Skip to main content

Numerical Integration on the Sphere

  • Reference work entry
  • First Online:
Book cover Handbook of Geomathematics

Abstract

This chapter is concerned with numerical integration over the unit sphere \(\mathbb{S}^{2} \subset \mathbb{R}^{3}\). We first discuss basic facts about numerical integration rules with positive weights. Then some important types of rules are discussed in detail: rules with a specified polynomial degree of precision, including the important case of longitude-latitude rules; rules using scattered data points; rules based on equal-area partitions; and rules for numerical integration over subsets of the sphere. Finally we show that for numerical integration over the whole sphere and for functions with an appropriate degree of smoothness, an optimal rate of convergence can be achieved by positive-weight rules with polynomial precision and also by rules obtained by integrating a suitable radial basis function interpolant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahrens C, Beylkin G (2009) Rotationally invariant quadratures for the sphere. Proc R Soc A 465:3103–3125

    Article  MathSciNet  MATH  Google Scholar 

  • Alfeld P, Neamtu M, Schumaker LL (1996) Bernstein-Bézier polynomials on spheres and sphere-like surfaces. Comput Aided Geom Des 13:333–349

    Article  MathSciNet  MATH  Google Scholar 

  • Atkinson K (1982) Numerical integration on the sphere. J Austral Math Soc (Ser B) 23:332–347

    Article  MATH  MathSciNet  Google Scholar 

  • Atkinson K (1998) An introduction to numerical analysis. Wiley, New York

    Google Scholar 

  • Atkinson K, Sommariva A (2005) Quadrature over the sphere. Electron Trans Numer Anal 20:104–118

    MathSciNet  MATH  Google Scholar 

  • Bajnok B (1991) Construction of designs on the 2-sphere. Eur J Comb 12:377–382

    Article  MathSciNet  MATH  Google Scholar 

  • Bannai E, Bannai E (2009) A survey on spherical designs and algebraic combinatorics on spheres. Eur J Comb 30(6):1392–1425

    Article  MathSciNet  MATH  Google Scholar 

  • Bannai E, Damerell RM (1979) Tight spherical designs I. Math Soc Jpn 31(1):199–207

    Article  MathSciNet  MATH  Google Scholar 

  • Baumgardner JR, Frederickson PO (1985) Icosahedral discretization of the two-sphere. SIAM J Numer Anal 22(6):1107–1115

    Article  MathSciNet  MATH  Google Scholar 

  • Boal N, Sayas F-J (2004) Adaptive numerical integration on spherical triangles. Monografas del Seminario Matemático García de Galdeano 31:61–69

    MathSciNet  Google Scholar 

  • Chen D, Menegatto VA, Sun X (2003) A necessary and sufficient condition for strictly positive definite functions on spheres. Proc Am Math Soc 131:2733–2740

    Article  MathSciNet  MATH  Google Scholar 

  • Chen X, Frommer A, Lang B (2009) Computational existence proofs for spherical t-designs. Department of Applied Mathematics, The Hong Kong Polytechnic University

    MATH  Google Scholar 

  • Chen X, Womersley RS (2006) Existence of solutions to systems of underdetermined equations and spherical designs. SIAM J Numer Anal 44(6):2326–2341

    Article  MathSciNet  MATH  Google Scholar 

  • Cohn H, Kumar A (2007) Universally optimal distribution of points on spheres. J Am Math Soc 20(1):99–148

    Article  MathSciNet  MATH  Google Scholar 

  • Cools R (1997) Constructing cubature formulae: the science behind the art. Acta Numer 1997:1–54

    Article  MathSciNet  MATH  Google Scholar 

  • Cools R, Rabinowitz P (1993) Monomial cubature rules since “Stroud”: a compilation. J Comput Appl Math 48:309–326

    Article  MathSciNet  MATH  Google Scholar 

  • Cui J, Freeden W (1997) Equidistribution on the sphere. SIAM J Sci Comput 18(2):595–609

    Article  MathSciNet  MATH  Google Scholar 

  • Davis PJ, Rabinowitz P (1984) Methods of numerical integration, 2nd edn. Academic, Orlando

    MATH  Google Scholar 

  • Delsarte P, Goethals JM, Seidel JJ (1997) Spherical codes and designs. Geom Dedicata 6:363–388

    Article  MathSciNet  MATH  Google Scholar 

  • Ditkin VA, Lyusternik LA (1953) On a method of practical harmonic analysis on the sphere (in Russian). Vychisl Mat Vychisl Tekhn 1:3–13

    MathSciNet  Google Scholar 

  • Du Q, Faber V, Gunzburger M (1999) Centroidal Voronoi tessellations: applications and algorithms. SIAM Rev 41(4):637–676

    Article  MathSciNet  MATH  Google Scholar 

  • Erdélyi A (ed), Magnus W, Oberhettinger F, Tricomi FG (research associates) (1953) Higher transcendental functions, vol 2, Bateman Manuscript Project, California Institute of Technology. McGraw-Hill, New York/Toronto/London

    MATH  Google Scholar 

  • Fasshauer G (2007) Meshfree approximation methods with Matlab. World Scientific, Singapore

    Book  MATH  Google Scholar 

  • Fasshauer GE, Schumaker LL (1998) Scattered data fitting on the sphere. In: Dahlen M, Lyche T, Schumaker LL (eds) Mathematical methods for curves and surfaces II. Vanderbilt University, Nashville, pp 117–166

    Google Scholar 

  • Filbir F, Themistoclakis W (2008) Polynomial approximation on the sphere using scattered data. Math Nachr 281(5):650–668

    Article  MathSciNet  MATH  Google Scholar 

  • Floater MS, Iske A (1996a) Multistep scattered data interpolation using compactly supported radial basis functions. J Comput Appl Math 73:65–78

    Article  MathSciNet  MATH  Google Scholar 

  • Floater MS, Iske A (1996b) Thinning and approximation of large sets of scattered data. In: Fontanella F, Jetter K, Laurent P-J (eds) Advanced topics in multivariate approximation. World Scientific, Singapore, pp 87–96

    Google Scholar 

  • Freeden W (1999) Multiscale modelling of spaceborne geodata. B.G. Teubner, Leipzig

    MATH  Google Scholar 

  • Freeden W, Gervens T, Schreiner M (1998) Constructive approximation on the sphere (with applications to geomathematics). Oxford Science/Clarendon, Oxford

    MATH  Google Scholar 

  • Freeden W, Michel V (2004) Multiscale potential theory (with applications to geoscience). Birkhäuser, Boston/Basel/Berlin

    Book  MATH  Google Scholar 

  • Freeden W, Reuter R (1982) Remainder terms in numerical integration formulas of the sphere. In: Schempp W, Zeller K (eds) Multivariate approximation theory II. Birkhäuser, Basel, pp 151–170

    Chapter  Google Scholar 

  • Gautschi W (2004) Orthogonal polynomials: computation and approximation. Oxford University, New York

    MATH  Google Scholar 

  • Górski KM, Hivon E, Banday AJ, Wandelt BD, Hansen FK, Reinecke M, Bartelmann M (2005) HEALPix: a framework for high-resoluton discretization and fast analysis of data distributed on the sphere. Astrophys J 622:759–771

    Article  Google Scholar 

  • Gräf M, Kunis S, Potts D (2009) On the computation of nonnegative quadrature weights on the sphere. Appl Comput Harmon Anal 27(1):124–132

    Article  MathSciNet  MATH  Google Scholar 

  • Hannay JH, Nye JF (2004) Fibonacci numerical integration on a sphere. J Phys A Math Gen 37:11591–11601

    Article  MathSciNet  MATH  Google Scholar 

  • Hardin RH, Sloane NJA (1996) McLaren’s improved snub cube and other new spherical designs in three dimensions. Discret Comput Geom 15:429–441

    Article  MathSciNet  MATH  Google Scholar 

  • Hesse K, Sloan IH (2005a) Optimal lower bounds for cubature error on the sphere \(\mathbb{S}^{2}\). J Complex 21:790–803

    Article  MathSciNet  MATH  Google Scholar 

  • Hesse K, Sloan IH (2005b) Optimal order integration on the sphere. In: Li T, Zhang P (eds) Frontiers and prospects of contemporary applied mathematics. Series in contemporary applied mathematics, vol 6. Higher Education, Beijing/World Scientific, Singapore, pp 59–70

    Google Scholar 

  • Hesse K, Sloan IH (2006) Cubature over the sphere \(\mathbb{S}^{2}\) in Sobolev spaces of arbitrary order. J Approx Theory 141:118–133

    Article  MathSciNet  MATH  Google Scholar 

  • Hesse K, Womersley RS (2009) Numerical integration with polynomial exactness over a spherical cap. Technical report SMRR-2009-09, Department of Mathematics, University of Sussex

    Google Scholar 

  • Jetter K, Stöckler J, Ward JD (1998) Norming sets and spherical quadrature formulas. In: Chen Li, Micchelli C, Xu Y (eds) Computational mathematics. Marcel Decker, New York, pp 237–245

    Google Scholar 

  • Korevaar J, Meyers, JLH (1993) Spherical Faraday cage for the case of equal point charges and Chebyshev-type quadrature on the sphere. Integral Transform Spec Funct 1(2):105–117

    Article  MathSciNet  MATH  Google Scholar 

  • Lebedev VI (1975) Values of the nodes and weights of ninth to seventeenth order Gauss-Markov quadrature formulae invariant under the octahedron group with inversion. Comput Math Math Phys 15:44–51

    Article  MATH  Google Scholar 

  • Lebedev VI, Laikov DN (1999) A quadrature formula for the sphere of the 131st algebraic order of accuracy. Dokl Math 59(3):477–481

    MathSciNet  Google Scholar 

  • Le Gia QT, Mhaskar HN (2008) Localized linear polynomial operators and quadrature on the sphere. SIAM J Numer Anal 47(1):440–466

    Article  MathSciNet  MATH  Google Scholar 

  • Le Gia QT, Narcowich FJ, Ward JD, Wendland H (2006) Continuous and discrete least-squares approximation by radial basis functions on spheres. J Approx Theory 143:124–133

    Article  MathSciNet  MATH  Google Scholar 

  • Le Gia QT, Sloan IH, Wendland H (2009) Multiscale analysis in Sobolev spaces on the sphere. Applied mathematics report AMR09/20, University of New South Wales

    Google Scholar 

  • McLaren AD (1963) Optimal numerical integration on a sphere. Math Comput 17(84):361–383

    Article  MathSciNet  MATH  Google Scholar 

  • Mhaskar HN (2004a) Local quadrature formulas on the sphere. J Complex 20:753–772

    Article  MathSciNet  MATH  Google Scholar 

  • Mhaskar HN (2004b) Local quadrature formulas on the sphere, II. In: Neamtu M, Saff EB (eds) Advances in constructive approximation. Nashboro, Nashville, pp 333–344

    Google Scholar 

  • Mhaskar HN, Narcowich FJ, Ward JD (2001) Spherical Marcinkiewicz-Zygmund inequalities and positive quadrature. Math Comput 70:1113–1130 (Corrigendum (2002) Math Comput 71:453–454)

    Google Scholar 

  • Müller C (1966) Spherical harmonics. Lecture notes in mathematics, vol 17. Springer-Verlag, New York

    MATH  Google Scholar 

  • Narcowich FJ, Petrushev P, Ward JD (2006) Localized tight frames on spheres. SIAM J Math Anal 38(2):574–594

    Article  MathSciNet  MATH  Google Scholar 

  • Narcowich FJ, Ward JD (2002) Scattered data interpolation on spheres: error estimates and locally supported basis functions. SIAM J Math Anal 33(6):1393–1410

    Article  MathSciNet  MATH  Google Scholar 

  • Popov AS (2008) Cubature formulas on a sphere invariant under the icosahedral rotation group. Numer Anal Appl 1(4):355–361

    Article  Google Scholar 

  • Ragozin DL (1971) Constructive polynomial approximation on spheres and projective spaces. Trans Am Math Soc 162:157–170

    MathSciNet  MATH  Google Scholar 

  • Rakhmanov EA, Saff EB, Zhou YM (1994) Minimal discrete energy on the sphere. Math Res Lett 11(6):647–662

    Article  MathSciNet  MATH  Google Scholar 

  • Reimer M (1992) On the existence problem for Gauss-quadarature on the sphere. In: Fuglede F (ed) Approximation by solutions of partial differential equations. Kluwer, Dordrecht, pp 169–184

    Chapter  Google Scholar 

  • Reimer M (1994) Quadrature rules for the surface integral of the unit sphere based on extremal fundamental systems. Math Nachr 169:235–241

    Article  MathSciNet  MATH  Google Scholar 

  • Reimer M (2003) Multivariate polynomial approximation. Birkhäuser, Basel/Boston/Berlin

    Book  MATH  Google Scholar 

  • Renka RJ (1997) Algorithm 772: STRIPACK: delaunay triangulation and Voronoi diagram on the surface of a sphere. ACM Trans Math Softw 23(3):416–434

    Article  MathSciNet  MATH  Google Scholar 

  • Saff EB, Kuijlaars ABJ (1997) Distributing many points on a sphere. Math Intell 19:5–11

    Article  MathSciNet  MATH  Google Scholar 

  • Sansone G (1959) Orthogonal functions. Interscience, London/New York

    MATH  Google Scholar 

  • Seymour PD, Zaslavsky T (1984) Averaging sets: a generalization of mean values and spherical designs. Adv Math 52:213–240

    Article  MathSciNet  MATH  Google Scholar 

  • Sidi A (2005) Application of class \(\mathcal{I}_{m}\) variable transformations to numerical integration over surfaces of spheres. J Comput Appl Math 184(2):475–492

    Article  MathSciNet  MATH  Google Scholar 

  • Sloan IH (1995) Polynomial interpolation and hyperinterpolation over general regions. J Approx Theory 83:238–254

    Article  MathSciNet  MATH  Google Scholar 

  • Sloan IH, Womersley RS (2004) Extremal systems of points and numerical integration on the sphere. Adv Comput Math 21:107–125

    Article  MathSciNet  MATH  Google Scholar 

  • Sloan IH, Womersley RS (2009) A variational characterization of spherical designs. J Approx Theory 159:308–318

    Article  MathSciNet  MATH  Google Scholar 

  • Sloane NJA (2000) Spherical designs. http://www.research.att.com/~njas/sphdesigns/index.html

    Google Scholar 

  • Sobolev SL (1962) Cubature formulas on the sphere invariant with respect to any finite group of rotations. Dokl Acad Nauk SSSR 146:310–313

    Google Scholar 

  • Sobolev SL, Vaskevich VL (1997) The theory of cubature formulas. Kluwer, Dordrecht/Boston/London

    Book  MATH  Google Scholar 

  • Sommariva A, Womersley RS (2005) Integration by RBF over the sphere. Applied mathematics report AMR05/17, University of New South Wales

    Google Scholar 

  • Stroud AH (1971) Approximate calculation of multiple integrals. Prentice-Hall, Inc., Englewood Cliffs

    MATH  Google Scholar 

  • Szegö G (1975) Orthogonal polynomials. American mathematical society colloquium publications, vol 23, 4th edn. American Mathematical Society, Providence

    Google Scholar 

  • Tegmark M (1996) An icosahedron-based method for pixelizing the celestial sphere. Astrophys J 470:L81–L84

    Article  Google Scholar 

  • Wendland H (1995) Piecewise polynomial, positive definite and compactly supported radial basis functions of minimal degree. Adv Comput Math 4:389–396

    Article  MathSciNet  MATH  Google Scholar 

  • Wendland H (1998) Error estimates for interpolation by compactly supported radial basis functions of minimal degree. J Approx Theory 93:258–272

    Article  MathSciNet  MATH  Google Scholar 

  • Wendland H (2005) Scattered data approximation. Cambridge University, Cambridge

    MATH  Google Scholar 

  • Womersley RS (2007) Interpolation and cubature on the sphere. http://web.maths.unsw.edu.au/~rsw/Sphere/

    Google Scholar 

  • Womersley RS (2009) Spherical designs with close to the minimal number of points. Applied mathematics report AMR09/26, The University of New South Wales

    Google Scholar 

  • Womersley RS, Sloan IH (2001) How good can polynomial interpolation on the sphere be? Adv Comput Math 14:195–226

    Article  MathSciNet  MATH  Google Scholar 

  • Xu Y, Cheney EW (1992) Strictly positive definite functions on spheres. Proc Am Math Soc 116:977–981

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The support of the Australian Research Council is gratefully acknowledged. IHS and RSW acknowledge the support of the Hong Kong Polytechnic University, where much of this work was carried out. The authors also thank Ronald Cools for helpful advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Hesse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Hesse, K., Sloan, I.H., Womersley, R.S. (2015). Numerical Integration on the Sphere. In: Freeden, W., Nashed, M., Sonar, T. (eds) Handbook of Geomathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54551-1_40

Download citation

Publish with us

Policies and ethics