Skip to main content

Quantum Mechanical Simulations of Biopolymer Vibrational Spectra

  • Living reference work entry
  • First Online:
Encyclopedia of Biophysics
  • 253 Accesses

Synonyms

Simulations of IR and Raman spectra

Definition

Quantum mechanical (QM) simulations of vibrational spectra use fundamental QM methods to determine the force field (FF) and predict the frequencies and intensities of IR and Raman spectral transitions with varying degrees of approximations appropriate to biopolymer applications.

Introduction

Vibrational spectroscopic methods provide important experimental data for studies of biological molecules, peptides, proteins, nucleic acids, and lipids, which are often interpreted via empirical correlation of frequencies and intensities with molecular properties (Hering and Haris 2009; Krimm and Bandekar 1986; Mantsch and Chapman 1996; Tsuboi 1987). However, to develop a deeper understanding of the observed spectra and the changes they undergo when the structure or environment varies, theoretical simulations of the spectra are needed. Initially, empirical models for force field (FF) calculations based on parameters derived from fitting...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bartolotti LJ, Flurchick K (1996) An introduction to density functional theory. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 7. VCH, New York

    Google Scholar 

  • Becke AD (1995) Exchange-correlation approximations in density functional theory. In: Yarkony DR (ed) Modern electronic structure theory, vol 2. World Scientific, Singapore, pp 1022–1046

    Chapter  Google Scholar 

  • Bour P, Kubelka J, Keiderling TA (2000) Simulations of oligopeptide vibrational circular dichroism. Effects of isotopic labeling. Biopolymers 53:380–395

    Article  CAS  PubMed  Google Scholar 

  • Choi JH, Cho M (2009) Computational linear and non-linear IR spectroscopy of amide I vibrations in proteins. In: Barth A, Haris PI (eds) Biological and biomedical infrared spectroscopy, vol 2. IOS Press, Amsterdam, pp 224–260

    Google Scholar 

  • Colvin ME, Cramer CJ, Dykstra CE, Jensen JH, Krimm S, Rivail J-L, Thakkar AJ, Yanez M (2006) Molecular quantum mechanics to biodynamics: essential connections. J Mol Struct Theochem 764:1–8

    Article  CAS  Google Scholar 

  • Grahnen JA, Amunson KE, Kubelka J (2010) DFT-based simulations of IR amide I’ spectra for a small protein in solution. Comparison of explicit and empirical solvent models. J Phys Chem B 114:13011–13020

    Article  CAS  PubMed  Google Scholar 

  • Hering JA, Haris PI (2009) FTIR spectroscopy for analysis of protein secondary structure. In: Barth A, Haris PI (eds) Biological and biomedical infrared spectroscopy, vol 2. IOS Press, Amsterdam, pp 129–167

    Google Scholar 

  • Kessler J, Keiderling TA, Bour P (2014) Arrangement of fibril side chains studied by molecular dynamics and simulated infrared and vibrational circular dichroism spectra. J Phys Chem B 118:6937–6945

    Article  CAS  PubMed  Google Scholar 

  • Kessler J, Kapitan J, Bour P (2015) First-principles predictions of vibrational Raman optical activity of globular proteins. J Phys Chem Lett 6:3314–3319

    Article  CAS  Google Scholar 

  • Krimm S (1999) Vibrational spectroscopy of polypeptides. In: Zerbi G (ed) Modern polymer spectroscopy. Wiley-VCH, Weinheim

    Google Scholar 

  • Krimm S (2000) Interpreting infrared spectra of peptides and proteins. In: Singh BR (ed) Infrared analysis of peptides and proteins. Principles and applications, ACS Symposium Series. American Chemical Society, Washington, DC, pp 38–53

    Google Scholar 

  • Krimm S, Bandekar J (1986) Vibrational spectroscopy and conformation of peptides, polypeptides and proteins. Adv Protein Chem 38:181–364

    Article  CAS  PubMed  Google Scholar 

  • Krimm S, Reisdorf WC Jr (1994) Understanding normal modes of proteins. Faraday Discuss 99:181–194

    Article  CAS  PubMed  Google Scholar 

  • Kubelka J, Keiderling TA (2001) Differentiation of β-sheet-forming structures: Ab initio-based simulations of IR absorption and vibrational CD for model peptide and protein β-sheets. J Am Chem Soc 123:12048–12058

    Article  CAS  PubMed  Google Scholar 

  • Kubelka J, Silva RAGD, Bour P, Decatur SM, Keiderling TA (2002) Chirality in peptide vibrations. Ab initio computational studies of length, solvation, hydrogen bond, dipole coupling and isotope effects on vibrational cd. In: Hicks JM (ed) Chirality: physical chemistry, ACS Symposium Series, vol 810. American Chemical Society, Washington, DC, pp 50–64

    Chapter  Google Scholar 

  • Kubelka J, Huang R, Keiderling TA (2005) Solvent effects on IR and VCD spectra of helical peptides: insights from ab initio spectral simulations with explicit water. J Phys Chem B 109(16):8231–8243

    Article  CAS  PubMed  Google Scholar 

  • Kubelka J, Bour P, Keiderling TA (2009) Quantum mechanical calculations of peptide vibrational force fields and spectral intensities. In: Barth A, Haris PI (eds) Biological and biomedical infrared spectroscopy, vol 2. IOS Press, Amsterdam, pp 178–223

    Google Scholar 

  • Mantsch HH, Chapman D (1996) Infrared spectroscopy of biomolecules. Wiley-Liss, Chichester

    Google Scholar 

  • McGill PMW (1998) Density functional theory, Hartree-Fock and the self-consistent field. In: Schleyer PR, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaeffer HF, Schreiner PR (eds) Encyclopedia of computational chemistry, vol 1. Wiley, Chichester, pp 678–689

    Google Scholar 

  • Miyazawa T (1960) Perturbation treatment of the characteristic vibrations of polypeptide chains in various configurations. J Chem Phys 32:1647–1652

    Article  CAS  Google Scholar 

  • Parr RG, Yang W (1995) Density functional theory of electronic structure. Ann Rev Phys Chem 46:701–728

    Article  CAS  Google Scholar 

  • Pulay P (1995) Analytical derivative techniques and the calculation of vibrational spectra. In: Yarkony DR (ed) Modern electronic structure theory, vol 2. World Scientific, Singapore, pp 1191–1240

    Chapter  Google Scholar 

  • Rhee H, Choi J-H, Cho M (2010) Infrared optical activity: electric field approaches in time domain. Acc Chem Res 43:1527–1536

    Article  CAS  PubMed  Google Scholar 

  • St-Amant A (1996) Density functional methods in biomolecular modeling. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 7. VCH, New York, pp 217–259

    Google Scholar 

  • Stephens PJ, Devlin FJ (2007) Vibrational circular dichroism. In: Mennucci B, Cammi R (eds) Continuum solvation models in chemical physics: from theory to applications. Wiley, Chichester, pp 180–205

    Google Scholar 

  • Tsuboi M (1987) New approaches to the analysis of vibrations of nucleic acids and their components. Stud Phys Theor Chem 45:351–368

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy A. Keiderling .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 European Biophysical Societies' Association (EBSA)

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Keiderling, T.A. (2018). Quantum Mechanical Simulations of Biopolymer Vibrational Spectra. In: Roberts, G., Watts, A. (eds) Encyclopedia of Biophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35943-9_107-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35943-9_107-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35943-9

  • Online ISBN: 978-3-642-35943-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics