Skip to main content

Biologische Grundlagen der Aufmerksamkeitsdefizits-/Hyperaktivitätsstörung (ADHS) des Erwachsenenalters

  • Living reference work entry
  • First Online:
  • 2207 Accesses

Zusammenfassung

Die Aufmerksamkeitsdefizits-/Hyperaktivitätsstörung des Erwachsenenalters ist eine weltweit häufige, psychiatrische Erkrankung mit Beginn in der Kindheit. Die Heritabilität wird geschätzt aus Zwillingsstudien mit bis zu 80 % angegeben. Von den bisher in Familien- und Kopplungsstudien sowie hypothesenfreien genomweiten Assoziationsstudien (genome-wide association studies, GWAS) gefundenen Risikogenvarianten konnten nur wenige Gene repliziert werden. Die Ursachen liegen vermutlich darin, dass es sich um eine komplex-genetische Erkrankung handelt und zum Erkrankungsrisiko nicht nur genetische Faktoren miteinander interagieren, sondern auch epigenetische Faktoren und Umweltfaktoren beitragen. Zudem verändert sich der Einfluss verschiedener Faktoren während der Lebensspanne, man spricht also von einer Gen-Umwelt-Entwicklungsinteraktion in der Äthiopathogenese der adulten ADHS.

This is a preview of subscription content, log in via an institution.

Literatur

  • Aarsland, T. I., Landaas, E. T., Hegvik, T. A., Ulvik, A., Halmoy, A., Ueland, P. M., & Haavik, J. (2015). Serum concentrations of kynurenines in adult patients with attention-deficit hyperactivity disorder (ADHD): A case-control study. Behavioral and Brain Functions, 11(1), 36.

    Article  PubMed  PubMed Central  Google Scholar 

  • Acosta, M. T., Velez, J. I., Bustamante, M. L., Balog, J. Z., Arcos-Burgos, M., & Muenke, M. (2011). A two-locus genetic interaction between LPHN3 and 11q predicts ADHD severity and long-term outcome. Translational Psychiatry, 1, e17.

    Article  PubMed  PubMed Central  Google Scholar 

  • Andrade, C. (2016). Use of acetaminophen (paracetamol) during pregnancy and the risk of attention-deficit/hyperactivity disorder in the offspring. The Journal of Clinical Psychiatry, 77(3), e312–e314.

    Article  PubMed  Google Scholar 

  • Aparecida da Silva, M., Cordeiro, Q., Louza, M., & Vallada, H. (2011). Lack of association between a 3′UTR VNTR polymorphism of dopamine transporter gene (SLC6A3) and ADHD in a Brazilian sample of adult patients. Journal of Attention Disorders, 15(4), 305–309.

    Article  PubMed  Google Scholar 

  • Arcos-Burgos, M., & Muenke, M. (2010). Toward a better understanding of ADHD: LPHN3 gene variants and the susceptibility to develop ADHD. Attention Deficit and Hyperactivity Disorders, 2(3), 139–147.

    Article  PubMed  PubMed Central  Google Scholar 

  • Arcos-Burgos, M., et al. (2004). Pedigree disequilibrium test (PDT) replicates association and linkage between DRD4 and ADHD in multigenerational and extended pedigrees from a genetic isolate. Molecular Psychiatry, 9(3), 252–259.

    Article  PubMed  Google Scholar 

  • Arcos-Burgos, M., et al. (2010). A common variant of the latrophilin 3 gene, LPHN3, confers susceptibility to ADHD and predicts effectiveness of stimulant medication. Molecular Psychiatry, 15(11), 1053–1066.

    Article  PubMed  Google Scholar 

  • Arias-Vasquez, A., et al. (2011). CDH13 is associated with working memory performance in attention deficit/hyperactivity disorder. Genes, Brain, and Behavior, 10(8), 844–851.

    Article  PubMed  Google Scholar 

  • Bale, T. L. (2014). Lifetime stress experience: Transgenerational epigenetics and germ cell programming. Dialogues in Clinical Neuroscience, 16(3), 297–305.

    PubMed  PubMed Central  Google Scholar 

  • Banaschewski, T., Becker, K., Dopfner, M., Holtmann, M., Rosler, M., & Romanos, M. (2017). Attention-deficit/hyperactivity disorder. Deutsches Ärzteblatt International, 114(9), 149–159.

    PubMed  PubMed Central  Google Scholar 

  • Banerjee, T. D., Middleton, F., & Faraone, S. V. (2007). Environmental risk factors for attention-deficit hyperactivity disorder. Acta Paediatrica, 96(9), 1269–1274.

    Article  PubMed  Google Scholar 

  • Barkley, R. A., Smith, K. M., Fischer, M., & Navia, B. (2006). An examination of the behavioral and neuropsychological correlates of three ADHD candidate gene polymorphisms (DRD4 7+, DBH TaqI A2, and DAT1 40 bp VNTR) in hyperactive and normal children followed to adulthood. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 141B(5), 487–498.

    Article  Google Scholar 

  • Bateman, B., Warner, J. O., Hutchinson, E., Dean, T., Rowlandson, P., Gant, C., Grundy, J., Fitzgerald, C., & Stevenson, J. (2004). The effects of a double blind, placebo controlled, artificial food colourings and benzoate preservative challenge on hyperactivity in a general population sample of preschool children. Archives of Disease in Childhood, 89(6), 506–511.

    Article  PubMed  PubMed Central  Google Scholar 

  • Begum, F., Ghosh, D., Tseng, G. C., & Feingold, E. (2012). Comprehensive literature review and statistical considerations for GWAS meta-analysis. Nucleic Acids Research, 40(9), 3777–3784.

    Article  PubMed  PubMed Central  Google Scholar 

  • Beilharz, J. E., Kaakoush, N. O., Maniam, J., & Morris, M. J. (2017). Cafeteria diet and probiotic therapy: Cross talk among memory, neuroplasticity, serotonin receptors and gut microbiota in the rat. Molecular Psychiatry, 23(2), 351–361. https://doi.org/10.1038/mp.2017.38.

    Article  PubMed  Google Scholar 

  • Bellisle, F. (2004). Effects of diet on behaviour and cognition in children. The British Journal of Nutrition, 92(Suppl 2), S227–S232.

    Article  PubMed  Google Scholar 

  • Bernardi, S., Cortese, S., Solanto, M., Hollander, E., & Pallanti, S. (2010). Bipolar disorder and comorbid attention deficit hyperactivity disorder. A distinct clinical phenotype? Clinical characteristics and temperamental traits. The World Journal of Biological Psychiatry, 11(4), 656–666.

    Article  PubMed  Google Scholar 

  • Biederman, J., et al. (1992). Further evidence for family-genetic risk factors in attention deficit hyperactivity disorder. Patterns of comorbidity in probands and relatives psychiatrically and pediatrically referred samples. Archives of General Psychiatry, 49(9), 728–738.

    Article  PubMed  Google Scholar 

  • Biederman, J., et al. (2009). Effect of candidate gene polymorphisms on the course of attention deficit hyperactivity disorder. Psychiatry Research, 170(2–3), 199–203.

    Article  PubMed  PubMed Central  Google Scholar 

  • Biederman, J., Petty, C., Spencer, T. J., Woodworth, K. Y., Bhide, P., Zhu, J., & Faraone, S. V. (2014). Is ADHD a risk for posttraumatic stress disorder (PTSD)? Results from a large longitudinal study of referred children with and without ADHD. The World Journal of Biological Psychiatry, 15(1), 49–55.

    Article  PubMed  Google Scholar 

  • Bilici, M., Yildirim, F., Kandil, S., Bekaroglu, M., Yildirmis, S., Deger, O., Ulgen, M., Yildiran, A., & Aksu, H. (2004). Double-blind, placebo-controlled study of zinc sulfate in the treatment of attention deficit hyperactivity disorder. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 28(1), 181–190.

    Article  Google Scholar 

  • Brookes, K. J., Hawi, Z., Park, J., Scott, S., Gill, M., & Kent, L. (2010). Polymorphisms of the steroid sulfatase (STS) gene are associated with attention deficit hyperactivity disorder and influence brain tissue mRNA expression. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 153B(8), 1417–1424.

    Article  Google Scholar 

  • Brookes, K. J., Neale, B. M., Sugden, K., Khan, N., Asherson, P., & D’Souza, U. M. (2007). Relationship between VNTR polymorphisms of the human dopamine transporter gene and expression in post-mortem midbrain tissue. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 144B(8), 1070–1078.

    Article  Google Scholar 

  • Brown, A. B., et al. (2011). Relationship of DAT1 and adult ADHD to task-positive and task-negative working memory networks. Psychiatry Research, 193(1), 7–16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruchmuller, K., Margraf, J., & Schneider, S. (2012). Is ADHD diagnosed in accord with diagnostic criteria? Overdiagnosis and influence of client gender on diagnosis. Journal of Consulting and Clinical Psychology, 80(1), 128–138.

    Article  PubMed  Google Scholar 

  • Bruggemann, D., et al. (2007). No association between a common haplotype of the 6 and 10-repeat alleles in intron 8 and the 3′UTR of the DAT1 gene and adult attention deficit hyperactivity disorder. Psychiatric Genetics, 17(2), 121.

    Article  PubMed  Google Scholar 

  • Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1–38.

    Article  PubMed  Google Scholar 

  • Cao, M., Shu, N., Cao, Q., Wang, Y., & He, Y. (2014). Imaging functional and structural brain connectomics in attention-deficit/hyperactivity disorder. Molecular Neurobiology, 50(3), 1111–1123.

    Article  PubMed  Google Scholar 

  • Carpentier, P. J., et al. (2013). Shared and unique genetic contributions to attention deficit/hyperactivity disorder and substance use disorders: A pilot study of six candidate genes. European Neuropsychopharmacology, 23(6), 448–457.

    Article  PubMed  Google Scholar 

  • Casas, M., et al. (2015). Exposure to bisphenol A during pregnancy and child neuropsychological development in the INMA-Sabadell cohort. Environmental Research, 142, 671–679.

    Article  PubMed  Google Scholar 

  • Cederlof, M., et al. (2014). Klinefelter syndrome and risk of psychosis, autism and ADHD. Journal of Psychiatric Research, 48(1), 128–130.

    Article  PubMed  Google Scholar 

  • Ceylan, M., Sener, S., Bayraktar, A. C., & Kavutcu, M. (2010). Oxidative imbalance in child and adolescent patients with attention-deficit/hyperactivity disorder. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 34(8), 1491–1494.

    Article  Google Scholar 

  • Ceylan, M. F., Sener, S., Bayraktar, A. C., & Kavutcu, M. (2012). Changes in oxidative stress and cellular immunity serum markers in attention-deficit/hyperactivity disorder. Psychiatry and Clinical Neurosciences, 66(3), 220–226.

    Article  PubMed  Google Scholar 

  • Chen, Y. C., et al. (2017). Neuroanatomic, epigenetic and genetic differences in monozygotic twins discordant for attention deficit hyperactivity disorder. Molecular Psychiatry, 23(3), 683–690. https://doi.org/10.1038/mp.2017.45.

    Article  PubMed  PubMed Central  Google Scholar 

  • Choudhry, Z., Sengupta, S. M., Grizenko, N., Fortier, M. E., Thakur, G. A., Bellingham, J., & Joober, R. (2012). LPHN3 and attention-deficit/hyperactivity disorder: Interaction with maternal stress during pregnancy. Journal of Child Psychology and Psychiatry, 53(8), 892–902.

    Article  PubMed  Google Scholar 

  • Chudal, R., et al. (2015). Parental age and the risk of attention-deficit/hyperactivity disorder: A nationwide, population-based cohort study. Journal of the American Academy of Child and Adolescent Psychiatry, 54(6), 487–494.e481.

    Article  PubMed  Google Scholar 

  • Class, Q. A., et al. (2014). Offspring psychopathology following preconception, prenatal and postnatal maternal bereavement stress. Psychological Medicine, 44(1), 71–84.

    Article  PubMed  Google Scholar 

  • Cnattingius, S. (2004). The epidemiology of smoking during pregnancy: Smoking prevalence, maternal characteristics, and pregnancy outcomes. Nicotine & Tobacco Research, 6(Suppl 2), S125–S140.

    Article  Google Scholar 

  • Cortese, S., Lecendreux, M., Bernardina, B. D., Mouren, M. C., Sbarbati, A., & Konofal, E. (2008). Attention-deficit/hyperactivity disorder, Tourette’s syndrome, and restless legs syndrome: The iron hypothesis. Medical Hypotheses, 70(6), 1128–1132.

    Article  PubMed  Google Scholar 

  • Cross-Disorder Group of the Psychiatric Genomics Consortium, et al. (2013a). Identification of risk loci with shared effects on five major psychiatric disorders: A genome-wide analysis. Lancet, 381(9875), 1371–1379.

    Google Scholar 

  • Cross-Disorder Group of the Psychiatric Genomics Consortium, et al. (2013b). Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nature Genetics, 45(9), 984–994.

    Google Scholar 

  • Dadds, M. R., Schollar-Root, O., Lenroot, R., Moul, C., & Hawes, D. J. (2016). Epigenetic regulation of the DRD4 gene and dimensions of attention-deficit/hyperactivity disorder in children. European Child & Adolescent Psychiatry, 25(10), 1081–1089.

    Article  Google Scholar 

  • Davids, E., Zhang, K., Tarazi, F. I., & Baldessarini, R. J. (2002). Stereoselective effects of methylphenidate on motor hyperactivity in juvenile rats induced by neonatal 6-hydroxydopamine lesioning. Psychopharmacology, 160(1), 92–98.

    Article  PubMed  Google Scholar 

  • Delamarre, A., & Meissner, W. G. (2017). Epidemiology, environmental risk factors and genetics of Parkinson’s disease. Presse Médicale, 46(2 Pt 1), 175–181.

    Article  PubMed  Google Scholar 

  • Ding, K., et al. (2016). DAT1 methylation is associated with methylphenidate response on oppositional and hyperactive-impulsive symptoms in children and adolescents with ADHD. The World Journal of Biological Psychiatry, 18(4), 291–299. https://doi.org/10.1080/15622975.2016.1224928.

    Article  PubMed  Google Scholar 

  • Egger, G., Liang, G., Aparicio, A., & Jones, P. A. (2004). Epigenetics in human disease and prospects for epigenetic therapy. Nature, 429(6990), 457–463.

    Article  PubMed  Google Scholar 

  • England, S. J., et al. (2011). L-Dopa improves restless legs syndrome and periodic limb movements in sleep but not attention-deficit-hyperactivity disorder in a double-blind trial in children. Sleep Medicine, 12(5), 471–477.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ewijk, H. van, Heslenfeld, D. J., Zwiers, M. P., Buitelaar, J. K., & Oosterlaan, J. (2012). Diffusion tensor imaging in attention deficit/hyperactivity disorder: A systematic review and meta-analysis. Neuroscience and Biobehavioral Reviews 36(4), 1093–1106.

    Google Scholar 

  • Fair, D. A., et al. (2010). Atypical default network connectivity in youth with attention-deficit/hyperactivity disorder. Biological Psychiatry, 68(12), 1084–1091.

    Article  PubMed  PubMed Central  Google Scholar 

  • Faraone, S. V., et al. (2015). Attention-deficit/hyperactivity disorder. Nature Reviews Disease Primers, 1, 15020.

    Article  PubMed  Google Scholar 

  • Franke, B., Neale, B. M., & Faraone, S. V. (2009). Genome-wide association studies in ADHD. Human Genetics, 126(1), 13–50.

    Article  PubMed  PubMed Central  Google Scholar 

  • Franke, B., et al. (2008). Association of the dopamine transporter (SLC6A3/DAT1) gene 9–6 haplotype with adult ADHD. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 147B(8), 1576–1579.

    Article  Google Scholar 

  • Franke, B., et al. (2010). Multicenter analysis of the SLC6A3/DAT1 VNTR haplotype in persistent ADHD suggests differential involvement of the gene in childhood and persistent ADHD. Neuropsychopharmacology, 35(3), 656–664.

    Article  PubMed  Google Scholar 

  • Franke, B., et al. (2012). The genetics of attention deficit/hyperactivity disorder in adults, a review. Molecular Psychiatry, 17(10), 960–987.

    Article  PubMed  Google Scholar 

  • Freitag, C. M., Hanig, S., Palmason, H., Meyer, J., Wust, S., & Seitz, C. (2009). Cortisol awakening response in healthy children and children with ADHD: Impact of comorbid disorders and psychosocial risk factors. Psychoneuroendocrinology, 34(7), 1019–1028.

    Article  PubMed  Google Scholar 

  • Furchgott, R. F., & Zawadzki, J. V. (1980). The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature, 288(5789), 373–376.

    Article  PubMed  Google Scholar 

  • Galler, J. R., Bryce, C. P., Zichlin, M. L., Fitzmaurice, G., Eaglesfield, G. D., & Waber, D. P. (2012). Infant malnutrition is associated with persisting attention deficits in middle adulthood. The Journal of Nutrition, 142(4), 788–794.

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia-Martinez, I., et al. (2016). Preliminary evidence for association of genetic variants in pri-miR-34b/c and abnormal miR-34c expression with attention deficit and hyperactivity disorder. Translational Psychiatry, 6(8), e879.

    Article  PubMed  PubMed Central  Google Scholar 

  • Geissler, J. M., International Parkinson Disease Genomics Consortium members, Romanos, M., Gerlach, M., Berg, D., & Schulte, C. (2017). No genetic association between attention-deficit/hyperactivity disorder (ADHD) and Parkinson’s disease in nine ADHD candidate SNPs. Attention Deficit and Hyperactivity Disorders, 9, 121.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gelernter, J. (2015). Genetics of complex traits in psychiatry. Biological Psychiatry, 77(1), 36–42.

    Article  PubMed  Google Scholar 

  • Glessner, J. T., et al. (2009). Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature, 459(7246), 569–573.

    Article  PubMed  PubMed Central  Google Scholar 

  • Glover, V. (2015). Prenatal stress and its effects on the fetus and the child: Possible underlying biological mechanisms. Advances in Neurobiology, 10, 269–283.

    Article  PubMed  Google Scholar 

  • Green, T., et al. (2015). Elucidating X chromosome influences on attention deficit hyperactivity disorder and executive function. Journal of Psychiatric Research, 68, 217–225.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grevet, E. H., et al. (2007). Serotonin transporter gene polymorphism and the phenotypic heterogeneity of adult ADHD. Journal of Neural Transmission (Vienna), 114(12), 1631–1636.

    Article  Google Scholar 

  • Gross-Lesch, S., et al. (2013). Sex- and subtype-related differences in the comorbidity of adult ADHDs. Journal of Attention Disorders, 20(10), 855–866. https://doi.org/10.1177/1087054713510353.

    Article  PubMed  Google Scholar 

  • Grunewald, L., et al. (2016). Functional impact of an ADHD-associated DIRAS2 promoter polymorphism. Neuropsychopharmacology, 41(13), 3025–3031.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gunn, R. K., Keenan, M. E., & Brown, R. E. (2011). Analysis of sensory, motor and cognitive functions of the coloboma (C3Sn.Cg-Cm/J) mutant mouse. Genes, Brain, and Behavior, 10(5), 579–588.

    Article  PubMed  Google Scholar 

  • Hawi, Z., et al. (2013). DNA variation in the SNAP25 gene confers risk to ADHD and is associated with reduced expression in prefrontal cortex. PLoS One, 8(4), e60274.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hawi, Z., Cummins, T. D., Tong, J., Johnson, B., Lau, R., Samarrai, W., & Bellgrove, M. A. (2015). The molecular genetic architecture of attention deficit hyperactivity disorder. Molecular Psychiatry, 20(3), 289–297.

    Article  PubMed  Google Scholar 

  • He, L., & Hannon, G. J. (2004). MicroRNAs: Small RNAs with a big role in gene regulation. Nature Reviews. Genetics, 5(7), 522–531.

    Article  PubMed  Google Scholar 

  • Hodgkins, P., Montejano, L., Sasane, R., & Huse, D. (2011). Cost of illness and comorbidities in adults diagnosed with attention-deficit/hyperactivity disorder: A retrospective analysis. The Primary Care Companion for CNS Disorders, 13(2). https://doi.org/10.4088/PCC.10m01030.

  • Ignarro, L. J., Buga, G. M., Wood, K. S., Byrns, R. E., & Chaudhuri, G. (1987). Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proceedings of the National Academy of Sciences of the United States of America, 84(24), 9265–9269.

    Article  PubMed  PubMed Central  Google Scholar 

  • Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., Quinn, K., Sanislow, C., & Wang, P. (2010). Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders. The American Journal of Psychiatry, 167(7), 748–751.

    Article  PubMed  Google Scholar 

  • Jacob, C. P., et al. (2013). Acetylcholine-metabolizing butyrylcholinesterase (BCHE) copy number and single nucleotide polymorphisms and their role in attention-deficit/hyperactivity syndrome. Journal of Psychiatric Research, 47(12), 1902–1908.

    Article  PubMed  Google Scholar 

  • Jacob, C. P., et al. (2014). Sex- and subtype-related differences of personality disorders (Axis II) and personality traits in persistent ADHD. Journal of Attention Disorders, 20(12), 1056–1065.

    Article  PubMed  Google Scholar 

  • Jain, M., et al. (2012). A cooperative interaction between LPHN3 and 11q doubles the risk for ADHD. Molecular Psychiatry, 17(7), 741–747.

    Article  PubMed  Google Scholar 

  • Jarick, I., et al. (2014). Genome-wide analysis of rare copy number variations reveals PARK2 as a candidate gene for attention-deficit/hyperactivity disorder. Molecular Psychiatry, 19(1), 115–121.

    Article  PubMed  Google Scholar 

  • Johann, M., Bobbe, G., Putzhammer, A., & Wodarz, N. (2003). Comorbidity of alcohol dependence with attention-deficit hyperactivity disorder: Differences in phenotype with increased severity of the substance disorder, but not in genotype (serotonin transporter and 5-hydroxytryptamine-2c receptor). Alcoholism, Clinical and Experimental Research, 27(10), 1527–1534.

    Article  PubMed  Google Scholar 

  • Johansson, J., Landgren, M., Fernell, E., Lewander, T., & Venizelos, N. (2013). Decreased binding capacity (Bmax) of muscarinic acetylcholine receptors in fibroblasts from boys with attention-deficit/hyperactivity disorder (ADHD). Attention Deficit and Hyperactivity Disorders, 5(3), 267–271.

    Article  PubMed  PubMed Central  Google Scholar 

  • Johansson, J., et al. (2011). Altered tryptophan and alanine transport in fibroblasts from boys with attention-deficit/hyperactivity disorder (ADHD): An in-vitro study. Behavioral and Brain Functions, 7, 40.

    Article  PubMed  PubMed Central  Google Scholar 

  • Johansson, S., et al. (2008). Genetic analyses of dopamine related genes in adult ADHD patients suggest an association with the DRD5-microsatellite repeat, but not with DRD4 or SLC6A3 VNTRs. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 147B(8), 1470–1475.

    Article  Google Scholar 

  • Johansson, S., et al. (2010). Common variants in the TPH1 and TPH2 regions are not associated with persistent ADHD in a combined sample of 1636 adult cases and 1923 controls from four European populations. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 153B(5), 1008–1015.

    Google Scholar 

  • Johnson, C., et al. (2006). Pooled association genome scanning for alcohol dependence using 104,268 SNPs: Validation and use to identify alcoholism vulnerability loci in unrelated individuals from the collaborative study on the genetics of alcoholism. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 141B(8), 844–853.

    Article  Google Scholar 

  • Johnson, M., Ostlund, S., Fransson, G., Kadesjo, B., & Gillberg, C. (2009). Omega-3/omega-6 fatty acids for attention deficit hyperactivity disorder: A randomized placebo-controlled trial in children and adolescents. Journal of Attention Disorders, 12(5), 394–401.

    Article  PubMed  Google Scholar 

  • Kandemir, H., et al. (2014). Evaluation of several micro RNA (miRNA) levels in children and adolescents with attention deficit hyperactivity disorder. Neuroscience Letters, 580, 158–162.

    Article  PubMed  Google Scholar 

  • Karam, R. G., et al. (2015). Persistence and remission of ADHD during adulthood: A 7-year clinical follow-up study. Psychological Medicine, 45(10), 2045–2056.

    Article  PubMed  Google Scholar 

  • Kessler, R. C., et al. (2005). Patterns and predictors of attention-deficit/hyperactivity disorder persistence into adulthood: Results from the national comorbidity survey replication. Biological Psychiatry, 57(11), 1442–1451.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kittel-Schneider, S., et al. (2015). Multi-level biomarker analysis of nitric oxide synthase isoforms in bipolar disorder and adult ADHD. Journal of Psychopharmacology, 29(1), 31–38.

    Article  PubMed  Google Scholar 

  • Kittel-Schneider, S., et al. (2016). Cytogenetic effects of chronic methylphenidate treatment and chronic social stress in adults with attention-deficit/hyperactivity disorder. Pharmacopsychiatry, 49(4), 146–154. https://doi.org/10.1055/s-0035-1569361.

    Article  PubMed  Google Scholar 

  • Kittles, R. A., Long, J. C., Bergen, A. W., Eggert, M., Virkkunen, M., Linnoila, M., & Goldman, D. (1999). Cladistic association analysis of Y chromosome effects on alcohol dependence and related personality traits. Proceedings of the National Academy of Sciences of the United States of America, 96(7), 4204–4209.

    Article  PubMed  PubMed Central  Google Scholar 

  • Klein, M., et al. (2015). Converging evidence does not support GIT1 as an ADHD risk gene. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 168(6), 492–507.

    Article  Google Scholar 

  • Konofal, E., et al. (2008). Effects of iron supplementation on attention deficit hyperactivity disorder in children. Pediatric Neurology, 38(1), 20–26.

    Article  PubMed  Google Scholar 

  • Krasnoperov, V. G., et al. (1997). alpha-Latrotoxin stimulates exocytosis by the interaction with a neuronal G-protein-coupled receptor. Neuron, 18(6), 925–937.

    Article  PubMed  Google Scholar 

  • Labbe, A., Liu, A., Atherton, J., Gizenko, N., Fortier, M. E., Sengupta, S. M., & Ridha, J. (2012). Refining psychiatric phenotypes for response to treatment: Contribution of LPHN3 in ADHD. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 159B(7), 776–785.

    Article  Google Scholar 

  • Lackschewitz, H., Huther, G., & Kroner-Herwig, B. (2008). Physiological and psychological stress responses in adults with attention-deficit/hyperactivity disorder (ADHD). Psychoneuroendocrinology, 33(5), 612–624.

    Article  PubMed  Google Scholar 

  • Landaas, E. T., et al. (2010). An international multicenter association study of the serotonin transporter gene in persistent ADHD. Genes, Brain, and Behavior, 9(5), 449–458.

    Article  PubMed  Google Scholar 

  • Lange, M., et al. (2012a). The ADHD-linked gene Lphn3.1 controls locomotor activity and impulsivity in zebrafish. Molecular Psychiatry, 17(9), 855.

    Article  PubMed  Google Scholar 

  • Lange, M., et al. (2012b). The ADHD-susceptibility gene lphn3.1 modulates dopaminergic neuron formation and locomotor activity during zebrafish development. Molecular Psychiatry, 17(9), 946–954.

    Article  PubMed  Google Scholar 

  • Langley, K., Holmans, P. A., van den Bree, M. B., & Thapar, A. (2007). Effects of low birth weight, maternal smoking in pregnancy and social class on the phenotypic manifestation of attention deficit hyperactivity disorder and associated antisocial behaviour: Investigation in a clinical sample. BMC Psychiatry, 7, 26.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lasky-Su, J., et al. (2008a). Genome-wide association scan of the time to onset of attention deficit hyperactivity disorder. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 147B(8), 1355–1358.

    Article  Google Scholar 

  • Lasky-Su, J., et al. (2008b). Family-based association analysis of a statistically derived quantitative traits for ADHD reveal an association in DRD4 with inattentive symptoms in ADHD individuals. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 147B(1), 100–106.

    Article  Google Scholar 

  • Lasky-Su, J., et al. (2008c). Genome-wide association scan of quantitative traits for attention deficit hyperactivity disorder identifies novel associations and confirms candidate gene associations. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 147B(8), 1345–1354.

    Article  Google Scholar 

  • Lesch, K. P., Merker, S., Reif, A., & Novak, M. (2013). Dances with black widow spiders: Dysregulation of glutamate signalling enters centre stage in ADHD. European Neuropsychopharmacology, 23(6), 479–491.

    Article  PubMed  Google Scholar 

  • Lesch, K. P., et al. (2008). Molecular genetics of adult ADHD: Converging evidence from genome-wide association and extended pedigree linkage studies. Journal of Neural Transmission, 115(11), 1573–1585.

    Article  PubMed  Google Scholar 

  • Lesch, K. P., et al. (2011). Genome-wide copy number variation analysis in attention-deficit/hyperactivity disorder: Association with neuropeptide Y gene dosage in an extended pedigree. Molecular Psychiatry, 16(5), 491–503.

    Article  PubMed  Google Scholar 

  • Lewis, C. M., et al. (2003). Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: Schizophrenia. American Journal of Human Genetics, 73(1), 34–48.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin, T. B., et al. (2015). Fbxo3-dependent Fbxl2 ubiquitination mediates neuropathic allodynia through the TRAF2/TNIK/GluR1 cascade. The Journal of Neuroscience, 35(50), 16545–16560.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, Y. S., et al. (2017). The association of SNAP25 gene polymorphisms in attention deficit/hyperactivity disorder: A systematic review and meta-analysis. Molecular Neurobiology, 54(3), 2189–2200.

    Article  PubMed  Google Scholar 

  • Lockridge, O. (1988). Structure of human serum cholinesterase. Bioessays, 9(4), 125–128.

    Article  PubMed  Google Scholar 

  • Lu, A. T., et al. (2008). Association of the cannabinoid receptor gene (CNR1) with ADHD and post-traumatic stress disorder. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 147B(8), 1488–1494.

    Article  Google Scholar 

  • MacQueen, G., Surette, M., & Moayyedi, P. (2017). The gut microbiota and psychiatric illness. Journal of Psychiatry & Neuroscience, 42(2), 75–77.

    Article  Google Scholar 

  • Majdak, P., et al. (2016). A new mouse model of ADHD for medication development. Scientific Reports, 6, 39472.

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin, J., O’Donovan, M. C., Thapar, A., Langley, K., & Williams, N. (2015). The relative contribution of common and rare genetic variants to ADHD. Translational Psychiatry, 5, e506.

    Article  PubMed  PubMed Central  Google Scholar 

  • Martinez, A. F., Muenke, M., & Arcos-Burgos, M. (2011). From the black widow spider to human behavior: Latrophilins, a relatively unknown class of G protein-coupled receptors, are implicated in psychiatric disorders. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 156B(1), 1–10.

    Article  Google Scholar 

  • Mautner, V. F., Kluwe, L., Thakker, S. D., & Leark, R. A. (2002). Treatment of ADHD in neurofibromatosis type 1. Developmental Medicine and Child Neurology, 44(3), 164–170.

    Article  PubMed  Google Scholar 

  • Menon, P., et al. (2010). Impaired spine formation and learning in GPCR kinase 2 interacting protein-1 (GIT1) knockout mice. Brain Research, 1317, 218–226.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mettler, F. A. (1964). The substantia nigra and parkinsonism. Transactions of the American Neurological Association, 89, 68–73.

    PubMed  Google Scholar 

  • Middeldorp, C. M., et al. (2011). The genetic association between personality and major depression or bipolar disorder. A polygenic score analysis using genome-wide association data. Translational Psychiatry, 1, e50.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mil, N. H. van, et al. (2014). DNA methylation profiles at birth and child ADHD symptoms. Journal of Psychiatric Research 49, 51–59.

    Article  PubMed  Google Scholar 

  • Moffitt, T. E., et al. (2015). Is adult ADHD a childhood-onset neurodevelopmental disorder? Evidence from a four-decade longitudinal cohort study. The American Journal of Psychiatry. https://doi.org/10.1176/appi.ajp.2015.14101266.

    Article  PubMed  Google Scholar 

  • Muglia, P., Jain, U., Inkster, B., & Kennedy, J. L. (2002). A quantitative trait locus analysis of the dopamine transporter gene in adults with ADHD. Neuropsychopharmacology, 27(4), 655–662.

    PubMed  Google Scholar 

  • Muglia, P., Jain, U., Macciardi, F., & Kennedy, J. L. (2000). Adult attention deficit hyperactivity disorder and the dopamine D4 receptor gene. American Journal of Medical Genetics, 96(3), 273–277.

    Article  PubMed  Google Scholar 

  • Muller, D. J., et al. (2008). Serotonin transporter gene and adverse life events in adult ADHD. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 147B(8), 1461–1469.

    Article  Google Scholar 

  • Muller, D. J., et al. (2010). Correlation of a set of gene variants, life events and personality features on adult ADHD severity. Journal of Psychiatric Research, 44(9), 598–604.

    Article  PubMed  Google Scholar 

  • Nakada, M., Yamada, A., Takino, T., Miyamori, H., Takahashi, T., Yamashita, J., & Sato, H. (2001). Suppression of membrane-type 1 matrix metalloproteinase (MMP)-mediated MMP-2 activation and tumor invasion by testican 3 and its splicing variant gene product, N-Tes. Cancer Research, 61(24), 8896–8902.

    PubMed  Google Scholar 

  • Neale, B. M., et al. (2008). Genome-wide association scan of attention deficit hyperactivity disorder. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 147B(8), 1337–1344.

    Article  Google Scholar 

  • Neale, B. M., et al. (2010a). Case-control genome-wide association study of attention-deficit/hyperactivity disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 49(9), 906–920.

    Article  PubMed  PubMed Central  Google Scholar 

  • Neale, B. M., et al. (2010b). Meta-analysis of genome-wide association studies of attention-deficit/hyperactivity disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 49(9), 884–897.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nemeth, N., Kovacs-Nagy, R., Szekely, A., Sasvari-Szekely, M., & Ronai, Z. (2013). Association of impulsivity and polymorphic microRNA-641 target sites in the SNAP-25 gene. PLoS One, 8(12), e84207.

    Article  PubMed  PubMed Central  Google Scholar 

  • Niarchou, M., Martin, J., Thapar, A., Owen, M. J., & van den Bree, M. B. (2015). The clinical presentation of attention deficit-hyperactivity disorder (ADHD) in children with 22q11.2 deletion syndrome. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 168(8), 730–738.

    Article  Google Scholar 

  • Nigg, J. T., & Breslau, N. (2007). Prenatal smoking exposure, low birth weight, and disruptive behavior disorders. Journal of the American Academy of Child and Adolescent Psychiatry, 46(3), 362–369.

    Article  PubMed  Google Scholar 

  • Obel, C., et al. (2011). Is maternal smoking during pregnancy a risk factor for hyperkinetic disorder? – Findings from a sibling design. International Journal of Epidemiology, 40(2), 338–345.

    Article  PubMed  Google Scholar 

  • Ohadi, M., et al. (2006). Attention-deficit/hyperactivity disorder (ADHD) association with the DAT1 core promoter -67 T allele. Brain Research, 1101(1), 1–4.

    Article  PubMed  Google Scholar 

  • Orsini, C. A., et al. (2016). Behavioral and transcriptomic profiling of mice null for Lphn3, a gene implicated in ADHD and addiction. Molecular Genetics & Genomic Medicine, 4(3), 322–343.

    Article  Google Scholar 

  • Park, S., et al. (2015). Associations between serotonin transporter gene (SLC6A4) methylation and clinical characteristics and cortical thickness in children with ADHD. Psychological Medicine, 45(14), 3009–3017. https://doi.org/10.1017/S003329171500094X.

    Article  PubMed  Google Scholar 

  • Partty, A., Kalliomaki, M., Wacklin, P., Salminen, S., & Isolauri, E. (2015). A possible link between early probiotic intervention and the risk of neuropsychiatric disorders later in childhood: A randomized trial. Pediatric Research, 77(6), 823–828.

    Article  PubMed  Google Scholar 

  • Pelsser, L. M., Frankena, K., Toorman, J., & Rodrigues Pereira, R. (2017). Diet and ADHD, reviewing the evidence: A systematic review of meta-analyses of double-blind placebo-controlled trials evaluating the efficacy of diet interventions on the behavior of children with ADHD. PLoS One, 12(1), e0169277.

    Article  PubMed  PubMed Central  Google Scholar 

  • Perez, F. A., & Palmiter, R. D. (2005). Parkin-deficient mice are not a robust model of parkinsonism. Proceedings of the National Academy of Sciences of the United States of America, 102(6), 2174–2179.

    Article  PubMed  PubMed Central  Google Scholar 

  • Perroud, N., et al. (2016). Methylation of serotonin receptor 3A in ADHD, borderline personality, and bipolar disorders: Link with severity of the disorders and childhood maltreatment. Depression and Anxiety, 33(1), 45–55.

    Article  PubMed  Google Scholar 

  • Rajyaguru, P., & Cooper, M. (2013). Role of dietary supplementation in attention-deficit hyperactivity disorder. The British Journal of Psychiatry, 202, 398–399.

    Article  PubMed  Google Scholar 

  • Ramos-Quiroga, J. A., et al. (2014). Genome-wide copy number variation analysis in adult attention-deficit and hyperactivity disorder. Journal of Psychiatric Research, 49, 60–67.

    Article  PubMed  Google Scholar 

  • Ranaivoson, F. M., et al. (2015). Structural and mechanistic insights into the latrophilin3-FLRT3 complex that mediates glutamatergic synapse development. Structure, 23(9), 1665–1677.

    Article  PubMed  PubMed Central  Google Scholar 

  • Redies, C., Hertel, N., & Hubner, C. A. (2012). Cadherins and neuropsychiatric disorders. Brain Research, 1470, 130–144.

    Article  PubMed  Google Scholar 

  • Reif, A., et al. (2009). Influence of functional variant of neuronal nitric oxide synthase on impulsive behaviors in humans. Archives of General Psychiatry, 66(1), 41–50.

    Article  PubMed  Google Scholar 

  • Reif, A., et al. (2011). DIRAS2 is associated with adult ADHD, related traits, and co-morbid disorders. Neuropsychopharmacology, 36(11), 2318–2327.

    Article  PubMed  PubMed Central  Google Scholar 

  • Retz, W., et al. (2008). Norepinephrine transporter and catecholamine-O-methyltransferase gene variants and attention-deficit/hyperactivity disorder symptoms in adults. Journal of Neural Transmission (Vienna), 115(2), 323–329.

    Article  Google Scholar 

  • Ribases, M., et al. (2011). Contribution of LPHN3 to the genetic susceptibility to ADHD in adulthood: A replication study. Genes, Brain, and Behavior, 10(2), 149–157.

    Article  PubMed  Google Scholar 

  • Rice, F., Harold, G. T., Boivin, J., van den Bree, M., Hay, D. F., & Thapar, A. (2010). The links between prenatal stress and offspring development and psychopathology: Disentangling environmental and inherited influences. Psychological Medicine, 40(2), 335–345.

    Article  PubMed  Google Scholar 

  • Rivero, O., et al. (2015). Cadherin-13, a risk gene for ADHD and comorbid disorders, impacts GABAergic function in hippocampus and cognition. Translational Psychiatry, 5, e655.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez, A., & Bohlin, G. (2005). Are maternal smoking and stress during pregnancy related to ADHD symptoms in children? Journal of Child Psychology and Psychiatry, 46(3), 246–254.

    Article  PubMed  Google Scholar 

  • Rodriguiz, R. M., Chu, R., Caron, M. G., & Wetsel, W. C. (2004). Aberrant responses in social interaction of dopamine transporter knockout mice. Behavioural Brain Research, 148(1–2), 185–198.

    Article  PubMed  Google Scholar 

  • Rohde, P. D., Madsen, L. S., Neumann Arvidson, S. M., Loeschcke, V., Demontis, D., & Kristensen, T. N. (2016). Testing candidate genes for attention-deficit/hyperactivity disorder in fruit flies using a high throughput assay for complex behavior. Fly (Austin), 10(1), 25–34.

    Article  Google Scholar 

  • Rojas-Mayorquin, A. E., Padilla-Velarde, E., & Ortuno-Sahagun, D. (2016). Prenatal alcohol exposure in rodents as a promising model for the study of ADHD molecular basis. Frontiers in Neuroscience, 10, 565.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ronald, A., Pennell, C. E., & Whitehouse, A. J. (2010). Prenatal maternal stress associated with ADHD and autistic traits in early childhood. Frontiers in Psychology, 1, 223.

    PubMed  Google Scholar 

  • Rubia, K. (2007). Neuro-anatomic evidence for the maturational delay hypothesis of ADHD. Proceedings of the National Academy of Sciences of the United States of America, 104(50), 19663–19664.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rubia, K., Alegria, A. A., & Brinson, H. (2014). Brain abnormalities in attention-deficit hyperactivity disorder: A review. Revista de Neurologia, 58(Suppl 1), S3–S16.

    PubMed  Google Scholar 

  • Rucklidge, J. J., Frampton, C. M., Gorman, B., & Boggis, A. (2014). Vitamin-mineral treatment of attention-deficit hyperactivity disorder in adults: Double-blind randomised placebo-controlled trial. The British Journal of Psychiatry, 204, 306–315.

    Article  PubMed  Google Scholar 

  • Russell, V., de Villiers, A., Sagvolden, T., Lamm, M., & Taljaard, J. (1995). Altered dopaminergic function in the prefrontal cortex, nucleus accumbens and caudate-putamen of an animal model of attention-deficit hyperactivity disorder – The spontaneously hypertensive rat. Brain Research, 676(2), 343–351.

    Article  PubMed  Google Scholar 

  • Russell, V. A. (2011). Overview of animal models of attention deficit hyperactivity disorder (ADHD). Current Protocols in Neuroscience, Chapter 9, Unit 9.35.

    Article  Google Scholar 

  • Salatino-Oliveira, A., et al. (2015). Cadherin-13 gene is associated with hyperactive/impulsive symptoms in attention/deficit hyperactivity disorder. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 168B(3), 162–169.

    Article  Google Scholar 

  • Salatino-Oliveira, A., et al. (2016). NOS1 and SNAP25 polymorphisms are associated with attention-deficit/hyperactivity disorder symptoms in adults but not in children. Journal of Psychiatric Research, 75, 75–81.

    Article  PubMed  Google Scholar 

  • Sanchez-Mora, C., et al. (2011). Exploring DRD4 and its interaction with SLC6A3 as possible risk factors for adult ADHD: A meta-analysis in four European populations. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 156B(5), 600–612.

    Article  Google Scholar 

  • Sanchez-Mora, C., et al. (2013). Evaluation of single nucleotide polymorphisms in the miR-183-96-182 cluster in adulthood attention-deficit and hyperactivity disorder (ADHD) and substance use disorders (SUDs). European Neuropsychopharmacology, 23(11), 1463–1473.

    Article  PubMed  Google Scholar 

  • Sanchez-Mora, C., et al. (2015). Case-control genome-wide association study of persistent attention-deficit hyperactivity disorder identifies FBXO33 as a novel susceptibility gene for the disorder. Neuropsychopharmacology, 40(4), 915–926.

    Article  PubMed  Google Scholar 

  • Scheuerle, A., & Wilson, K. (2011). PARK2 copy number aberrations in two children presenting with autism spectrum disorder: Further support of an association and possible evidence for a new microdeletion/microduplication syndrome. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 156B(4), 413–420.

    Article  Google Scholar 

  • Schlander, M., Schwarz, O., Trott, G. E., Viapiano, M., & Bonauer, N. (2007). Who cares for patients with attention-deficit/hyperactivity disorder (ADHD)? Insights from Nordbaden (Germany) on administrative prevalence and physician involvement in health care provision. European Child & Adolescent Psychiatry, 16(7), 430–438.

    Article  Google Scholar 

  • Schwarz, R., et al. (2014). A preliminary study on methylphenidate-regulated gene expression in lymphoblastoid cells of ADHD patients. The World Journal of Biological Psychiatry, 16(3), 180–189. https://doi.org/10.3109/15622975.2014.948064

    Article  PubMed  Google Scholar 

  • Selek, S., Savas, H. A., Gergerlioglu, H. S., Bulut, M., & Yilmaz, H. R. (2008). Oxidative imbalance in adult attention deficit/hyperactivity disorder. Biological Psychology, 79(2), 256–259.

    Article  PubMed  Google Scholar 

  • Shaw, P., et al. (2007). Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation. Proceedings of the National Academy of Sciences of the United States of America, 104(49), 19.649–19.654.

    Article  Google Scholar 

  • Shaw, P., et al. (2014). Mapping the development of the basal ganglia in children with attention-deficit/hyperactivity disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 53(7), 780–789.e711.

    Article  PubMed  Google Scholar 

  • Shaywitz, S. E., Cohen, D. J., & Shaywitz, B. A. (1978). The biochemical basis of minimal brain dysfunction. The Journal of Pediatrics, 92(2), 179–187.

    Article  PubMed  Google Scholar 

  • Silva, D., Colvin, L., Hagemann, E., & Bower, C. (2014). Environmental risk factors by gender associated with attention-deficit/hyperactivity disorder. Pediatrics, 133(1), e14–e22.

    Article  PubMed  Google Scholar 

  • Skoglund, C., Chen, Q., D’Onofrio, B. M., Lichtenstein, P., & Larsson, H. (2014). Familial confounding of the association between maternal smoking during pregnancy and ADHD in offspring. Journal of Child Psychology and Psychiatry, 55(1), 61–68.

    Article  PubMed  Google Scholar 

  • Slykerman, R. F., Thompson, J., Waldie, K. E., Murphy, R., Wall, C., & Mitchell, E. A. (2017). Antibiotics in the first year of life and subsequent neurocognitive outcomes. Acta Paediatrica, 106(1), 87–94.

    Article  PubMed  Google Scholar 

  • Sochacki, J., Devalle, S., Reis, M., Mattos, P., & Rehen, S. (2016). Generation of urine iPS cell lines from patients with attention deficit hyperactivity disorder (ADHD) using a non-integrative method. Stem Cell Research, 17(1), 102–106.

    Article  PubMed  Google Scholar 

  • Sonuga-Barke, E. J. (2015). Editorial: Diet and children’s behaviour problems – Disentangling urban myth from clinical reality. Journal of Child Psychology and Psychiatry, 56(5), 497–499.

    Article  PubMed  Google Scholar 

  • Sonuga-Barke, E. J., & Castellanos, F. X. (2007). Spontaneous attentional fluctuations in impaired states and pathological conditions: A neurobiological hypothesis. Neuroscience and Biobehavioral Reviews, 31(7), 977–986.

    Article  PubMed  Google Scholar 

  • Squassina, A., Lanktree, M., De Luca, V., Jain, U., Krinsky, M., Kennedy, J. L., & Muglia, P. (2008). Investigation of the dopamine D5 receptor gene (DRD5) in adult attention deficit hyperactivity disorder. Neuroscience Letters, 432(1), 50–53.

    Article  PubMed  Google Scholar 

  • Srivastav, S., Walitza, S., & Grunblatt, E. (2017). Emerging role of miRNA in attention deficit hyperactivity disorder: A systematic review. Attention Deficit and Hyperactivity Disorders, 10(1), 49–63. https://doi.org/10.1007/s12402-017-0232-y

    Article  PubMed  Google Scholar 

  • Sudre, G., et al. (2017). Estimating the heritability of structural and functional brain connectivity in families affected by attention-deficit/hyperactivity disorder. JAMA Psychiatry, 74(1), 76–84.

    Article  PubMed  PubMed Central  Google Scholar 

  • Swinderen, B. van, & Brembs, B. (2010). Attention-like deficit and hyperactivity in a Drosophila memory mutant. The Journal of Neuroscience 30(3), 1003–1014.

    Article  PubMed  Google Scholar 

  • Talge, N. M., Neal, C., & Glover, V. (2007). Antenatal maternal stress and long-term effects on child neurodevelopment: How and why? Journal of Child Psychology and Psychiatry, 48(3–4), 245–261.

    Article  PubMed  Google Scholar 

  • Tewar, S., et al. (2016). Association of bisphenol A exposure and attention-deficit/hyperactivity disorder in a national sample of U.S. children. Environmental Research, 150, 112–118.

    Article  PubMed  Google Scholar 

  • Thapar, A., et al. (2009). Prenatal smoking might not cause attention-deficit/hyperactivity disorder: Evidence from a novel design. Biological Psychiatry, 66(8), 722–727.

    Article  PubMed  PubMed Central  Google Scholar 

  • Uhl, G. R., et al. (2008). Genome-wide association for methamphetamine dependence: Convergent results from 2 samples. Archives of General Psychiatry, 65(3), 345–355.

    Article  PubMed  Google Scholar 

  • Voet, M. van der, Harich, B., Franke, B., & Schenck, A. (2016). ADHD-associated dopamine transporter, latrophilin and neurofibromin share a dopamine-related locomotor signature in Drosophila. Molecular Psychiatry 21(4), 565–573.

    Google Scholar 

  • Vogel, S. W., et al. (2017). Attention-deficit/hyperactivity disorder symptoms and stress-related biomarkers. Psychoneuroendocrinology, 79, 31–39.

    Article  PubMed  Google Scholar 

  • Volkow, N. D., et al. (2012). Methylphenidate-elicited dopamine increases in ventral striatum are associated with long-term symptom improvement in adults with attention deficit hyperactivity disorder. The Journal of Neuroscience, 32(3), 841–849.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wallis, D., et al. (2012). Initial characterization of mice null for Lphn3, a gene implicated in ADHD and addiction. Brain Research, 1463, 85–92.

    Article  PubMed  Google Scholar 

  • Weber, H., et al. (2014). SPOCK3, a risk gene for adult ADHD and personality disorders. European Archives of Psychiatry and Clinical Neuroscience, 264(5), 409–421.

    Article  PubMed  Google Scholar 

  • Weber, H., et al. (2015). On the role of NOS1 ex1f-VNTR in ADHD-allelic, subgroup, and meta-analysis. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 168(6), 445–458.

    Article  Google Scholar 

  • Weder, N., et al. (2014). Child abuse, depression, and methylation in genes involved with stress, neural plasticity, and brain circuitry. Journal of the American Academy of Child and Adolescent Psychiatry, 53(4), 417–424.e415.

    Article  PubMed  PubMed Central  Google Scholar 

  • Weissflog, L., et al. (2013). KCNIP4 as a candidate gene for personality disorders and adult ADHD. European Neuropsychopharmacology, 23(6), 436–447.

    Article  PubMed  Google Scholar 

  • Weitzdoerfer, R., et al. (2004). Neuronal nitric oxide synthase knock-out mice show impaired cognitive performance. Nitric Oxide, 10(3), 130–140.

    Article  PubMed  Google Scholar 

  • Wiles, N. J., Northstone, K., Emmett, P., & Lewis, G. (2009). „Junk food“ diet and childhood behavioural problems: Results from the ALSPAC cohort. European Journal of Clinical Nutrition, 63(4), 491–498.

    Article  PubMed  Google Scholar 

  • Wilmot, B., Fry, R., Smeester, L., Musser, E. D., Mill, J., & Nigg, J. T. (2016). Methylomic analysis of salivary DNA in childhood ADHD identifies altered DNA methylation in VIPR2. Journal of Child Psychology and Psychiatry, 57(2), 152–160.

    Article  PubMed  Google Scholar 

  • Won, H., et al. (2011). GIT1 is associated with ADHD in humans and ADHD-like behaviors in mice. Nature Medicine, 17(5), 566–572.

    Article  PubMed  Google Scholar 

  • Yamamoto, A., et al. (2014). Structural abnormalities of corpus callosum and cortical axonal tracts accompanied by decreased anxiety-like behavior and lowered sociability in spock3-mutant mice. Developmental Neuroscience, 36(5), 381–395.

    Article  PubMed  Google Scholar 

  • Yin, C. L., et al. (2016). Genome-wide analysis of copy number variations identifies PARK2 as a candidate gene for autism spectrum disorder. Molecular Autism, 7, 23.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu, C. J., et al. (2016). Increased risk of attention-deficit/hyperactivity disorder associated with exposure to organophosphate pesticide in Taiwanese children. Andrology, 4(4), 695–705.

    Article  PubMed  Google Scholar 

  • Zhu, J., et al. (2017). A prenatal nicotine exposure mouse model of methylphenidate responsive ADHD-associated cognitive phenotypes. International Journal of Developmental Neuroscience, 58, 26–34.

    Article  PubMed  Google Scholar 

  • Zhu, J. L., Olsen, J., Liew, Z., Li, J., Niclasen, J., & Obel, C. (2014). Parental smoking during pregnancy and ADHD in children: The Danish national birth cohort. Pediatrics, 134(2), e382–e388.

    Article  PubMed  Google Scholar 

  • Zobel, A., & Maier, W. (2004). Endophenotype – A new concept for biological characterization of psychiatric disorders. Der Nervenarzt, 75(3), 205–214.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Kittel-Schneider .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kittel-Schneider, S. (2019). Biologische Grundlagen der Aufmerksamkeitsdefizits-/Hyperaktivitätsstörung (ADHS) des Erwachsenenalters. In: Schnell, T., Schnell, K. (eds) Handbuch Klinische Psychologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45995-9_18-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45995-9_18-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45995-9

  • Online ISBN: 978-3-662-45995-9

  • eBook Packages: Springer Referenz Psychologie

Publish with us

Policies and ethics