Skip to main content

Droplet Networks, from Lipid Bilayers to Synthetic Tissues

  • Living reference work entry
  • First Online:

Introduction

An aqueous droplet in a solution of lipid in oil acquires a lipid monolayer coat. When two such droplets are brought together, they adhere through the formation of a droplet interface bilayer (DIB) (Fig. 1a). A high contact angle at the interface (Fig. 1a) indicates a strong interaction between the droplets (Thiam et al. 2012). DIBs in droplet pairs were first developed as a means to simplify and miniaturize planar bilayer experiments in which transmembrane channels and pores are characterized by ionic current recording (Bayley et al. 2008). They have additional technical advantages, for example, bilayers with lipid asymmetry can be formed reliably (Hwang et al. 2008). Droplet-hydrogel bilayers (DHB) allow the simultaneous recording of current and fluorescence (Weatherill and Wallace 2015).

Fig. 1
figure 1

Droplet interface bilayer networks. (a) When two droplets, encapsulated in lipid monolayers, are brought together in an oil, they form a droplet interface bilayer (DIB) (Booth...

This is a preview of subscription content, log in via an institution.

References

  • Aghdaei S, Sandison ME, Zagnoni M et al (2008) Formation of artificial lipid bilayers using droplet dielectrophoresis. Lab Chip 8:1617–1620

    Article  CAS  Google Scholar 

  • Bai Y, He X, Liu D et al (2010) A double droplet trap system for studying mass transport across a droplet-droplet interface. Lab Chip 10:1281–1285

    Article  CAS  Google Scholar 

  • Barlow NE, Smpokou E, Friddin MS et al (2017) Engineering plant membranes using droplet interface bilayers. Biomicrofluidics 11:24107

    Article  CAS  Google Scholar 

  • Baxani DK, Morgan AJ, Jamieson WD et al (2016) Bilayer networks within a hydrogel shell: a robust chassis for artificial cells and a platform for membrane studies. Angew Chem Int Ed Engl 55:14240–14245

    Article  CAS  Google Scholar 

  • Bayley H, Cronin B, Heron A et al (2008) Droplet interface bilayers. Mol BioSyst 4:1191–1208

    Article  CAS  Google Scholar 

  • Bayoumi M, Bayley H, Maglia G, Sapra KT (2017) Multi-compartment encapsulation of droplets and droplet networks in hydrogel as a model for artificial cells. Sci Rep 7:45167

    Article  CAS  Google Scholar 

  • Booth MJ, Restrepo Schild V, Graham AD et al (2016) Light-activated communication in synthetic tissues. Sci Adv 2:e1600056

    Article  Google Scholar 

  • Booth MJ, Restrepo Schild V, Box SJ, Bayley H (2017a) Light-patterning of synthetic tissues with single droplet resolution. Sci Rep 7:9315

    Article  Google Scholar 

  • Booth MJ, Restrepo Schild V, Downs FG, Bayley H (2017b) Functional aqueous droplet networks. Mol BioSyst 13:1658–1691

    Article  CAS  Google Scholar 

  • Boreyko JB, Polizos G, Datskos PG et al (2014) Air-stable droplet interface bilayers on oil-infused surfaces. Proc Natl Acad Sci U S A 111:7588–7593

    Article  CAS  Google Scholar 

  • Carreras P, Law RV, Brooks N et al (2014) Microfluidic generation of droplet interface bilayer networks incorporating real-time size sorting in linear and non-linear configurations. Biomicrofluidics 8:54113

    Article  CAS  Google Scholar 

  • Carreras P, Elani Y, Law RV et al (2015) A microfluidic platform for size-dependent generation of droplet interface bilayer networks on rails. Biomicrofluidics 9:64121

    Article  CAS  Google Scholar 

  • Castell OK, Berridge J, Wallace MI (2012) Quantification of membrane protein inhibition by optical ion flux in a droplet interface bilayer array. Angew Chem Int Ed Engl 51:3134–3138

    Article  CAS  Google Scholar 

  • Challita EJ, Najem JS, Freeman EC, Leo DJ (2017) A 3D printing method for droplet-based biomolecular materials. In: Proceedings of SPIE 10167, nanosensors, biosensors, Info-Tech sensors 3D systems, Portland, Oregon, vol 10167

    Google Scholar 

  • Czekalska MA, Kaminski TS, Jakiela S et al (2015) A droplet microfluidic system for sequential generation of lipid bilayers and transmembrane electrical recordings. Lab Chip 15:541–548

    Article  CAS  Google Scholar 

  • Deng NN, Yelleswarapu M, Huck WT (2016) Monodisperse uni- and multicompartment liposomes. J Am Chem Soc 138:7584–7591

    Article  CAS  Google Scholar 

  • Devaux PF (1991) Static and dynamic lipid asymmetry in cell membranes. Biochemistry 30:1163–1173

    Article  CAS  Google Scholar 

  • Ding W, Palaiokostas M, Wang W, Orsi M (2015) Effects of lipid composition on bilayer membranes quantified by all-atom molecular dynamics. J Phys Chem B 119:15263–15274

    Article  CAS  Google Scholar 

  • Dixit SS, Kim H, Vasilyev A et al (2010) Light-driven formation and rupture of droplet bilayers. Langmuir 26:6193–6200

    Article  CAS  Google Scholar 

  • Dixit SS, Pincus A, Guo B, Faris GW (2012) Droplet shape analysis and permeability studies in droplet lipid bilayers. Langmuir 28:7442–7451

    Article  CAS  Google Scholar 

  • Elani Y, deMello AJ, Niu X, Ces O (2012) Novel technologies for the formation of 2-D and 3-D droplet interface bilayer networks. Lab Chip 12:3514–3520

    Article  CAS  Google Scholar 

  • Elani Y, Gee A, Law RV, Ces O (2013) Engineering multi-compartment vesicle networks. Chem Sci 4:3332–3338

    Article  CAS  Google Scholar 

  • Elani Y, Law RV, Ces O (2014) Vesicle-based artificial cells as chemical microreactors with spatially segregated reaction pathways. Nat Commun 5:5305

    Article  CAS  Google Scholar 

  • Elani Y, Law RV, Ces O (2015) Protein synthesis in artificial cells: using compartmentalisation for spatial organisation in vesicle bioreactors. Phys Chem Chem Phys 17:15534–15537

    Article  CAS  Google Scholar 

  • Elani Y, Solvas XC, Edel JB et al (2016) Microfluidic generation of encapsulated droplet interface bilayer networks (multisomes) and their use as cell-like reactors. Chem Commun 52:5961–5964

    Article  CAS  Google Scholar 

  • El-Arabi AM, Salazar CS, Schmidt JJ (2012) Ion channel drug potency assay with an artificial bilayer chip. Lab Chip 12:2409–2413

    Article  CAS  Google Scholar 

  • Findlay HE, Harris NJ, Booth PJ (2016) In vitro synthesis of a Major Facilitator Transporter for specific active transport across Droplet Interface Bilayers. Sci Rep 6:39349

    Article  CAS  Google Scholar 

  • Friddin MS, Bolognesi G, Elani Y et al (2016) Optically assembled droplet interface bilayer (OptiDIB) networks from cell-sized microdroplets. Soft Matter 12:7731–7734

    Article  CAS  Google Scholar 

  • Graham AD, Olof SN, Burke MJ et al (2017) High-resolution patterned cellular constructs by droplet-based 3D printing. Sci Rep 7:7004

    Article  Google Scholar 

  • Guzowski J, Gizynski K, Gorecki J, Garstecki P (2016) Microfluidic platform for reproducible self-assembly of chemically communicating droplet networks with predesigned number and type of the communicating compartments. Lab Chip 16:764–772

    Article  CAS  Google Scholar 

  • Helm CA, Israelachvili JN, McGuiggan PM (1992) Role of hydrophobic forces in bilayer adhesion and fusion. Biochemistry 31:1794–1805

    Article  CAS  Google Scholar 

  • Holden MA, Needham D, Bayley H (2007) Functional bionetworks from nanoliter water droplets. J Am Chem Soc 129:8650–8655

    Article  CAS  Google Scholar 

  • Hwang WL, Holden MA, White S, Bayley H (2007) Electrical behavior of droplet interface bilayer networks: experimental analysis and modeling. J Am Chem Soc 129:11854–11864

    Article  CAS  Google Scholar 

  • Hwang WL, Chen M, Cronin B et al (2008) Asymmetric droplet interface bilayers. J Am Chem Soc 130:5878–5879

    Article  CAS  Google Scholar 

  • Jones G, King PH, Morgan H et al (2015) Autonomous droplet architectures. Artif Life 21:195–204

    Article  Google Scholar 

  • Kim S, Turker MS, Chi EY et al (1983) Preparation of multivesicular liposomes. Biochim Biophys Acta 728:339–348

    Article  CAS  Google Scholar 

  • King PH, Jones G, Morgan H et al (2014) Interdroplet bilayer arrays in millifluidic droplet traps from 3D-printed moulds. Lab Chip 14:722–729

    Article  CAS  Google Scholar 

  • Kong L, Almond A, Bayley H, Davis BG (2016) Chemical polyglycosylation and nanolitre detection enables single-molecule recapitulation of bacterial sugar export. Nat Chem 8:461–469

    Article  CAS  Google Scholar 

  • Lein M, deRonde BM, Sgolastra F et al (2015) Protein transport across membranes: comparison between lysine and guanidinium-rich carriers. Biochim Biophys Acta 1848:2980–2984

    Article  CAS  Google Scholar 

  • Maglia G, Heron AJ, Hwang WL et al (2009) Droplet networks with incorporated protein diodes show collective properties. Nat Nanotechnol 4:437–440

    Article  CAS  Google Scholar 

  • Maglia G, Heron AJ, Stoddart D et al (2010) Analysis of single nucleic acid molecules with protein nanopores. Methods Enzymol 475:591–623

    Article  CAS  Google Scholar 

  • Mantri S, Sapra KT, Cheley S et al (2013) An engineered dimeric protein pore that spans adjacent lipid bilayers. Nat Commun 4:1725

    Article  Google Scholar 

  • Poulin P, Bibette J (1998) Adhesion of water droplets in organic solvent. Langmuir 14:6341–6343

    Article  CAS  Google Scholar 

  • Poulos JL, Nelson WC, Jeon TJ et al (2009) Electrowetting on dielectric-based microfluidics for integrated lipid bilayer formation and measurement. Appl Phys Lett 95:13706

    Article  Google Scholar 

  • Punnamaraju S, You H, Steckl AJ (2012) Triggered release of molecules across droplet interface bilayer lipid membranes using photopolymerizable lipids. Langmuir 28:7657–7664

    Article  CAS  Google Scholar 

  • Restrepo Schild V, Booth MJ, Box SJ et al (2017) Light-patterned current generation in a droplet bilayer array. Sci Rep 7:46585

    Article  CAS  Google Scholar 

  • Sapra KT, Bayley H (2012) Lipid-coated hydrogel shapes as components of electrical circuits and mechanical devices. Sci Rep 2:848

    Article  Google Scholar 

  • Sarles SA, Leo DJ (2010a) Regulated attachment method for reconstituting lipid bilayers of prescribed size within flexible substrates. Anal Chem 82:959–966

    Article  CAS  Google Scholar 

  • Sarles SA, Leo DJ (2010b) Physical encapsulation of droplet interface bilayers for durable, portable biomolecular networks. Lab Chip 10:710–717

    Article  CAS  Google Scholar 

  • Sarles SA, Stiltner LJ, Williams CB, Leo DJ (2010) Bilayer formation between lipid-encased hydrogels contained in solid substrates. ACS Appl Mater Interfaces 2:3654–3663

    Article  CAS  Google Scholar 

  • Schlicht B, Zagnoni M (2015) Droplet-interface-bilayer assays in microfluidic passive networks. Sci Rep 5:9951

    Article  CAS  Google Scholar 

  • Stanley CE, Elvira KS, Niu XZ et al (2010) A microfluidic approach for high-throughput droplet interface bilayer (DIB) formation. Chem Commun 46:1620–1622

    Article  CAS  Google Scholar 

  • Syeda R, Holden MA, Hwang WL, Bayley H (2008) Screening blockers against a potassium channel with a droplet interface bilayer array. J Am Chem Soc 130:15543–15548

    Article  CAS  Google Scholar 

  • Tamaddoni N, Sarles SA (2016) Toward cell-inspired materials that feel: measurements and modeling of mechanotransduction in droplet-based, multi-membrane arrays. Bioinspir Biomim 11:36008

    Article  Google Scholar 

  • Tamaddoni N, Freeman EC, Sarles SA (2015) Sensitivity and directionality of lipid bilayer mechanotransduction studied using a revised, highly durable membrane-based hair cell sensor. Smart Mater Struct 24:65014

    Article  Google Scholar 

  • Tamaddoni N, Taylor G, Hepburn T et al (2016) Reversible, voltage-activated formation of biomimetic membranes between triblock copolymer-coated aqueous droplets in good solvents. Soft Matter 12:5096–5109

    Article  CAS  Google Scholar 

  • Taylor GJ, Sarles SA (2015) Heating-enabled formation of droplet interface bilayers using Escherichia coli total lipid extract. Langmuir 31:325–337

    Article  CAS  Google Scholar 

  • Thiam AR, Bremond N, Bibette J (2011) Adhesive emulsion bilayers under an electric field: from unzipping to fusion. Phys Rev Lett 107:68301

    Article  Google Scholar 

  • Thiam AR, Bremond N, Bibette J (2012) From stability to permeability of adhesive emulsion bilayers. Langmuir 28:6291–6298

    Article  CAS  Google Scholar 

  • Thutupalli S, Herminghaus S (2013) Tuning active emulsion dynamics via surfactants and topology. Eur Phys J E Soft Matter 36:91

    Article  Google Scholar 

  • Tonooka T, Sato K, Osaki T et al (2014) Lipid bilayers on a picoliter microdroplet array for rapid fluorescence detection of membrane transport. Small 10:3275–3282

    Article  CAS  Google Scholar 

  • Tsuji Y, Kawano R, Osaki T et al (2013) Droplet split-and-contact method for high-throughput transmembrane electrical recording. Anal Chem 85:10913–10919

    Article  CAS  Google Scholar 

  • Venkatesan GA, Sarles SA (2016) Droplet immobilization within a polymeric organogel improves lipid bilayer durability and portability. Lab Chip 16:2116–2125

    Article  CAS  Google Scholar 

  • Villar G, Heron AJ, Bayley H (2011) Formation of droplet networks that function in aqueous environments. Nat Nanotechnol 6:803–808

    Article  CAS  Google Scholar 

  • Villar G, Graham AD, Bayley H (2013) A tissue-like printed material. Science 340:48–52

    Article  CAS  Google Scholar 

  • Wauer T, Gerlach H, Mantri S et al (2014) Construction and manipulation of functional three-dimensional droplet networks. ACS Nano 8:771–779

    Article  CAS  Google Scholar 

  • Weatherill EE, Wallace MI (2015) Combining single-molecule imaging and single-channel electrophysiology. J Mol Biol 427:146–157

    Article  CAS  Google Scholar 

  • Wood C, Williams C, Waldron GJ (2004) Patch clamping by numbers. Drug Discov Today 9:434–441

    Article  CAS  Google Scholar 

  • Yasuga H, Kawano R, Takinoue M, et al (2013) Droplet-box: a platform for biological-nanopore-based logical operation using lipid-coated droplet network. In: 17th International conference on miniaturized Systems for Chemistry and life Sciences MicroTAS 2013, Freiburg, Germany, vol 3, pp 1914–1916

    Google Scholar 

  • Yasuga H, Kawano R, Takinoue M et al (2016) Logic gate operation by DNA translocation through biological nanopores. PLoS One 11:e0149667

    Article  Google Scholar 

  • Zagnoni M, Cooper JM (2010) A microdroplet-based shift register. Lab Chip 10:3069–3073

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Booth .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 European Biophysical Societies' Association (EBSA)

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Booth, M.J., Restrepo Schild, V., Downs, F.G., Bayley, H. (2019). Droplet Networks, from Lipid Bilayers to Synthetic Tissues. In: Roberts, G., Watts, A. (eds) Encyclopedia of Biophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35943-9_567-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35943-9_567-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35943-9

  • Online ISBN: 978-3-642-35943-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics