Skip to main content

Ceramic Cutting Tools

  • Reference work entry
  • First Online:
CIRP Encyclopedia of Production Engineering
  • 194 Accesses

Synonyms

Advanced ceramic; Ceramic machining tool; Engineering ceramic; Fine ceramic (Japan); Superhard cutting material; Technical ceramic

Definition

Ceramics are inorganic, nonmetallic materials. The structure of ceramics may be crystalline or partly crystalline (having intergranular amorphous phases). The definition of ceramic is often restricted to inorganic crystalline materials.

Ceramics are primarily divided into two classes: whiteware ceramic and technical ceramic (refer to section “Synonyms”). Whiteware ceramics typically possess poor mechanical properties. Technical ceramic materials are of high purity and are designed for specific application and use. Ceramics used in wear applications are harder compared to metallic materials, maintain strength and hardness, and are chemically inert at high temperatures. The combination of hardness, high-temperature strength, and chemical resistivity makes ceramics important cutting tool materials.

Theory and Application

Introduction

Ceramic...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 869.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Becher et al (1998) Microstructural design of silicon nitride with improved fracture toughness: I, effects of grain shape and size. Am Ceram Soc 81(11):2821–2830

    Article  Google Scholar 

  • Becher et al (2006) Influence of additives on anisotropic grain growth in silicon nitride ceramics. Mater Sci Eng A 422:85–91

    Article  Google Scholar 

  • Belcher et al (1988) Toughening behavior in whisker-reinforced ceramic matrix composites. J Am Ceram Soc 71:1050–1061

    Article  Google Scholar 

  • Belmonte et al (2010) Spark plasma sintering: a powerful tool to develop new silicon nitride-based materials. J Eur Ceram Soc 30(14):2937–2946

    Article  Google Scholar 

  • Blugan et al (2005) Fractography, mechanical properties, and microstructure of commercial silicon nitride–titanium nitride composites. J Am Ceram Soc 88(4):926–933

    Article  Google Scholar 

  • Bradley et al (1989) Silicon carbide whisker stability during processing of silicon nitride matrix composites. J Am Ceram Soc 12:628–636

    Article  Google Scholar 

  • Carman et al (2009) Grain boundary evolution in sm- and nd-sialons during post-sintering heat treatment. J Aus Ceram Soc 45(1):27–34

    Google Scholar 

  • Casto et al (1996) Machining of steel with advanced ceramic cutting tools. Key Eng Mater 114:105–134

    Google Scholar 

  • Chen et al (2003) Development of tough alpha sialon. Key Eng Mater 237:65–78

    Google Scholar 

  • Chockalingam S et al (2009) Phase transformation and densification behavior of microwave sintered Si3N4–Y2O3–MgO–ZrO2 system. Int J Appl Ceram Technol 6(1):102–110

    Article  Google Scholar 

  • Feng et al (2003) Effect of amount of additives and post-heat treatment on the microstructure and mechanical properties of yttrium–α-sialon ceramics. J Am Ceram Soc 86(12):2136–2142

    Article  Google Scholar 

  • Feng et al (2006) Microstructures of microwave⃞sintered silicon nitride with zirconia as secondary particulates. J Am Ceram Soc 89(12):3770–3777

    Article  Google Scholar 

  • Garnier et al (2005) Influence of sic whisker morphology and nature of sic/al2o3 interface on thermomechanical properties of sic reinforced Al2O3 composites. J Eur Ceram Soc 25:3485–3493

    Google Scholar 

  • Hoffman MJ, Holzer S (2003) Processing and microstructural evolution of rare earth containing sialons. Key Eng Mater 237:141–148

    Google Scholar 

  • Huang et al (2012) Effect of Y-α-Sialon seeding and holding time on the formation of elongated (Ca,Dy)-α-Sialon crystals prepared via carbothermal reduction and nitridation. J Am Ceram Soc 95(9):2777–2781

    Article  Google Scholar 

  • Hutchison JW (1989) Theoretical and applied mechanics. In: Germain P, Piau M, Caillerie D (eds). Elsevier, p 139

    Google Scholar 

  • Ighodaro et al (2008) Fracture toughness enhancement for alumina systems: a review. J Appl Ceram Technol 5(3):313–323

    Article  Google Scholar 

  • Jianxin et al (2005) Self-lubricating behaviors of al2o3/tib2 ceramic tools in dry high-speed machining of hardened steel. J Eur Ceram Soc 25:1073–1079

    Google Scholar 

  • Kamanduri R, Samanta SK (1989) ASM handbook, vol 16. ASM International, Materials Park, pp 98–104

    Google Scholar 

  • Kitayama et al (2001) Thermal conductivity of β-Si3N4: III, effect of rare-earth (RE 5 La, Nd, Gd, Y, Yb, and Sc) oxide additives. J Am Ceram Soc 84(2):353–358

    Article  Google Scholar 

  • Kleebe et al (1999) Microstructure and fracture toughness of Si3N4 ceramics. J Am Ceram Soc 82(7):1857–1867

    Article  Google Scholar 

  • Kodama et al (1990) Toughening of silicon nitride matrix composites by the addition of both silicon carbide whiskers and silicon carbide particles. J Am Ceram Soc 73(3):78–83

    Article  MathSciNet  Google Scholar 

  • Krishnamurthy S, Sivashankaran V (1994) Machining of cast iron with advanced ceramic tools. Key Eng Mater 96:221-0

    Google Scholar 

  • Liu et al (2008) Effect of different rare-earth on microstructure and properties of α-sialon ceramics. J Mater Sci Technol 24(6):878–882

    Google Scholar 

  • Mandal H (1999) Preparation of multiple-cation α-sialon ceramics containing lanthanum. J Am Ceram Soc 82(1):229–232

    Article  MathSciNet  Google Scholar 

  • Markys et al (1993) Microstructure and fracture toughness of hot pressed zirconia toughened sialon. J Am Ceram Soc 76(6):1401–1408

    Article  Google Scholar 

  • Nishimura et al (1995) Fabrication of silicon nitride nano-ceramics by spark plasma sintering. J Mater Sci Lett 14(15):1046–1047

    Article  Google Scholar 

  • North B (1987) Ceramic cutting tools, a review. Int J High Technol Ceram 3:113–127

    Article  Google Scholar 

  • Osayande L et al (2008) Fracture toughness enhancement for alumina systems: a review. Int J Appl Ceram Technol 5(3):313–323

    Article  Google Scholar 

  • Park et al (1998) Extra-large grains in the silicon nitride ceramics doped with yttria and hafnia. J Am Ceram Soc 81(7):1876–1880

    Article  Google Scholar 

  • Pettersson P, Johnsson M (2003) Thermal shock properties of alumina reinforced with Ti(C,N) whiskers. J Eur Ceram Soc 23:309–313

    Google Scholar 

  • Sajgalik et al (2006) In situ preparation of Si3N4/SiC nanocomposites for cutting tools application. Int J Appl Ceram Technol 3(1):41–46

    Google Scholar 

  • Santos et al (2008) High temperature properties of silicon nitride with neodymium oxide additions. Mater Sci Forum 591–593:560–564

    Google Scholar 

  • Satet et al (2005) Influence of the rare-earth element on the mechanical properties of RE–Mg-Bearing Silicon Nitride. J Am Ceram Soc 88(9):2485–2490

    Article  Google Scholar 

  • Wang et al (1996) Grain boundary films in rare earth glass based silicon nitride. J Am Ceram Soc 79(3):788–792

    Article  Google Scholar 

  • Ye et al (2003) Effect of amount of additives and post-heat treatment on the microstructure and mechanical properties of yttrium–α-sialon ceramics, J Am Ceram Soc 86(12):2136–2142

    Google Scholar 

  • Ye et al (2004) Microstructural development of Y-Α/(Î’)-sialons after post heat-treatment and its effect on mechanical properties. Ceram Int 30:229–238

    Google Scholar 

  • Yin et al (2013) Preparation and characterization of Al2O3/Tic micro-nano-composite ceramic tool materials. Ceram Int 39:4253–4262

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raouf Ben Amor .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 CIRP

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Amor, R.B., Banerjee, D. (2019). Ceramic Cutting Tools. In: Chatti, S., Laperrière, L., Reinhart, G., Tolio, T. (eds) CIRP Encyclopedia of Production Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53120-4_16687

Download citation

Publish with us

Policies and ethics