Appl. 24, 1513 (2016)

    Article  CAS  Google Scholar 

  • K. Kutsukake, N. Usami, Y. Ohno, Y. Tokumoto, I. Yonenaga, Appl. Phys. Express 6, 025505 (2013)

    Article  Google Scholar 

  • A.L. Endrös, Sol. Energ. Mater. Sol. Cells 72, 109 (2002)

    Article  Google Scholar 

  • M. Kitamura, N. Usami, T. Sugawara, K. Kutsukake, K. Fujiwara, Y. Nose, T. Shishido, K. Nakajima, J. Cryst. Growth 280, 419 (2005)

    Article  CAS  Google Scholar 

  • K. Kutsukake, N. Usami, K. Fujiwara, Y. Nose, K. Nakajima, J. Appl. Phys. 101, 063509 (2007a)

    Article  Google Scholar 

  • K. Kutsukake, N. Usami, K. Fujiwara, Y. Nose, T. Sugawara, T. Shishido, K. Nakajima, Mater. Trans. 481, 143 (2007b)

    Article  Google Scholar 

  • T. Hoshikawa, T. Taishi, X. Huang, S. Uda, M. Yamatani, K. Shirasawa, K. Hoshikawa, J. Cryst. Growth 307, 466 (2007)

    Article  CAS  Google Scholar 

  • K. Kutsukake, N. Usami, Y. Ohno, Y. Tokumoto, I. Yonenaga, IEEE J. Photovolt. 4, 84 (2014)

    Article  Google Scholar 

  • I. Takahashi, S. Joonwichien, T. Iwata, N. Usami, Appl. Phys. Express 8, 105501 (2015)

    Article  Google Scholar 

  • D. Hu, S. Yuan, L. He, H. Chen, Y. Wan, X. Yu, D. Yang, Solar Energ. Mater Solar Cells 140, 121 (2015)

    Article  CAS  Google Scholar 

  • C.Y. Lan, Y.C. Wu, A. Lan, C.F. Yang, C. Hsu, C.M. Lu, A. Yang, C.W. Lan, J. Cryst. Growth 475, 136 (2017)

    Article  CAS  Google Scholar 

  • X. Gu, X. Yu, K. Guo, L. Chen, D. Wang, D. Yang, Solar Energ. Mater. Solar Cells 101, 95 (2012)

    Article  CAS  Google Scholar 

  • F. Zhang, X. Yu, S. Yuan, L. He, H. Chen, R. Hu, and D. Yang, in Abstract of the 10th International Workshop on Crystalline Silicon for Solar Cells (CSSC-10) (2018), p. 19

    Google Scholar 

  • B. Gao, S. Nakano, H. Harada, Y. Miyamura, T. Sekiguchi, K. Kakimoto, J. Cryst. Growth 352, 47 (2012)

    Article  CAS  Google Scholar 

  • Y. Miyamura, H. Harada, K. Jiptner, J. Chen, R.R. Prakash, S. Nakano, B. Gao, K. Kakimoto, T. Sekiguchi, J. Cryst. Growth 401, 133 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The author is very grateful to Professor Kazuo Nakajima from Tohoku University for fruitful discussions about the fundamentals of crystal growth and defects generation of mono-like Si.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kentaro Kutsukake .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kutsukake, K. (2019). Growth of Crystalline Silicon for Solar Cells: Mono-Like Method. In: Yang, D. (eds) Handbook of Photovoltaic Silicon. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56472-1_35

Download citation

Publish with us

Policies and ethics