Skip to main content

Formose Reaction

Encyclopedia of Astrobiology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References and Further Reading

  • Arrhenius T, Arrhenius G et al (1994) Archean geochemistry of formaldehyde and cyanide and the oligomerization of cyanohydrin. Orig Life Evol Biosph 24(1):1–17

    Article  ADS  Google Scholar 

  • Berlow E, Barth RH, Snow JE (1958) The pentaerythritols. Reinhold Publishing, NY

    Google Scholar 

  • Breslow R (1959) On the mechanism of the formose reaction. Tetrahedron Lett 21:22–26

    Article  Google Scholar 

  • Butlerow A (1861) Formation synthétique d’une substance sucrée. Comp Rend Acad Sci 53:145–147

    Google Scholar 

  • Cairns-Smith A, Ingram P, Walker G (1972) Formose production by minerals: possible relevance to the origin of life. J Theor Biol 35:601–604

    Article  Google Scholar 

  • Chandra K, De S (1983) Adsorption of formaldehyde by clay minerals in presence of urea and ammonium sulfate in aqueous system. Indian J Agr Chem 16:239–245

    Google Scholar 

  • Cleaves H (2003) The prebiotic synthesis of acrolein. Monatsh Chem 134:585–593

    Article  Google Scholar 

  • Cooper G, Kimmich N, Belisle W, Sarinana J, Brabham K, Garrel L (2001) Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth. Nature 414:879–883

    Article  ADS  Google Scholar 

  • De Bruijn J, Kieboom A, Van Bekkum H (1986) Reactions of monosaccharides in aqueous alkaline solutions. Sugar Tech Rev 13:21–52

    Google Scholar 

  • Fuller W, Sanchez R, Orgel L (1972) Studies in prebiotic synthesis VII. J Mol Evol 1:249–257

    Article  Google Scholar 

  • Gabel N, Ponnamperuma C (1967) Model for origin of monosaccharides. Nature 216:453–455

    Article  ADS  Google Scholar 

  • Gesteland R, Atkins J (1983) The RNA world: the nature of modern RNA suggests a prebiotic RNA world (Monograph/Cold Spring Harbor Laboratory, No 24)

    Google Scholar 

  • Gesteland RF, Atkins JF (1993) The RNA world: the nature of modern RNA suggests a prebiotic RNA world. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Hollis J, Lovas F, Jewell P (2000) Interstellar glycolaldehyde: the first sugar. Astrophys J 540:L107–L110

    Article  ADS  Google Scholar 

  • Joyce G, Schwartz A, Miller S, Orgel L (1987) The case for an ancestral genetic system involving simple analogues of the nucleotides. Proc Natl Acad Sci U S A 84:4398–4402

    Article  ADS  Google Scholar 

  • Lahav N, Chang S (1976) The possible role of solid surface area in condensation reactions during chemical evolution: reevaluation. J Mol Evol 8:357–380

    Article  Google Scholar 

  • Lambert JB, Gurusamy-Thangavelu SA, Ma K (2010) The Silicate-Mediated formose reaction: bottom-up synthesis of sugar silicates. Science 327:984–986

    Article  ADS  Google Scholar 

  • Larralde R, Robertson M, Miller S (1995) Rates of decomposition of ribose and other sugars: implications for chemical evolution. Proc Natl Acad Sci U S A 92:8158–8160

    Article  ADS  Google Scholar 

  • Levy M, Miller S, Brinton K, Bada J (2000) Prebiotic synthesis of adenine and amino acids under Europa-like conditions. Icarus 145:609–613

    Article  ADS  Google Scholar 

  • Malinowski S, Basinski S, Szczepanska (1963) Ann Soc Chim Polonorum 37:977–982

    Google Scholar 

  • Miyakawa S, Cleaves H, Miller S (2002) The cold origin of life: B. Implications based on pyrimidines and purines produced from frozen ammonium cyanide solutions. Orig Life Evol Biosph 32:209–218

    Article  ADS  Google Scholar 

  • Nelsestuen GL (1980) Origin of life: consideration of alternatives to proteins and nucleic acids. J Mol Evol 15(1):59–72

    Article  Google Scholar 

  • Orgel LE (2000) Self-organizing biochemical cycles. PNAS 97(23):12503–12507

    Article  ADS  Google Scholar 

  • Osada M, Watanabe M, Sue K, Adschiri T, Arai K (2004) Water density dependence of formaldehyde reaction in supercritical water. J Supercrit Fluids 28:219–224

    Article  Google Scholar 

  • Parfitt R, Greenland D (1970) The adsorption of poly(ethylene glycols) on clay minerals. Clay Miner 8:305–315

    Article  Google Scholar 

  • Peltzer E, Bada J, Schlesinger G, Miller S (1984) The chemical conditions on the parent body of the Murchison meteorite: some conclusions based on amino, hydroxy and dicarboxylic acids. Adv Space Res 4:69–74

    Article  ADS  Google Scholar 

  • Pinto J, Gladstone G, Yung Y (1980) Photochemical production of formaldehyde in Earth’s primitive atmosphere. Science 210:183–185

    Article  ADS  Google Scholar 

  • Pizzarello S (2004) Chemical evolution and meteorites: an update. Orig Life Evol Biosph 34:25–34

    Article  ADS  Google Scholar 

  • Powner MW, Gerland B, Sutherland JD (2009) Synthesis of activated pyrimidines ribonucleotides in prebiotically plausible conditions. Nature 459:239–242

    Article  ADS  Google Scholar 

  • Reid C, Orgel L (1967) Synthesis of sugars in potentially prebiotic conditions. Nature 216:455

    Article  ADS  Google Scholar 

  • Ricardo A, Carrigan M, Olcott A, Benner S (2004) Borate minerals stabilize ribose. Science 303:196

    Article  Google Scholar 

  • Sanchez R, Ferris J, Orgel L (1966) Conditions for purine synthesis: did prebiotic synthesis occur at low temperatures? Science 153:72–73

    Article  ADS  Google Scholar 

  • Schlesinger G, Miller S (1973) Equilibrium and kinetics of glyconitrile formation in aqueous solution. J Am Chem Soc 95:3729–3735

    Article  Google Scholar 

  • Schwartz A (1983) Chemical evolution: the first stages. Naturwissenschaften 70:373–377

    Article  ADS  Google Scholar 

  • Schwartz A, De Graaf R (1993a) The prebiotic synthesis of carbohydrates: a reassessment. J Mol Evol 36:101–106

    Article  Google Scholar 

  • Schwartz AW, de Graaf RM (1993b) Tetrahedron Lett 34:2201

    Article  Google Scholar 

  • Seewald JS, Zolotov M, McCollom T (2006) Experimental investigation of single carbon compounds under hydrothermal conditions. Geochim Cosmochim Acta 70:446–460

    Article  ADS  Google Scholar 

  • Shapiro R (1988) Prebiotic ribose synthesis: a critical analysis. Orig Life Evol Biosph 18:71–85

    Article  Google Scholar 

  • Shigemasa Y, Matsuda Y, Sakazawa C, Matsuura T (1977) Formose reactions II. The photochemical formose reaction. Bull Chem Soc Jpn 50:222–226

    Article  Google Scholar 

  • Socha RF, Weiss AH, Sakharov MM (1980) Autocatalysis in the formose reaction. React Kinet Catal Lett 14(2):119–128

    Article  Google Scholar 

  • Stribling R, Miller S (1987) Energy yields for hydrogen cyanide and formaldehyde syntheses: the hydrogen cyanide and amino acid concentrations in the primitive ocean. Orig Life Evol Biosph 17:261–273

    Article  Google Scholar 

  • Van Trump JE, Miller SL (1972) Prebiotic synthesis of methionine. Science 178(63):859–860

    Article  ADS  Google Scholar 

  • Walker J (1964) Formaldehyde, 3rd edn. Rheinhold, New York

    Google Scholar 

  • Weber A (1997) Energy from redox disproportionation of sugar carbon drives biotic and abiotic synthesis. J Mol Evol 44:354–360

    Article  Google Scholar 

  • Weber A (2001) The sugar model: catalysis by amines and amino acid products. Orig Life Evol Biosph 31:71–86

    Article  ADS  Google Scholar 

  • Weber A (2002) Chemical constraints governing the origin of metabolism: the thermodynamic landscape of carbon group transformations under mild aqueous conditions. Orig Life Evol Biosph 32:333–357

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henderson James (Jim) Cleaves II .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Cleaves, H.J.(. (2014). Formose Reaction. In: Amils, R., et al. Encyclopedia of Astrobiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27833-4_587-3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27833-4_587-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27833-4

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Formose Reaction
    Published:
    01 May 2022

    DOI: https://doi.org/10.1007/978-3-642-27833-4_587-4

  2. Original

    Formose Reaction
    Published:
    16 April 2015

    DOI: https://doi.org/10.1007/978-3-642-27833-4_587-3