Skip to main content

Probability and Statistical Theory for Hydrometeorology

  • Reference work entry
  • First Online:
  • 2133 Accesses

Abstract

The hydrometeorological forecasting plays an important role in water resources planning and management. The fundamentals of probability and statistics in hydrometeorology are reviewed in this chapter to aid the forecasting practices. We first introduce the elements of probability theory in the classical statistics, including random variables, probability distribution, joint probability, and total probability theorem. The probability estimation is among the key topics in hydrometeorology for statistical inferences, such as uncertainty analysis and statistical forecasting. The probability inference in the univariate case is first introduced with different methods, including parametric distribution, nonparametric distribution, and mixed distribution. Many hydroclimatic variables are mutually correlated, and the dependence modeling of multivariate random variables through the construction of the joint distribution is then introduced. Most of the context is introduced from the view of classical statistics, while a preliminary introduction of the Bayesian approach is also provided. At last, some commonly used methods for hydrometeorological forecasting are introduced, along with a short summary of this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   599.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • K. Aas, C. Czado, A. Frigessi, et al., Pair-copula constructions of multiple dependence. Insur. Math. Econ. 44(2), 182–198 (2009)

    Article  Google Scholar 

  • R. Arsenault, P. Gatien, B. Renaud, et al., A comparative analysis of 9 multi-model averaging approaches in hydrological continuous streamflow simulation. J. Hydrol. 529, 754–767 (2015)

    Article  Google Scholar 

  • ASCE, Artificial neural networks in hydrology. II: hydrologic applications. J. Hydrol. Eng. 5(2), 124–137 (2000)

    Article  Google Scholar 

  • T. Asefa, M. Kemblowski, M. McKee, et al., Multi-time scale stream flow predictions: the support vector machines approach. J. Hydrol. 318(1), 7–16 (2006)

    Article  Google Scholar 

  • B. Bacchi, G. Becciu, N.T. Kottegoda, Bivariate exponential model applied to intensities and durations of extreme rainfall. J. Hydrol. 155(1), 225–236 (1994)

    Article  Google Scholar 

  • N. Balakrishnan, C. Lai, Continuous Bivariate Distributions (Springer, New York, 2009)

    Google Scholar 

  • T. Bedford, R.M. Cooke, Vines – a new graphical model for dependent random variables. Ann. Stat. 30(4), 1031–1068 (2002)

    Article  Google Scholar 

  • M. Behzad, K. Asghari, M. Eazi, et al., Generalization performance of support vector machines and neural networks in runoff modeling. Expert Syst. Appl. 36(4), 7624–7629 (2009)

    Article  Google Scholar 

  • K.J. Beven, Rainfall-Runoff Modelling: The Primer (Wiley, New York, 2011)

    Google Scholar 

  • K. Bogner, F. Pappenberger, H. Cloke, et al., Technical note: the normal quantile transformation and its application in a flood forecasting system. Hydrol. Earth Syst. Sci. 16(4), 1085–1094 (2012)

    Article  Google Scholar 

  • D.R. Bourdin, S.W. Fleming, R.B. Stull, Streamflow modelling: a primer on applications, approaches and challenges. Atmosphere-Ocean 50(4), 507–536 (2012)

    Article  Google Scholar 

  • L. Cao, Support vector machines experts for time series forecasting. Neurocomputing 51, 321–339 (2003)

    Article  Google Scholar 

  • G. Casella, R.L. Berger, Statistical Inference (Duxbury, Pacific Grove, 2002)

    Google Scholar 

  • V. Choulakian, N. El-Jabi, J. Moussi, On the distribution of flood volume in partial duration series analysis of flood phenomena. Stoch. Hydrol. Hydraul. 4(3), 217–226 (1990)

    Article  Google Scholar 

  • H. Cloke, F. Pappenberger, Ensemble flood forecasting: a review. J. Hydrol. 375(3), 613–626 (2009)

    Article  Google Scholar 

  • H.L. Cloke, F. Pappenberger, S.J. van Andel, et al., Hydrological ensemble prediction systems preface. Hydrol. Process. 27, 1–4 (2013)

    Article  Google Scholar 

  • L. Cuo, T.C. Pagano, Q. Wang, A review of quantitative precipitation forecasts and their use in short-to medium-range streamflow forecasting. J. Hydrometeorol. 12(5), 713–728 (2011)

    Article  Google Scholar 

  • C. Dawson, R. Wilby, Hydrological modelling using artificial neural networks. Prog. Phys. Geogr. 25(1), 80–108 (2001)

    Article  Google Scholar 

  • G.N. Day, Extended streamflow forecasting using NWSRFS. J. Water Resour. Plan. Manag. 111(2), 157–170 (1985)

    Article  Google Scholar 

  • P.C. Deka, Support vector machine applications in the field of hydrology: a review. Appl. Soft Comput. 19, 372–386 (2014)

    Article  Google Scholar 

  • J. Demargne, L. Wu, S.K. Regonda, et al., The science of NOAA’s operational hydrologic ensemble forecast service. Bull. Am. Meteorol. Soc. 95(1), 79–98 (2014)

    Article  Google Scholar 

  • Q. Duan, N.K. Ajami, X. Gao, et al., Multi-model ensemble hydrologic prediction using Bayesian model averaging. Adv. Water Resour. 30(5), 1371–1386 (2007)

    Article  Google Scholar 

  • G.H. Dunteman, M.-H.R. Ho, An Introduction to Generalized Linear Models (CRC Press, Boca Raton, 2006)

    Book  Google Scholar 

  • F. Fahimi, Z.M. Yaseen, A. El-shafie, Application of soft computing based hybrid models in hydrological variables modeling: a comprehensive review. Theor. Appl. Climatol. 128(3–4), 875–903 (2016)

    Article  Google Scholar 

  • A.C. Favre, S. El Adlouni, L. Perreault, et al., Multivariate hydrological frequency analysis using copulas. Water Resour. Res. 40(1), W01101 (2004). https://doi.org/10.01029/02003WR002456

    Article  Google Scholar 

  • M. Fuglem, G. Parr, I. Jordaan, Plotting positions for fitting distributions and extreme value analysis. Can. J. Civ. Eng. 40(2), 130–139 (2013)

    Article  Google Scholar 

  • P. Ganguli, M.J. Reddy, Ensemble prediction of regional droughts using climate inputs and the SVM–copula approach. Hydrol. Process. 28(19), 4989–5009 (2014)

    Article  Google Scholar 

  • C. Genest, A.-C. Favre, Everything you always wanted to know about copula modeling but were afraid to ask. J. Hydrol. Eng. 12(4), 347–368 (2007)

    Article  Google Scholar 

  • C. Genest, A.C. Favre, J. Béliveau, et al., Metaelliptical copulas and their use in frequency analysis of multivariate hydrological data. Water Resour. Res. 43, W09401 (2007). https://doi.org/10.01029/02006WR005275

    Article  Google Scholar 

  • K.P. Georgakakos, D.-J. Seo, H. Gupta, et al., Towards the characterization of streamflow simulation uncertainty through multimodel ensembles. J. Hydrol. 298(1), 222–241 (2004)

    Article  Google Scholar 

  • T. Ghizzoni, G. Roth, R. Rudari, Multivariate skew-t approach to the design of accumulation risk scenarios for the flooding hazard. Adv. Water Resour. 33(10), 1243–1255 (2010)

    Article  Google Scholar 

  • N. Goel, S. Seth, S. Chandra, Multivariate modeling of flood flows. J. Hydraul. Eng. 124(2), 146–155 (1998)

    Article  Google Scholar 

  • R.S. Govindaraju, A.R. Rao, Artificial Neural Networks in Hydrology (Springer Science & Business Media, Heidelberg, 2013)

    Google Scholar 

  • I.I. Gringorten, A plotting rule for extreme probability paper. J. Geophys. Res. 68(3), 813–814 (1963)

    Article  Google Scholar 

  • T.M. Hamill, J.S. Whitaker, Probabilistic quantitative precipitation forecasts based on reforecast analogs: theory and application. Mon. Weather Rev. 134(11), 3209–3229 (2006)

    Article  Google Scholar 

  • T.M. Hamill, R. Hagedorn, J.S. Whitaker, Probabilistic forecast calibration using ECMWF and GFS ensemble reforecasts. Part II: precipitation. Mon. Weather Rev. 136(7), 2620–2632 (2008)

    Article  Google Scholar 

  • Z. Hao, V.P. Singh, Single-site monthly streamflow simulation using entropy theory. Water Resour. Res. 47(9), W09528 (2011). https://doi.org/10.01029/02010WR010208

    Article  Google Scholar 

  • Z. Hao, V.P. Singh, Entropy-based method for bivariate drought analysis. J. Hydrol. Eng. 18(7), 780–786 (2013a)

    Article  Google Scholar 

  • Z. Hao, V.P. Singh, Entropy-based method for extreme rainfall analysis in Texas. J. Geophys. Res. Atmos. 118(2), 263–273 (2013b)

    Article  Google Scholar 

  • Z. Hao, V.P. Singh, Modeling multi-site streamflow dependence with maximum entropy copula. Water Resour. Res. 49 (2013c). https://doi.org/10.1002/wrcr.20523

    Article  Google Scholar 

  • Z. Hao, V.P. Singh, Integrating entropy and copula theories for hydrologic modeling and analysis. Entropy 17(4), 2253–2280 (2015)

    Article  Google Scholar 

  • Z. Hao, V.P. Singh, Review of dependence modeling in hydrology and water resources. Prog. Phys. Geogr. 40, 549 (2016)

    Article  Google Scholar 

  • Z. Hao, F. Hao, Y. Xia, et al., A statistical method for categorical drought prediction based on NLDAS-2. J. Appl. Meteorol. Climatol. 55, 1049 (2016)

    Article  Google Scholar 

  • D.R. Helsel, R.M. Hirsch, Statistical Methods in Water Resources (Elsevier, Amsterdam, 1992)

    Google Scholar 

  • J.A. Hoeting, D. Madigan, A.E. Raftery, et al., Bayesian model averaging: a tutorial. Stat. Sci. 14(4), 382–401 (1999)

    Article  Google Scholar 

  • W.W. Hsieh, Machine Learning Methods in the Environmental Sciences: Neural Networks and Kernels (Cambridge University Press, Cambridge, UK, 2009)

    Book  Google Scholar 

  • K.l. Hsu, H.V. Gupta, S. Sorooshian, Artificial neural network modeling of the rainfall-runoff process. Water Resour. Res. 31(10), 2517–2530 (1995)

    Article  Google Scholar 

  • H. Joe, Multivariate Models and Dependence Concepts (Chapman & Hall, London, 1997)

    Book  Google Scholar 

  • H. Joe, Dependence Modeling with Copulas (CRC Press, Boca Raton, 2014)

    Book  Google Scholar 

  • M.C. Jones, J.S. Marron, S.J. Sheather, A brief survey of bandwidth selection for density estimation. J. Am. Stat. Assoc. 91(433), 401–407 (1996)

    Article  Google Scholar 

  • A. Kalra, S. Ahmad, Using oceanic-atmospheric oscillations for long lead time streamflow forecasting. Water Resour. Res. 45(3), W03413 (2009)

    Google Scholar 

  • K. Kelly, R. Krzysztofowicz, A bivariate meta-Gaussian density for use in hydrology. Stoch. Hydrol. Hydraul. 11(1), 17–31 (1997)

    Article  Google Scholar 

  • V.V. Kharin, F.W. Zwiers, Climate predictions with multimodel ensembles. J. Clim. 15(7), 793–799 (2002)

    Article  Google Scholar 

  • B. Kirtman, D. Min, J. Infanti, et al., The North American multimodel ensemble: phase-1 seasonal-to-interannual prediction; phase-2 toward developing intraseasonal prediction. Bull. Am. Meteorol. Soc. 95(4), 585–601 (2014)

    Article  Google Scholar 

  • S. Kotz, N. Balakrishnan, N.L. Johnson, Continuous Multivariate Distributions: Models and Applications (Wiley, New York, 2000)

    Book  Google Scholar 

  • T.N. Krishnamurti, C. Kishtawal, Z. Zhang, et al., Multimodel ensemble forecasts for weather and seasonal climate. J. Clim. 13(23), 4196–4216 (2000)

    Article  Google Scholar 

  • T. Krishnamurti, V. Kumar, A. Simon, et al., A review of multimodel superensemble forecasting for weather, seasonal climate, and hurricanes. Rev. Geophys. 54, 336 (2016)

    Article  Google Scholar 

  • D. Kurowicka, H. Joe, Dependence Modeling: Vine Copula Handbook (World Scientific, Singapore, 2011)

    Google Scholar 

  • U. Lall, Recent advances in nonparametric function estimation: hydrologic applications. Rev. Geophys. 33(S2), 1093–1102 (1995)

    Article  Google Scholar 

  • U. Lall, A. Sharma, A nearest neighbor bootstrap for resampling hydrologic time series. Water Resour. Res. 32(3), 679–693 (1996). https://doi.org/10.1029/1095WR02966

    Article  Google Scholar 

  • P. Laux, S. Vogl, W. Qiu, et al., Copula-based statistical refinement of precipitation in RCM simulations over complex terrain. Hydrol. Earth Syst. Sci. 15(7), 2401–2419 (2011)

    Article  Google Scholar 

  • C. Li, V.P. Singh, A.K. Mishra, A bivariate mixed distribution with a heavy-tailed component and its application to single-site daily rainfall simulation. Water Resour. Res. 49(2), 767–789 (2013)

    Article  Google Scholar 

  • D.P. Loucks, E. Van Beek, J.R. Stedinger, et al., Water Resources Systems Planning and Management: An Introduction to Methods, Models and Applications (UNESCO, Paris, 2005)

    Google Scholar 

  • L. Luo, E.F. Wood, Use of Bayesian merging techniques in a multimodel seasonal hydrologic ensemble prediction system for the eastern United States. J. Hydrometeorol. 9(5), 866–884 (2008)

    Article  Google Scholar 

  • L. Luo, E.F. Wood, M. Pan, Bayesian merging of multiple climate model forecasts for seasonal hydrological predictions. J. Geophys. Res. 112(D10), D10102 (2007)

    Article  Google Scholar 

  • L. Makkonen, Plotting positions in extreme value analysis. J. Appl. Meteorol. Climatol. 45(2), 334–340 (2006)

    Article  Google Scholar 

  • P. McCullagh, J.A. Nelder, Generalized Linear Models (CRC Press, Boca Raton, 1989)

    Book  Google Scholar 

  • J. McEnery, J. Ingram, Q. Duan, et al., NOAA’s advanced hydrologic prediction service. Bull. Am. Meteorol. Soc. 86(3), 375 (2005)

    Article  Google Scholar 

  • A. Montanari, A. Brath, A stochastic approach for assessing the uncertainty of rainfall-runoff simulations. Water Resour. Res. 40(1), W01106 (2004)

    Article  Google Scholar 

  • D.C. Montgomery, G.C. Runger, Applied Statistics and Probability for Engineers (Wiley, New York, 2010)

    Google Scholar 

  • S. Nadarajah, A bivariate gamma model for drought. Water Resour. Res. 43(8), W08501 (2007). https://doi.org/10.01029/02006WR005641

    Article  Google Scholar 

  • R.B. Nelsen, An Introduction to Copulas (Springer, New York, 2006)

    Google Scholar 

  • T. Palmer, F. Doblas-Reyes, R. Hagedorn, et al., Development of a European multimodel ensemble system for seasonal-to-interannual prediction (DEMETER). Bull. Am. Meteorol. Soc. 85(6), 853–872 (2004)

    Article  Google Scholar 

  • C. Piani, J. Haerter, Two dimensional bias correction of temperature and precipitation copulas in climate models. Geophys. Res. Lett. 39(20), L20401 (2012)

    Google Scholar 

  • W. Pozzi, J. Sheffield, R. Stefanski, et al., Towards global drought early warning capability: expanding international cooperation for the development of a framework for global drought monitoring and forecasting. Bull. Am. Meteorol. Soc. 94(6), 776–785 (2013)

    Article  Google Scholar 

  • J. Prairie, B. Rajagopalan, T. Fulp, et al., Modified K-NN model for stochastic streamflow simulation. J. Hydrol. Eng. 11(4), 371–378 (2006)

    Article  Google Scholar 

  • A.E. Raftery, T. Gneiting, F. Balabdaoui, et al., Using Bayesian model averaging to calibrate forecast ensembles. Mon. Weather Rev. 133(5), 1155–1174 (2005)

    Article  Google Scholar 

  • S.K. Regonda, B. Rajagopalan, M. Clark, A new method to produce categorical streamflow forecasts. Water Resour. Res. 42(9), W09501 (2006)

    Google Scholar 

  • B. Sackl, H. Bergmann, A bivariate flood model and its application, in Hydrologic Frequency Modeling. Proceedings of the International Symposium on Flood Frequency and Risk Analyses, Baton Rouge USA, 1986, ed. by V.P. Sing (Springer, Dordrecht, The Netherlands, 1987), pp. 571–582

    Chapter  Google Scholar 

  • G. Salvadori, C. De Michele, Multivariate multiparameter extreme value models and return periods: a copula approach. Water Resour. Res. 46(10), W10501 (2010)

    Article  Google Scholar 

  • J.C. Schaake, T.M. Hamill, R. Buizza, et al., HEPEX: the hydrological ensemble prediction experiment. Bull. Am. Meteorol. Soc. 88(10), 1541 (2007)

    Article  Google Scholar 

  • A. Shabri, Suhartono, Streamflow forecasting using least-squares support vector machines. Hydrol. Sci. J. 57(7), 1275–1293 (2012)

    Article  Google Scholar 

  • A.Y. Shamseldin, K.M. O’Connor, G. Liang, Methods for combining the outputs of different rainfall-runoff models. J. Hydrol. 197(1–4), 203–229 (1997)

    Article  Google Scholar 

  • A. Sharma, D. Tarboton, U. Lall, Streamflow simulation: a nonparametric approach. Water Resour. Res. 33(2), 291–308 (1997)

    Article  Google Scholar 

  • W. Shaw, K. Lee, Bivariate Student t distributions with variable marginal degrees of freedom and independence. J. Multivar. Anal. 99(6), 1276–1287 (2008)

    Article  Google Scholar 

  • B. Silverman, Density Estimation for Statistics and Data Analysis (Chapman & Hall/CRC, New York, 1986)

    Book  Google Scholar 

  • K. Singh, V. Singh, Derivation of bivariate probability density functions with exponential marginals. Stoch. Hydrol. Hydraul. 5(1), 55–68 (1991)

    Article  Google Scholar 

  • V.P. Singh, D.A. Woolhiser, Mathematical modeling of watershed hydrology. J. Hydrol. Eng. 7(4), 270–292 (2002)

    Article  Google Scholar 

  • B. Sivakumar, R. Berndtsson, Advances in Data-Based Approaches for Hydrologic Modeling and Forecasting (World Scientific, Hackensack, 2010)

    Book  Google Scholar 

  • A.J. Smola, B. Schölkopf, A tutorial on support vector regression. Stat. Comput. 14(3), 199–222 (2004)

    Article  Google Scholar 

  • J. Thielen, J. Schaake, R. Hartman, et al., Aims, challenges and progress of the Hydrological Ensemble Prediction Experiment (HEPEX) following the third HEPEX workshop held in Stresa 27 to 29 June 2007. Atmos. Sci. Lett. 9(2), 29–35 (2008)

    Article  Google Scholar 

  • A.S. Tokar, P.A. Johnson, Rainfall-runoff modeling using artificial neural networks. J. Hydrol. Eng. 4(3), 232–239 (1999)

    Article  Google Scholar 

  • P.K. Trivedi, D.M. Zimmer, Copula modeling: an introduction for practitioners. Found. Trends Econom. 1(1), 1–111 (2005)

    Article  Google Scholar 

  • T.M. Twedt, J.C. Schaake Jr., E.L. Peck, National Weather Service extended streamflow prediction, in Proceedings of the 45th Annual Western Snow Conference, Albuquerque, 1977

    Google Scholar 

  • M. Van den Berg, S. Vandenberghe, B.D. Baets, et al., Copula-based downscaling of spatial rainfall: a proof of concept. Hydrol. Earth Syst. Sci. 15(5), 1445–1457 (2011)

    Article  Google Scholar 

  • N.E. Verhoest, M.J. van den Berg, B. Martens, et al., Copula-based downscaling of coarse-scale soil moisture observations with implicit bias correction. IEEE Trans. Geosci. Remote Sens. 53(6), 3507–3521 (2015)

    Article  Google Scholar 

  • S. Vogl, P. Laux, W. Qiu, et al., Copula-based assimilation of radar and gauge information to derive bias-corrected precipitation fields. Hydrol. Earth Syst. Sci. 16(7), 2311–2328 (2012)

    Article  Google Scholar 

  • M.P. Wand, M.C. Jones, Kernel Smoothing. (CRC Press, Boca Raton, 1994)

    Google Scholar 

  • K. Werner, D. Brandon, M. Clark, et al., Incorporating medium-range numerical weather model output into the ensemble streamflow prediction system of the National Weather Service. J. Hydrometeorol. 6(2), 101–114 (2005)

    Article  Google Scholar 

  • D.S. Wilks, Statistical Methods in the Atmospheric Sciences (Academic, San Diego, 2011)

    Google Scholar 

  • D.S. Wilks, T.M. Hamill, Comparison of ensemble-MOS methods using GFS reforecasts. Mon. Weather Rev. 135(6), 2379–2390 (2007)

    Article  Google Scholar 

  • E.F. Wood, S.D. Schubert, A.W. Wood, et al., Prospects for advancing drought understanding, monitoring and prediction. J. Hydrometeorol. 16(4), 1636–1657 (2015)

    Article  Google Scholar 

  • Z.M. Yaseen, A. El-shafie, O. Jaafar, et al., Artificial intelligence based models for stream-flow forecasting: 2000–2015. J. Hydrol. 530, 829–844 (2015)

    Article  Google Scholar 

  • X. Yuan, E.F. Wood, On the clustering of climate models in ensemble seasonal forecasting. Geophys. Res. Lett. 39(18), L18701 (2012)

    Article  Google Scholar 

  • X. Yuan, E.F. Wood, Z. Ma, A review on climate-model-based seasonal hydrologic forecasting: physical understanding and system development. WIREs Water 2, 523–536 (2015a)

    Article  Google Scholar 

  • X. Yuan, J.K. Roundy, E.F. Wood, et al., Seasonal forecasting of global hydrologic extremes: system development and evaluation over GEWEX basins. Bull. Am. Meteorol. Soc. 96, 1895 (2015b)

    Article  Google Scholar 

  • S. Yue, Applying bivariate normal distribution to flood frequency analysis. Water Int. 24(3), 248–254 (1999)

    Article  Google Scholar 

  • S. Yue, The bivariate lognormal distribution to model a multivariate flood episode. Hydrol. Process. 14(14), 2575–2588 (2000)

    Article  Google Scholar 

  • S. Yue, T. Ouarda, B. Bobée, A review of bivariate gamma distributions for hydrological application. J. Hydrol. 246(1), 1–18 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zengchao Hao .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hao, Z., Singh, V.P., Gong, W. (2019). Probability and Statistical Theory for Hydrometeorology. In: Duan, Q., Pappenberger, F., Wood, A., Cloke, H., Schaake, J. (eds) Handbook of Hydrometeorological Ensemble Forecasting. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39925-1_61

Download citation

Publish with us

Policies and ethics