Skip to main content

High Strain Rate Metal Plasticity

  • Living reference work entry
  • First Online:

Synonyms

Dynamic loading response; High strain rate plasticity; Impact response; Shock response

Definitions

Adiabatic :

Without the transfer of heat from the system to its surroundings.

BCC :

Body-centered cubic, a Bravais lattice type adopted by metals.

Dislocation :

Linear defect in a lattice arising from broken or mismatched bonds.

FCC :

Face-centered cubic, a Bravais lattice type adopted by metals.

HCP :

Hexagonal close packed, a Bravais lattice type adopted by metals.

HEL :

Hugoniot elastic limit; the elastic limit in shock deformation.

Slip :

Deformation resulting from dislocation motion.

Introduction

This section will discuss empirical observations and physical pictures describing the intermediate to high strain rate behavior of metals undergoing plastic deformation. While many other material types exist, bulk metals readily lend themselves to continuum modelling, which is not as readily applied to types such as composites, foams, or metamaterials. Twinning and failure are...

This is a preview of subscription content, log in via an institution.

References

  • Al’shitz V, Indenbom V (1975) Dynamic dragging of dislocations. Soviet Physics Uspekhi 18:1–20. https://doi.org/10.1070/PU1975v018n01ABEH004689

    Article  Google Scholar 

  • Altshuler L, Bakanova A, Brazhnik M, Zhuchikhin V, Kormer S, Krupnikov K, Trunin R (1995) Shock Hugoniot of uranium measured at pressures through 4 TPa inclusive. Chem Phys Rep 14:205–207

    Google Scholar 

  • Altshuler L, Zeldovich Y, Styazhkin Y (1997) Investigation of isentropic compression and equations of state of fissionable materials. Physics Uspekhi 40:101–102

    Article  Google Scholar 

  • Anderson P, Hirth J, Lothe J (2017) Theory of dislocations, 3rd edn. Cambridge University Press, New York

    MATH  Google Scholar 

  • Anderson T (1994) Fracture mechanics. CRC Press, Boca Raton

    Google Scholar 

  • Andrew S, Caliguri R, Eiselstein L (1992) Relationship between dynamic properties and penetration mechanisms of tungsten and depleted uranium penetrators. In: Persson A, Andersson K, Björck E (eds) Proceedings 13th international symposium ballistics, vol 3. National Defence Research Establishment, Sundyberg, pp 249–256

    Google Scholar 

  • Armstrong R (1967) Relation between the Petch friction stress and the thermal activation rate equation. Acta Metall 15:667–668. https://doi.org/10.1016/0001-6160(67)90118-6

    Article  Google Scholar 

  • Armstrong R, Li Q (2015) Dislocation mechanics of high-rate deformations. Metall Mater Trans A 46:4438–4453. https://doi.org/10.1007/s11661-015-2779-6

    Article  Google Scholar 

  • Armstrong R, Walley S (2008) High strain rate properties of metals and alloys. Int Mater Rev 53:105–128. https://doi.org/10.1179/174328008X277795

    Article  Google Scholar 

  • Armstrong R, Arnold W, Zerilli F (2009) Dislocation mechanics of copper and iron in high rate deformation tests. J Appl Phys 105:023511. https://doi.org/10.1063/1.3067764

    Article  Google Scholar 

  • Arrhenius S (1889) Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Z Phys Chem 4:226–248

    Google Scholar 

  • Asay J, Shahinpoor ME (1993) High-pressure shock compression of solids. Springer, New York

    Book  MATH  Google Scholar 

  • Atkins A, Mai Y (1985) Elastic and plastic fractire. Ellis Horwood, London

    Google Scholar 

  • Austin R, McDowell D (2011) A dislocation-based constitutive model for viscoplastic deformation of FCC metals at very high strain rates. Int J Plast 27:1–24. https://doi.org/10.1016/j.ijplas.2010.03.002

    Article  Google Scholar 

  • Averyanova T, Mirkin L, Pilipetskii N, Rustamov A (1965) The action of intense light beams on metal surfaces. J Appl Mech Tech Phys 6(6):54–57

    Article  Google Scholar 

  • Bai Y, Dodd B (1992) Adiabatic shear localisation, occurance, theories and applications. Pergamon Press, Oxford

    Google Scholar 

  • Basov N, Krokhin O, Sklizkov G (1967) Formation of shock waves with the aid of powerful laser radiation. JETP Lett 6:168–171

    Google Scholar 

  • Bauschinger J (1886) On the changes of the elastic limit and the strength of iron by straining in tension and in compression (in German). Mittheilungen aus dem Mechanisch-Technischen Laboboratorium der Koniglichen Technischen Hochschule in Munchen 13:1–115

    Google Scholar 

  • Benedick W (1965) Nitroguanidine explosive plane wave generator for producing low amplitude shock waves. Rev Sci Instrum 36:1309–1315

    Article  Google Scholar 

  • Bitzek E, Gumbsch P (2004) Atomistic study of drag, surface and inertial effects on edge dislocations in face-centered cubic metals. Mater Sci Eng A 387:11–15. https://doi.org/10.1016/j.msea.2004.01.092

    Article  Google Scholar 

  • Bitzek E, Gumbsch P (2005) Dynamic aspects of dislocation motion: atomistic simulations. Mater Sci Eng A 400:40–44. https://doi.org/10.1016/j.msea.2005.03.047. dislocations 2004

    Article  MATH  Google Scholar 

  • Brace W, Jones A (1971) Comparison of uniaxial deformation in shock and static loading of three rocks. J Geophys Res 76:4913–4921

    Article  Google Scholar 

  • Brailsford A (1972) Anharmonicity contributions to dislocation drag. J Appl Phys 43:1380–1393. https://doi.org/10.1063/1.1661329

    Article  Google Scholar 

  • Brown L (2012) Constant intermittent flow of dislocations: central problems in plasticity. Mater Sci Technol 28:1209–1232. https://doi.org/10.1179/174328412X13409726212768

    Article  Google Scholar 

  • Brown S, Kim K, Anand L (1989) An internal variable constitutive model for hot working of metals. Int J Plast 5:95–130. https://doi.org/10.1016/0749-6419(89)90025-9

    Article  MATH  Google Scholar 

  • Burgers J, Burgers W (1956) Dislocations in crystal lattices. In: Eirich FR (ed) Rheology. Academic Press, New York, pp 141–199

    Google Scholar 

  • Bush V, Conant J, Adams L (1946) Hypervelocity guns and the control of gun erosion. National Defense Research Committee, Washington

    Google Scholar 

  • Chhabildas L, Davison L, Horie Y (2005) High-pressure shock compression of solids. VIII: the science and technology of high-velocity impact. Springer, Berlin

    Google Scholar 

  • Cochran S, Banner D (1977) Spall studies in uranium. J Appl Phys 48:2729–2737

    Article  Google Scholar 

  • Cottrell A (1964) Theory of crystal dislocations. Blackie and Son, London

    MATH  Google Scholar 

  • Couque H (2014) The use of the direct impact Hopkinson pressure bar technique to describe thermally activated and viscous regimes of metallic materials. Phil Trans R Soc A 372:20130218. https://doi.org/10.1098/rsta.2013.0218

    Article  Google Scholar 

  • Dandekar D, Martin A, Kelley J (1980) Deformation of depleted uranium – 0.78 titanium under shock compression to 11.0 GPa at room temperature. J Appl Phys 51:4784–4789

    Article  Google Scholar 

  • Davison L, Graham R (1979) Shock compression of solids. Phys Rep 55:255–379

    Article  Google Scholar 

  • Davison L, Shahinpoor ME (1998) High-pressure shock compression of solids III. Springer, Berlin

    Book  Google Scholar 

  • Davison L, Grady D, Shahinpoor M (1996) High-pressure shock compression of solids II: dynamic fracture and fragmentation. Springer, Berlin

    Book  MATH  Google Scholar 

  • Davison L, Horie Y, Shahinpoor ME (1997) High-pressure shock compression of solids IV: response of highly porous solids to shock compression. Springer, Berlin

    Book  Google Scholar 

  • Davison L, Horie Y, Sekine Te (2003) High-pressure shock compression of solids V: shock chemistry with applications to meteorite impacts. Springer, Berlin

    Book  Google Scholar 

  • de Beaumont P, Leygonie J (1970) Vaporizing of uranium after shock loading. In: Proceedings fifth symposium (international) on detonation, Office of Naval Research, Arlington, pp 547–558

    Google Scholar 

  • Dimiduk D, Uchic M, Parthasarathy T (2005) Size-affected single-slip behavior of pure nickel microcrystals. Acta Mater 53:4065–4077. https://doi.org/10.1016/j.actamat.2005.05.023

    Article  Google Scholar 

  • Dodd B, Bai Y (1987) Ductile fracture and ductility. Academic Press Inc., London

    Google Scholar 

  • Dodd B, Bai Y (2012) Adiabatic shear localization frontiers and advances. Elsevier, Amsterdam

    Google Scholar 

  • Eshelby J (1953) The equation of motion of a dislocation. Phys Rev 90:248–255. https://doi.org/10.1103/PhysRev.90.248

    Article  MathSciNet  MATH  Google Scholar 

  • Follansbee P, Kocks U (1988) A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable. Acta Metall 36:81–93. https://doi.org/10.1016/0001-6160(88)90030-2

    Article  Google Scholar 

  • Follansbee P, Regazzoni G, Kocks U (1984) The transition to drag-controlled deformation in copper at high strain rates. Inst Phys Conf Ser 70:71–80

    Google Scholar 

  • Forquin P, Zinszner JL (2017) A pulse-shaping technique to investigate the behaviour of brittle materials subjected to plate-impact tests. Phil Trans R Soc A 375:20160333

    Article  Google Scholar 

  • Fortov V, Altshuler L, Trunin R, Funtikov A (2004) High-pressure shock compression of solids VII. Springer, Berlin

    Book  Google Scholar 

  • Fowles G, Duvall G, Asay J, Bellamy P, Feistman F, Grady D, Michaels T, Mitchell R (1970) Gas gun for impact studies. Rev Sci Instrum 41:984–996

    Article  Google Scholar 

  • Gao C, Zhang L (2012) Constitutive modelling of plasticity of fcc metals under extremely high strain rates. Int J Plast 32:121–133. https://doi.org/10.1016/j.ijplas.2011.12.001

    Article  Google Scholar 

  • Gilman J (1960) The plastic resistance of crystals. Aust J Phys 13:327–346

    Article  Google Scholar 

  • Golubev V (2012) Strength and fracture of uranium, plutonium and several of their alloys under shock wave loading. EPJ Web Conf 26:02015

    Article  Google Scholar 

  • Gorham D (1991) An effect of specimen size in the high strain rate compression test. J Phys IV France 1(C3):411–418

    Article  Google Scholar 

  • Gorham D, Pope P, Field J (1992) An improved method for compressive stress-strain measurements at very high strain rates. Proc R Soc A 438:153–170. https://doi.org/10.1098/rspa.1992.0099

    Article  MATH  Google Scholar 

  • Gorman JA, Wood DS, Vreeland T Jr (1969) Mobility of dislocations in aluminum. J Appl Phys 40:833–841. https://doi.org/10.1063/1.1657472

    Article  Google Scholar 

  • Goto DM, Garrett RK, Bingert JF, Chen SR, Gray GT (2000) The mechanical threshold stress constitutive-strength model description of hy-100 steel. Metall Mater Trans A 31:1985–1996. https://doi.org/10.1007/s11661-000-0226-8

    Article  Google Scholar 

  • Gould P, Goldthorpe B (2000) A path-dependent constitutive model for gilding copper. J Phys IV France 10 (Pr.9):39–44. https://doi.org/10.1051/jp4:2000907

    Google Scholar 

  • Gray III G (1994) Deformation twinning: influence of strain rate. In: Yoo MH, Wuttig M (Eds) Twinning in advanced materials. TMS, Warrendale, pp 337–349

    Google Scholar 

  • Gray III G (2012) High-strain-rate deformation: mechanical behavior and deformation substructures induced. Ann Rev Mater Res 42:285–303

    Article  Google Scholar 

  • Gray III G, Bourne N, Henrie B, Millett J (2003) Influence of shock-wave profile shape (triangular – Taylor-wave versus square-topped) on the spallation response of 316L stainless steel. J Phys IV France 110:773–778

    Article  Google Scholar 

  • Gray III G, Bourne N, Millett J, Lopez M (2004) Influence of shock-wave profile shape (‘Taylor-wave’ versus square-topped) on the shock-hardening and spallation response of 316L stainless steel. AIP Conf Proc 706:461–464

    Article  Google Scholar 

  • Gray III G, Cady C, McCabe R, Hixson R, Korzekwa D, Lopez M (2006) Influence of energetic-driven ’Taylor-wave’ shock-wave prestraining on the structure/property response of depleted uranium. J Phys IV France 134:909–914

    Article  Google Scholar 

  • Grunschel S, Clifton R, Jiao T (2012) Shearing resistance of aluminum at high strain rates and at temperatures approaching melt. AIP Conf Proc 1426:1335–1338. https://doi.org/10.1063/1.3686527

    Article  Google Scholar 

  • Gurrutxaga-Lerma B, Shehadeh M, Balint D, Dini D, Chen L, Eakins D (2017) The effect of temperature on the elastic precursor decay in shock loaded FCC aluminium and BCC iron. Int J Plast 96:135–155. https://doi.org/10.1016/j.ijplas.2017.05.001

    Article  Google Scholar 

  • Hall EO (1951) The deformation and ageing of mild steel: III discussion of results. Proc Phys Soc Sect B 64:747–753. https://doi.org/10.1088/0370-1301/64/9/303

    Article  Google Scholar 

  • Hansen B, Beyerlein I, Bronkhorst C, Cerreta E, Dennis-Koller D (2013) A dislocation-based multi-rate single crystal plasticity model. Int J Plast 44:129–146. https://doi.org/10.1016/j.ijplas.2012.12.006

    Article  Google Scholar 

  • Herrmann B, Landau A, Shvarts D, Favorsky V, Zaretsky E (2002) Modeling of uranium alloy response in plane impact and reverse ballistic experiments. AIP Conf Proc 620:1306–1309

    Article  Google Scholar 

  • Hirth J, Lothe J (1968) Theory of dislocations, 1st edn. McGraw-Hill, New-York

    MATH  Google Scholar 

  • Holzer F (1965) Measurements and calculations of peak shock-wave parameters from underground nuclear detonations. J Geophys Res 70:893–905

    Article  Google Scholar 

  • Horie Y (2007) Shock wave science and technology reference library. 2: solids I. Springer, Berlin

    Google Scholar 

  • Horie Y (2009) Shock wave science and technology reference library. 3: solids II. Springer, Berlin

    Google Scholar 

  • Horie Y, Davison L, Thadhani N (2003) High-pressure shock compression of solids. VI: old paradigms and new challenges. Springer, New York

    Google Scholar 

  • Huang M, Riverz-Díaz-del Castillo P, Bouaziz O (2009) A constitutive model for high strain rate deformation in FCC metals based on irreversible thermodynamics. Mech Mater 41:982–988

    Article  Google Scholar 

  • Hugoniot H (1888) Mémoire sur la propagation du mouvement dans les corps et spécialement dans les gaz parfaits. 1 J École Polytech 57:3–97

    Google Scholar 

  • Hugoniot H (1889) Mémoire sur la propagation du mouvement dans les corps et spcialement dans les gaz parfaits. 2 J École Polytech 58:1–125

    Google Scholar 

  • Hugoniot H (1998) On the propagation of motion in bodies and in perfect gases in particular. In: Johnson JN, Chéret R (eds) Classic papers in shock compression science. Springer, Berlin, pp 161–358

    Chapter  Google Scholar 

  • Hunter A, Preston DL (2015) Analytic model of the remobilization of pinned glide dislocations from quasi-static to high strain rates. Int J Plast 70:1–29. https://doi.org/10.1016/j.ijplas.2015.01.008

    Article  Google Scholar 

  • Huntington H (1955) Modification of the Peierls-Nabarro model for edge dislocation core. Proc Phys Soc Lond B 68:1043–1048

    Article  MATH  Google Scholar 

  • Johnson J, Chéret R (1998) Classic papers in shock compression science. Springer, New-York

    Book  MATH  Google Scholar 

  • Johnson P (1983) Tungsten versus depleted uranium for armour-piercing penetrators. Int J Refract Hard Metals 3:179–182

    Google Scholar 

  • Johnston W, Gilman J (1959) Dislocation velocities, dislocation densities, and plastic flow in lithium fluoride crystals. J Appl Phys 30:129–144. https://doi.org/10.1063/1.1735121

    Article  Google Scholar 

  • Jones AH, Isbell WM, Maiden CI (1966) Measurement of the very high pressure properties of materials using a light gas gun. J Appl Phys 37:3493–3499

    Article  Google Scholar 

  • Jordan J, Siviour C, Sunny G, Bramlette C, Spowart J (2013) Strain rate-dependant mechanical properties of ofhc copper. J Mater Sci 48:7134–7141. https://doi.org/10.1007/s10853-013-7529-9

    Article  Google Scholar 

  • Kamimura Y, Edagawa K, Takeuchi S (2012) Experimental evaluation of the Peierls stresses in a variety of crystals and their relation to the crystal structure. Acta mater 61:294–309

    Article  Google Scholar 

  • Kanel G, Fortov V, Razorenov S (2007) Shock waves in condensed-state physics. Physics-Uspekhi 50:771–781

    Article  Google Scholar 

  • Kanel GI (2014) Unusual behaviour of usual materials in shock waves. J Phys Conf Ser 500:012001

    Article  Google Scholar 

  • Kanel GI, Razorenov SV, Baumung K, Singer J (2001) Dynamic yield and tensile strength of aluminum single crystals at temperatures up to the melting point. J Appl Phys 90:136–143. https://doi.org/10.1063/1.1374478

    Article  Google Scholar 

  • Klepaczko J (1975) Thermally activated flow and strain rate history effects for some polycrystalline FCC metals. Mater Sci Eng 18:121–135

    Article  Google Scholar 

  • Kocks U, Mecking H (2003) Physics and phenomenology of strain hardening: the FCC case. Prog Mater Sci 48:171–273. https://doi.org/10.1016/S0079-6425(02)00003-8

    Article  Google Scholar 

  • Kocks U, Argon A, Ashby M (1975) Thermodynamics and kinetics of slip. Prog Mater Sci 19:1–288

    Article  Google Scholar 

  • Kocks UF, Tomé CN, Wenk HR (2000) Texture and anisotropy: preferred orientations in polycrystals and their effect on materials properties. Cambridge university Press, Cambridge

    MATH  Google Scholar 

  • Kozlov E, Litvinov B, Timofeeva L, Kurilo V, Orlov V (1996) Structural changes, phase transformations, and spalling in a sphere of delta-plutonium-gallium alloy in spherical stress waves. Phys Metals Metallog 81: 679–691

    Google Scholar 

  • Krehl P (2001) History of shock waves. In: Ben-Dor G, Igra O, Elperin T (eds) Handbook of shock waves vol 1. Academic Press, New York, pp 1–142. https://doi.org/10.1016/B978-012086430-0/50003-8

    Google Scholar 

  • Krehl P (2009) History of shock waves, explosions and impact: a chronological and biographical reference. Springer, Berlin

    Google Scholar 

  • Krehl P (2011) Shock wave physics and detonation physics: a stimulus for the emergence of numerous new branches in science and engineering. Eur Phys J H 36:85–152

    Article  Google Scholar 

  • Krehl P (2015) The classical Rankine-Hugoniot jump conditions, an important cornerstone of modern shock wave physics: ideal assumptions vs. reality. Eur Phys J H 40:159–204

    Article  Google Scholar 

  • Kubin L, Madec R, Devincre B (2003) Dislocation intersections and reactions in FCC and BCC crystals. MRS Proc 779:25–36. https://doi.org/10.1557/PROC-779-W1.6

    Google Scholar 

  • Kuksin AY, Yanilkin AV (2013) Atomistic simulation of the motion of dislocations in metals under phonon drag conditions. Phys Solid State 55:1010–1019. https://doi.org/10.1134/S1063783413050193

    Article  Google Scholar 

  • LaLone B, Gupta Y (2009) Elastic limit of x-cut quartz under shockless and shock wave compression: loading rate dependence. J Appl Phys 106:053526

    Article  Google Scholar 

  • Lea L (2018) Structural evolution in the dynamic plasticity of FCC metals. PhD Thesis, Cambridge University. https://doi.org/10.17863/CAM.20971

  • Lea L, Jardine A (2018) Characterisation of high rate plasticity in the uniaxial deformation of high purity copper at elevated temperatures. Int J Plast 41–52. https://doi.org/10.1016/j.ijplas.2017.11.006

    Article  Google Scholar 

  • Leibfried G (1950) Über den einfluß thermisch angeregter Schallwellen auf die plastische deformation. Zeitschrift für Physik 127:344–356. https://doi.org/10.1007/BF01329831

    Article  MathSciNet  MATH  Google Scholar 

  • Lothe J (1962) Theory of dislocation mobility in pure slip. J Appl Phys 33:2116–2125. https://doi.org/10.1063/1.1728907

    Article  Google Scholar 

  • Magness L (2002) An overview of the penetration performances of tungsten and depleted uranium alloy penetrators: ballistic performances and metallographic examinations. In: Carleone J, Orphal D (eds) Proceedings of 20th international symposium on ballistics. National Defense Industrial Association, Lancaster, pp 1104–1111

    Google Scholar 

  • Maloy S, Gray III G, Cady C, Rutherford R, Hixson R (2004) The influence of explosive-driven ’Taylor-wave’ shock prestraining on the structure/property behavior of 304 stainless steel. Metall Mater Trans A 35:2617–2624

    Article  Google Scholar 

  • Marsh S (1980) LASL shock Hugoniot data. University of California Press, Berkeley

    Google Scholar 

  • Meyers M (1994) Dynamic behavior of materials. Wiley, New York

    Book  MATH  Google Scholar 

  • Meyers M, Andrade U, Choksh I (1995) The effect of grain size on the high-strain, high-strain-rate behavior of copper, Metall Mater Trans A 26:2881–2893

    Article  Google Scholar 

  • Meyers M, Vöhringer O, Lubarda V (2001) The onset of twinning in metals: a constitutive description. Acta Mater 49:4025–4039. https://doi.org/10.1016/S1359-6454(01)00300-7

    Article  Google Scholar 

  • Meyers M, Benson D, Vöhringer O, Kad B, Xue Q, Fu HH (2002) Constitutive description of dynamic deformation: physically-based mechanisms. Mater Sci Eng A 322:194–216. https://doi.org/10.1016/S0921-5093(01)01131-5

    Article  Google Scholar 

  • Meyers MA, Aimone CT (1983) Dynamic fracture (spalling) of metals. Prog Mater Sci 28:1–96. https://doi.org/10.1016/0079-6425(83)90003-8

    Article  Google Scholar 

  • Mitchell A, Nellis W, Moriarty J, Heinle R, Holmes N, Tipton R, Repp G (1991) Equation of state of aluminum, copper, molybdenum and lead at shock pressures up to 2.4 TPa (24 Mbar). J Appl Phys 69:2981–2986

    Article  Google Scholar 

  • Mullin S, Walker J, Weiss C, Leslie P (2005) Impact and penetration of B4C ceramic, aluminum and beryllium by depleted uranium rods at 2.0 km/s. In: Flis W, Scott B (eds) Proceedings of 22nd international symposium on ballistics. DEStech Publications Inc., Lancaster, pp 917–924

    Google Scholar 

  • Nabarro F (1980) Fifty-year study of the Peierls-Nabarro stress. Mater Sci Eng A XI:810–814

    Google Scholar 

  • Nabarro F (1989) The Peierls stress for a wide dislocation. Mater Sci Eng A 113:315–326

    Article  Google Scholar 

  • Neuman F (1964) Momentum transfer and cratering effects produced by giant laser pulses. Appl Phys Lett 4:167–169

    Article  Google Scholar 

  • Olmsted D, Hector L, Curtin W, Clifton R (2005) Atomistic simulations of dislocation mobility in Al, Ni and Al/Mg alloys. Modell Simul Mater Sci Eng 13:371–388

    Article  Google Scholar 

  • Orowan E (1940) Problems of plastic gliding. Proc Phys Soc 52:8–22

    Article  Google Scholar 

  • Parameswaran VR, Urabe N, Weertman J (1972) Dislocation mobility in aluminum. J Appl Phys 43:2982–2986. https://doi.org/10.1063/1.1661644

    Article  Google Scholar 

  • Peach M, Koehler J (1950) The forces exerted on dislocations and the stress fields produced by them. Phys Rev 80:436–439

    Article  MathSciNet  MATH  Google Scholar 

  • Petch NJ (1953) The cleavage strength of polycrystals. J Iron Steel inst 174:25–28

    Google Scholar 

  • Preston D, Tonks D, Wallace D (2003) Model of plastic deformation for extreme loading conditions. J Appl Phys 93:211–220. https://doi.org/10.1063/1.1524706

    Article  Google Scholar 

  • Ragan C, Silbert M, Diven B (1977) Shock compression of molybdenum to 2.0 TPa by means of a nuclear explosion. J Appl Phys 47:2860–2870

    Article  Google Scholar 

  • Ragan III C (1984) Shock-wave experiments at threefold compression. Phys Rev A 29:1391–1402

    Article  Google Scholar 

  • Rankine W (1870) On the thermodynamic theory of waves of finite longitudinal disturbance. Phil Trans R Soc Lond 160:277–288

    Article  Google Scholar 

  • Reed B (2015) The physics of the Manhattan Project. Springer, Berlin

    MATH  Google Scholar 

  • Regazzoni G, Kocks U, Follansbee P (1987) Dislocation kinetics at high strain rates. Acta Metall 35:2865–2875. https://doi.org/10.1016/0001-6160(87)90285-9

    Article  Google Scholar 

  • Remington T, Remington B, Hahn E, Meyers M (2017) Deformation and failure in extreme regimes by high-energy pulsed lasers: a review. Mater Sci Eng A 688:429–458

    Article  Google Scholar 

  • Rittel D, Zhang L, Osovski S (2017) The dependence of the Taylor – Quinney coefficient on the dynamic loading mode. J Mech Phys Solids 107:96–114. https://doi.org/10.1016/j.jmps.2017.06.016

    Article  Google Scholar 

  • Roos A, De Hosson J, Cleveringa H, Van der Giessen E (1999) Fast-moving dislocations in high strain rate deformation. University Library Groningen. http://hdl.handle.net/11370/a0c6e779-88a6-4b96-909c-c01c42284332

  • Salvado F, Teixeira-Dias F, Walley S, Lea L, Cardoso J (2017) A review on the strain rate dependency of the dynamic viscoplastic response of FCC metals. Prog Mater Sci 88:186–231. https://doi.org/10.1016/j.pmatsci.2017.04.004

    Article  Google Scholar 

  • Sorensen B, Kimsey K, Zukas J, Frank K (1998) A penetration model for steel-jacketed depleted uranium penetrators. In: Levine H (ed) Structures under extreme loading conditions. PVP, vol 361. American Society of Mechanical Engineers, New York, pp 331–338

    Google Scholar 

  • Stokes E (1848) On a difficulty in the theory of sound. Philos Mag (Ser 3) 33:349–356

    Google Scholar 

  • Strachan A, Çağ ın T, Goddard WA (2001) Critical behavior in spallation failure of metals. Phys Rev B 63:060103. https://doi.org/10.1103/PhysRevB.63.060103

  • Swift D, Hawreliak J, Braun D, Kritcher A, Glenzer S, Collins G, Rothman S, Chapman D, Rose S (2012) Gigabar material properties experiments on NIF and OMEGA. AIP Conf Proc 1426:477–480

    Article  Google Scholar 

  • Taylor G (1934) The mechanism of plastic deformation of crystals. Proc R Soc Lond A 145:362–404

    Article  MATH  Google Scholar 

  • Taylor G, Quinney H (1934) The latent energy remaining in a metal after cold working. Proc R Soc Lond A 143:307–326. https://doi.org/10.1098/rspa.1934.0004

    Article  Google Scholar 

  • Taylor J (1968) Hypervelocity impact phenomena. Academic Press, New York

    Google Scholar 

  • Thunborg S Jr, Ingram G, Graham R (1964) Compressed gas gun for controlled planar impacts over a wide velocity range. Rev Sci Instrum 35:11–14

    Article  Google Scholar 

  • Tinder R, Trzil J (1973) Millimicroplastic burst phenomena in zinc monocrystals. Acta Metall 21:975–989. https://doi.org/10.1016/0001-6160(73)90154-5

    Article  Google Scholar 

  • Trunin R (1998) Shock compression of condensed materials. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Uchic M, Dimiduk D, Wheeler R, Shade P, Fraser H (2006) Application of micro-sample testing to study fundamental aspects of plastic flow. Scr Mater 54:759–764. https://doi.org/10.1016/j.scriptamat.2005.11.016

    Article  Google Scholar 

  • Viswanathan UK, Dey GK, Asundi MK (1993) Precipitation hardening in 350 grade maraging steel. Metall Trans A 24:2429–2442. https://doi.org/10.1007/BF02646522

    Article  Google Scholar 

  • Voce E (1948) The relationship between stress and strain for homogeneous deformation. J Inst Metals 74: 537–562

    Google Scholar 

  • Voronov F, Vereshchagin L (1961) The influence of hydrostatic pressure on the elastic properties of metals. 1: Experimental data. Phys Metals Metallog 11:111–118

    Google Scholar 

  • Walker J, Mullin S, Weiss C, Leslie P (2006) Penetration of boron carbide, aluminum, and beryllium alloys by depleted uranium rods: modeling and experimentation. Int J Impact Eng 33:826–836

    Article  Google Scholar 

  • Walley S, Field J (2016) Elastic wave propagation in materials. In: Reference module in materials science and materials engineering. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-12-803581-8.02945-3

    Book  Google Scholar 

  • Walley S, Field J, Pope P, Safford N (2000) Comparison of two methods of measuring the rapid temperature rises in split Hopkinson bar specimens. Rev Sci Instrum 71:1766–1771

    Article  Google Scholar 

  • Weertman J (1961) Response of metals to high velocity deformation. Interscience, New-York

    Google Scholar 

  • Weertman J, Weertman J (1980) Moving dislocations. In: Nabarro FR ed Dislocations in solids vol 3. North-Holland Publ. Co., Amsterdam, pp 1–60

    MATH  Google Scholar 

  • Weiss J, Richeton T, Louchet F, Chmelik F, Dobron P, Entemeyer D, Lebyodkin M, Lebedkina T, Fressengeas C, McDonald R (2007) Evidence for universal intermittent crystal plasticity from acoustic emission and high-resolution extensometry experiments. Phys Rev B 76:224110. https://doi.org/10.1103/PhysRevB.76.224110

    Article  Google Scholar 

  • Wickham L, Schwarz K, Stölken J (1999) Rules for forest interactions between dislocations. Phys Rev Lett 83:4574–4577. https://doi.org/10.1103/PhysRevLett.83.4574

    Article  Google Scholar 

  • Yoshiaki K, Yoshio H (1975) Lattice thermal conductivity of crystals containing dislocations. J Phys Soc Jpn 38:471–479. https://doi.org/10.1143/JPSJ.38.471

    Article  Google Scholar 

  • Zerilli F, Armstrong R (1987) Dislocation-mechanics-based constitutive relations for material dynamics calculations. J Appl Phys 61:1816–1825. https://doi.org/10.1063/1.338024

    Article  Google Scholar 

  • Zhernokletov M (1998) Shock compression and isentropic expansion of natural uranium. High Temp 36:214–221

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lewis J. Lea .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lea, L.J., Walley, S.M. (2019). High Strain Rate Metal Plasticity. In: Altenbach, H., Öchsner, A. (eds) Encyclopedia of Continuum Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53605-6_219-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53605-6_219-1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53605-6

  • Online ISBN: 978-3-662-53605-6

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics