Skip to main content

Soil Moisture Data Assimilation

  • Living reference work entry
  • First Online:

Abstract

Accurate knowledge of soil moisture at the continental scale is important for improving predictions of weather, agricultural productivity, and natural hazards, but observations of soil moisture at such scales are limited to indirect measurements, either obtained through satellite remote sensing or from meteorological networks. Land surface models simulate soil moisture processes, using observation-based meteorological forcing data, and auxiliary information about soil, terrain, and vegetation characteristics. Enhanced estimates of soil moisture and other land surface variables, along with their uncertainty, can be obtained by assimilating observations of soil moisture into land surface models. These assimilation results are of direct relevance for the initialization of hydrometeorological ensemble forecasting systems. The success of the assimilation depends on the choice of the assimilation technique, the nature of the model and the assimilated observations, and, most importantly, the characterization of model and observation error. Systematic differences between satellite-based microwave observations or satellite-retrieved soil moisture and their simulated counterparts require special attention. Other challenges include inferring root-zone soil moisture information from observations that pertain to a shallow surface soil layer, propagating information to unobserved areas and downscaling of coarse information to finer-scale soil moisture estimates. This chapter summarizes state-of-the-art solutions to these issues with conceptual data assimilation examples, using techniques ranging from simplified optimal interpolation to spatial ensemble Kalman filtering. In addition, operational soil moisture assimilation systems are discussed that support numerical weather prediction at ECMWF and provide value-added soil moisture products for the NASA Soil Moisture Active Passive mission.

This is a preview of subscription content, log in via an institution.

References

  • C. Albergel, W. Dorigo, R. Reichle, G. Balsamo, P. de Rosnay, J. Muñoz-Sabater, L. Isaksen, R. de Jeu, W. Wagner, Skill and global trend analysis of soil moisture from reanalyses and microwave remote sensing. J. Hydrometeorol. 14, 1259–1277 (2013). doi:10.1175/JHM-D-12-0161.1

    Article  Google Scholar 

  • G. Balsamo, J.F. Mahfouf, S. Bélair, G. Deblonde, A global root-zone soil moisture analysis using simulated L-band brightness temperature in preparation for the Hydros satellite mission. J. Hydrometeorol. 7, 1126–1146 (2006)

    Article  Google Scholar 

  • G. Balsamo, P. Viterbo, A. Beljaars, B. van den Hurk, M. Hirschi, A.K. Betts, K. Scipal, A revised hydrology for the ECMWF model: verification from field site to terrestrial water storage and impact in the integrated forecast system. J. Hydrometeorol. 10, 623–643 (2009). doi:10.1175/2008JHM1068.1

    Article  Google Scholar 

  • G. Balsamo, C. Albergel, A. Beljaars, S. Boussetta, H. Cloke, D. Dee, E. Dutra, J. Muñoz-Sabater, F. Pappenberger, P. de Rosnay, T. Stockdale, F. Vitart, ERA-Interim/Land: a global land water resources dataset. Hydrol. Earth Syst. Sci. 10, 14705–14745 (2013). doi:10.5194/hessd-10-14705-2013

    Article  Google Scholar 

  • Z. Bartalis, W. Wagner, V. Naeimi, S. Hasenauer, K. Scipal, H. Bonekamp, J. Figa, C. Anderson, Initial soil moisture retrievals from the METOP-A advanced scatterometer (ASCAT). Geophys. Res. Lett. 34, L20401 (2007). doi:10.1029/2007GL031088

    Article  Google Scholar 

  • S. Bélair, L.P. Crevier, J. Mailhot, B. Bilodeau, Y. Delage, Operational implementation of the ISBA land surface scheme in the Canadian regional weather forecast model. Part I: warm season results. J. Hydrometeorol. 4, 352–370 (2003)

    Article  Google Scholar 

  • W.T. Crow, M.T. Yilmaz, The auto-tuned land data assimilation system (ATLAS). Water Resour. Res. 50, 371–385 (2014). doi:10.1002/2013WR014550

    Article  Google Scholar 

  • G.J.M. De Lannoy, P.R. Houser, V.R.N. Pauwels, N.E. Verhoest, Assessment of model uncertainty for soil moisture through ensemble verification. J. Geophys. Res. 111, D10101 (2009). doi:10.1029/2005JD006367

    Google Scholar 

  • G.J.M. De Lannoy, R.H. Reichle, P.R. Houser, V.R.N. Pauwels, N.E.C. Verhoest, Correcting for forecast bias in soil moisture assimilation with the ensemble Kalman filter. Water Resour. Res. 43, W09410 (2007). doi:10.1029/2006WR00544

    Google Scholar 

  • G.J.M. De Lannoy, R.H. Riechle, V.N.R. Pauwels, Global calibration of the GEOS-5 L-band microwave radiative transfer model over non-frozen land using SMOS observations. J. Hydrometeorol. 14, 765–785 (2013). doi:10.1175/JHM-D-12-092.1

    Google Scholar 

  • P. de Rosnay, M. Drusch, D. Vasiljevic, G. Balsamo, C. Albergel, L. Isaksen, A simplified extended Kalman filter for the global operational soil moisture analysis at ECMWF. Q. J. Roy. Meteorol. Soc. 139(674), 1199–1213 (2013). doi:10.1002/qj.2023

    Article  Google Scholar 

  • P. de Rosnay, G. Balsamo, C. Albergel, J. Muñoz-Sabater, L. Isaksen, Initialisation of land surface variables for numerical weather prediction. Surv. Geophys. 35(3), 607–621 (2014). doi:10.1007/s10712-012-9207-x

    Article  Google Scholar 

  • I. Dharssi, K.J. Bovis, B. Macpherson, C.P. Jones, Operational assimilation of ASCAT surface soil wetness at the Met Office. Hydrol. Earth Syst. Sci. 15, 2729–2746 (2011). doi:10.5194/hess-15-2729-2011

    Article  Google Scholar 

  • P. Dirmeyer, Using a global soil wetness dataset to improve seasonal climate simulation. J. Climate 13, 2900–2921 (2000)

    Article  Google Scholar 

  • W.A. Dorigo, A. Gruber, R.A.M. de Jeu, W. Wagner, T. Stacke, A. Loew, C. Albergel, L. Brocca, D. Chung, R. Parinussa, R. Kidd, Evaluation of the ESA CCI soil moisture product using ground-based observations. Remote Sens. Environ. 162, 380–395 (2015). doi:10.1016/j.rse.2014.07.023

    Article  Google Scholar 

  • C.S. Draper, R.H. Reichle, G.J.M. De Lannoy, Q. Liu, Assimilation of passive and active microwave soil moisture retrievals. Geophys. Res. Lett. 39, L04401 (2012). doi:10.1029/2011GL050655

    Article  Google Scholar 

  • M. Drusch, E.F. Wood, H. Gao, Observation operators for the direct assimilation of TRMM microwave imager retrieved soil moisture. Geophys. Res. Lett. 32, L15403 (2005). doi:10.1029/2005GL023623

    Article  Google Scholar 

  • M. Drusch, K. Scipal, P. de Rosnay, G. Balsamo, E. Andersson, P. Bougeault, P. Viterbo, Towards a Kalman filter-based soil moisture analysis system for the operational ECMWF Integrated Forecast System. Geophys. Res. Lett. 36, L10401 (2009). doi:10.1029/2009GL037716

    Article  Google Scholar 

  • S. Dunne, D. Entekhabi, Land surface state and flux estimation using the ensemble Kalman smoother during the Southern Great Plains 1997 field experiment. Water Resour. Res. 42, W01407 (2006)

    Article  Google Scholar 

  • D. Entekhabi, H. Nakamura, E.G. Njoku, Solving the inverse problems for soil moisture and temperature profiles by sequential assimilation of multifrequency remotely-sensed observations. IEEE Trans. Geosci. Remote Sens. 32, 438–448 (1994)

    Article  Google Scholar 

  • D. Entekhabi, R.H. Reichle, R.D. Koster, W.T. Crow, Performance metrics for soil moisture retrievals and application requirements. J. Hydrometeorol. 11, 832–840 (2010). doi:10.1175/2010JHM1223.1

    Article  Google Scholar 

  • D. Entekhabi, S. Yueh, P. O’Neill, K. Kellogg, SMAP Handbook, NASA/JPL Publication JPL 400-1567, Pasadena, CA, USA, p. 182 (2014).

    Google Scholar 

  • A.K. Fung, Z. Li, K.S. Chen, Backscattering from a randomly rough dielectric surface. IEEE Trans. Geosci. Remote Sens. 30, 356–369 (1992)

    Article  Google Scholar 

  • D. Giard, E. Bazile, Implementation of a new assimilation scheme for soil and surface variables in a global NWP model. Mon. Weather Rev. 128, 997–1015 (2000)

    Article  Google Scholar 

  • P.H. Gleick, Water resources, in Encyclopedia of climate and weather, ed. by S.H. Schneider, vol. 2 (Oxford University Press, New York, 1996), pp. 817–823

    Google Scholar 

  • R. Hess, M. Lange, W. Werner, Evaluation of the variational soil moisture assimilation scheme at Deutscher Wetterdienst. Hydrol. Earth Syst. Sci. 134(635), 1499–1512 (2008)

    Google Scholar 

  • Y. Kerr et al., The SMOS mission: new tool for monitoring key elements of the global water cycle. Proc. IEEE 98, 666–687 (2010)

    Article  Google Scholar 

  • R.D. Koster, M.J. Suarez, A. Ducharne, M. Stieglitz, P. Kumar, A catchment-based approach to modeling land surface processes in a general circulation model 1. Model structure. J. Geophys. Res. 105(D20), 24,809–24,822 (2000)

    Article  Google Scholar 

  • R.D. Koster, P.A. Dirmeyer, Z. Guo, G. Bonan, P. Cox, C. Gordon, S. Kanae, E. Kowalczyk, D. Lawrence, P. Liu, C. Lu, S. Malyshev, B. McAvaney, K. Mitchell, D. Mocko, T. Oki, K. Oleson, A. Pitman, Y. Sud, C. Taylor, D. Verseghy, R. Vasic, Y. Xue, T. Yamada, Regions of strong coupling between soil moisture and precipitation. Science 305, 1138–1140 (2004)

    Article  Google Scholar 

  • S. Kumar, C. Peters-Lidard, Y. Tian, R. Reichle, J. Geiger, C. Alonge, J. Eylander, P. Houser, An integrated hydrologic modeling and data assimilation framework. IEEE Comput. 41, 52–59 (2008). doi:10.1109/MC.2008.511

    Google Scholar 

  • Q. Liu, R.H. Reichle, R. Bindlish, M.H. Cosh, W.T. Crow, R. de Jeu, G.J.M. De Lannoy, G.J. Huffman, T.J. Jackson, The contributions of precipitation and soil moisture observations to the skill of soil moisture estimates in a land data assimilation system. J. Hydrometeorol. 12, 750–765 (2011). doi:10.1175/JHM-D-10-05000

    Article  Google Scholar 

  • J.F. Mahfouf, K. Bergaoui, C. Draper, F. Bouyssel, F. Taillefer, L. Taseva, A comparison of two off-line soil analysis schemes for assimilation of screen level observations. J. Geophys. Res. 114, D08105 (2009). doi:10.1029/2008JD011077

    Article  Google Scholar 

  • T. Mo, B.J. Choudhury, T.J. Schmugge, J.R. Wang, T.J. Jackson, A model for microwave emission from vegetation-covered fields. J. Geophys. Res. Oceans Atmos. 87(C13), 1229–1237 (1982)

    Article  Google Scholar 

  • C. Montzka, J.P. Grant, J. Moradkhani, H.J. Hendricks-Franssen, L. Weihermüller, M. Drusch, H. Vereecken, Estimation of radiative transfer parameters from L-band passive microwave brightness temperatures using advanced data assimilation. Vadose Zone J. 12(3), 1–17 (2013). https://dl.sciencesocieties.org/publications/vzj/pdfs/12/3/vzj2012.0040

  • M. Pan, E.F. Wood, R. Wojcik, M.F. McCabe, Estimation of regional terrestrial water cycle using multi-sensor remote sensing observations and data assimilation. Remote Sens. Environ. 112, 1282–1294 (2008)

    Article  Google Scholar 

  • V.R.N. Pauwels, G.J.M. De Lannoy, Ensemble-based assimilation of discharge into rainfall-runoff models: a comparison of approaches to mapping observational information to state space. Water Resour. Res. 45(8), W08428 (2009). doi:10.1029/2008WR007590

    Article  Google Scholar 

  • R.H. Reichle, R.D. Koster, Assessing the impact of horizontal error correlations in background fields on soil moisture estimation. J. Hydrometeorol. 4(6), 1229–1242 (2003)

    Article  Google Scholar 

  • R.H. Reichle, R.D. Koster, Bias reduction in short records of satellite soil moisture. Geophys. Res. Lett. 31, L19501 (2004). doi:10.1029/2004GL020938

    Article  Google Scholar 

  • R.H. Reichle, D. Entekhabi, D. McLaughlin, Downscaling of radio brightness measurements for soil moisture estimation: a four dimensional variational data assimilation approach. Water Resour. Res. 37, 2353–2364 (2001)

    Article  Google Scholar 

  • R.H. Reichle, D.B. McLaughlin, D. Entekhabi, Hydrologic data assimilation with the ensemble Kalman filter. Mon. Weather Rev. 120, 103–114 (2002)

    Article  Google Scholar 

  • R.H. Reichle, R.D. Koster, G.J.M. De Lannoy, B.A. Forman, Q. Liu, S.P.P. Mahanama, A. Toure, Assessment and enhancement of MERRA land surface hydrology estimates. J. Climate 24, 6322–6338 (2011)

    Article  Google Scholar 

  • R.H. Reichle, G.J.M. De Lannoy, B.A. Forman, C.S. Draper, Q. Liu, Connecting satellite observations with water cycle variables through land data assimilation: examples using the NASA GEOS-5 LDAS. Surv. Geophys. 35, 577–606 (2014). doi:10.1007/s10712-013-9220-8

    Article  Google Scholar 

  • M. Rodell, P.R. Houser, U. Jambor, J. Gottschalck, K. Mitchell, C.J. Meng, K. Arsenault, B. Cosgrove, J. Radakovich, M. Bosilovich, J.K. Entin, J.P. Walker, D. Lohmann, D. Toll, The global land data assimilation system. Bull. Am. Meteorol. Soc. 85(3), 381–394 (2004)

    Article  Google Scholar 

  • M. Rodell, J. Chen, H. Kato, J.S. Famiglietti, J. Nigro, C.R. Wilson, Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeol. J. 15, 159–166 (2007)

    Article  Google Scholar 

  • J. Sabater, L. Jarlan, J. Calvet, F. Bouyssel, P. de Rosnay, From near-surface to root-zone soil moisture using different assimilation techniques. J. Hydrometeorol. 8(2), 194–206 (2007)

    Article  Google Scholar 

  • S. Saha et al., The NCEP climate forecast system reanalysis. Bull. Am. Meteorol. Soc. ES9–ES24 (2010). doi:10.1175/2010Bams3001.1

    Google Scholar 

  • K. Scipal, T. Holmes, R. de Jeu, V. Naeimi, W. Wagner, A possible solution for the problem of estimating the error structure of global soil moisture data sets. Geophys. Res. Lett. 35, L24403.1–L24403.4 (2008)

    Article  Google Scholar 

  • J.P. Wigneron et al., L-band microwave emission of the biosphere (L-MEB) model: description and calibration against experimental data sets over crop fields. Remote Sens. Environ. 107, 639–655 (2007)

    Article  Google Scholar 

  • Y. Xia, K. Mitchell, M. Ek, J. Sheffield, B. Cosgrove, E. Wood, L. Luo, C. Alonge, H. Wei, J. Meng, B. Livneh, D. Lettenmaier, V. Koren, Q. Duan, K. Mo, Y. Fan, D. Mocko, Continental scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res. 117, D03109 (2012). doi:10.1029/2011JD016048

    Google Scholar 

  • B.F. Zaitchik, M. Rodell, R.H. Reichle, Assimilation of GRACE terrestrial water storage data into a land surface model: results for the Mississippi river basin. J. Hydrometeorol. 9, 535–548 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gabrielle Jacinthe Maria de Lannoy , Patricia de Rosnay or Rolf Helmut Reichle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg (outside the USA)

About this entry

Cite this entry

de Lannoy, G.J.M., de Rosnay, P., Reichle, R.H. (2015). Soil Moisture Data Assimilation. In: Duan, Q., Pappenberger, F., Thielen, J., Wood, A., Cloke, H., Schaake, J. (eds) Handbook of Hydrometeorological Ensemble Forecasting. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40457-3_32-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40457-3_32-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-40457-3

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics