Skip to main content

Inhibition of Lipid Oxidation

  • Living reference work entry
  • First Online:
Drug Discovery and Evaluation: Pharmacological Assays

Abstract

Oxidative modification of the low-density lipoproteins (LDL) has been shown to cause accelerated degradation of LDL via the scavenger receptor pathway. Under conditions of high serum LDL levels, LDL particles can migrate into the subendothelial space where oxidation of LDL can occur (Heinecke 1998; Jiang et al. 2011). The actual oxidation process is believed to begin with lipid peroxidation, followed by fragmentation to result in short-chain aldehydes. These aldehydes can form adducts with the lysine residues of apo B, creating a new epitope which is recognized by the scavenger receptor of macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References and Further Reading

General Considerations

  • Bruckdorfer KR (1990) Free radicals, lipid peroxidation and atherosclerosis. Curr Opin Lipidol 1:529–535

    Article  Google Scholar 

  • Esterbauer H, Rotheneder M, Striegl G, Waeg G, Ashy A, Sattler W, Jürgens G (1989) Vitamin E and other lipophilic anti-oxidants protect LDL against oxidation. Fat Sci Technol 91:316–324

    CAS  Google Scholar 

  • Hussain MM, Strickland DK, Bakillah A (1999) The mammalian low-density lipoprotein receptor family. Annu Rev Nutr 19:141–172

    Article  CAS  PubMed  Google Scholar 

  • Jürgens G (1989) Modified serum lipoproteins and atherosclerosis. Ann Rep Med Chem 25:169–176

    Google Scholar 

  • McCarthy PA (1993) New approaches to atherosclerosis: an overview. Med Res Rev 13:139–159

    Article  CAS  PubMed  Google Scholar 

  • Parthasarathy S, Wieland E, Steinberg D (1989) A role for endothelial cell lipoxygenase in the oxidative modification of low density lipoprotein. Proc Natl Acad Sci U S A 86:1046–1050

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rankin SM, Parthasarathy S, Steinberg D (1991) Evidence for a dominant role of lipoxygenase(s) in the oxidation of LDL by mouse peritoneal macrophages. J Lipid Res 32:449–456

    CAS  PubMed  Google Scholar 

  • Steinberg D (1990) Arterial metabolism of lipoproteins in relation to atherogenesis. In: Lee KT, Onodera K, Tanaka K (eds) Atherosclerosis II: recent progress in atherosclerosis research, vol 598, Annals of the New York academy of sciences. pp 188–193

    Google Scholar 

  • Steinbrecher UP (1987) Oxidation of human low density lipoprotein results in derivatization of lysine residues of apolipoprotein B by lipid peroxide decomposition products. J Biol Chem 262:3603–3608

    CAS  PubMed  Google Scholar 

  • Steinbrecher UP (1990) Oxidatively modified lipoproteins. Curr Opin Lipidol 1:411–415

    Article  Google Scholar 

  • Steinbrecher UP, Witztum JL, Parthasarathy S, Steinberg D (1987) Decrease in reactive amino groups during oxidation or endothelial cell modification of LDL. Arteriosclerosis 7:135–143

    Article  CAS  PubMed  Google Scholar 

  • Steinbrecher UP, Zhang H, Lougheed M (1990) Role of oxidatively modified LDL in atherosclerosis. Free Rad Biol Med 9:155–158

    Article  CAS  PubMed  Google Scholar 

  • Witztum JL, Steinberg D (1991) Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest 88:1785–1792

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Inhibition of Lipid Peroxidation of Isolated Plasma Low-Density Lipoproteins

  • Asakawa T, Matsushita S (1980) Coloring conditions of thiobarbituric acid test for detecting lipid hydroperoxides. Lipids 15:137–140

    Article  CAS  Google Scholar 

  • Barnhart RL, Busch SJ, Jackson RL (1989) Concentration-dependent antioxidant activity of probucol in low density lipoproteins in vitro: probucol degradation precedes lipoprotein oxidation. J Lipid Res 30:1703–1710

    CAS  PubMed  Google Scholar 

  • Bernheim F, Bernheim MLC, Wilbur KM (1948) The reaction between thiobarbituric acid and the oxidation products of certain lipids. J Biol Chem 174:257–264

    CAS  PubMed  Google Scholar 

  • Braughler JM, Pregenzer JF, Chase RL, Duncan LA, Jacobsen EJ, McCall JM (1987) Novel 21-amino steroids as potent inhibitors of iron-dependent lipid peroxidation. J Biol Chem 262:10438–10440

    CAS  PubMed  Google Scholar 

  • Carew TE, Schwenke DC, Steinberg D (1987) Antiatherogenic effect of probucol unrelated to its hypocholesterolemic effect: evidence that antioxidants in vivo can selectively inhibit low density lipoprotein degradation in macrophage-rich fatty streaks and slow the progression of atherosclerosis in the Watanabe heritable hyperlipidemic rabbit. Proc Natl Acad Sci U S A 84:7725–7729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dresel HA, Deigner HP, Frübis J, Strein K, Schettler G (1990) LDL-metabolism of the arterial wall – new implications for atherogenesis. Z Kardiol 79(Suppl 3):9–16

    CAS  PubMed  Google Scholar 

  • Gallagher PJ, Nanjee MN, Richards T, Roche WR, Miller NE (1988) Biochemical and pathological features of a modified strain of Watanabe heritable hyperlipidemic rabbits. Atherosclerosis 71:173–183

    Article  CAS  PubMed  Google Scholar 

  • Heinecke JW (1998) Oxidants and antioxidants in the pathogenesis of atherosclerosis: implications for the oxidized low density lipoprotein hypothesis. Atherosclerosis 141:1–15

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, Yang Z, Chandrakala AN, Pressley D, Parthasarathy S (2011) Oxidized low density lipoproteins–do we know enough about them? Cardiovasc Drugs Ther 25:367–377

    Article  CAS  PubMed  Google Scholar 

  • Kita T (1991) Oxidized lipoproteins and probucol. Curr Opin Lipidol 2:35–38

    Article  CAS  Google Scholar 

  • Kita T, Nagano Y, Yokode M, Ishii K, Kume N, Ooshima A, Yoshida H, Kawai C (1987) Probucol prevents the progression of atherosclerosis in Watanabe heritable hyperlipidemic rabbit, an animal model for familial hypercholesterolemia. Proc Natl Acad Sci U S A 84:5928–5931

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mansuy D, Sassi A, Dansette PM, Plat M (1986) A new potent inhibitor of lipid peroxidation in vitro and in vivo, the hepatoprotective drug anisyldithiolthione. Biochem Biophys Res Commun 135:1015–1021

    Article  CAS  PubMed  Google Scholar 

  • Mao SJT, Patton JG, Badimon JJ, Kottke BA, Alley MC, Cardin AD (1983) Monoclonal antibodies to human plasma low-density lipoproteins. I. Enhanced binding of 125I-labeled low-density lipoproteins by combined use of two monoclonal antibodies. Clin Chem 29:1890–1897

    CAS  PubMed  Google Scholar 

  • Mao SJT, Yates MT, Rechtin AN, Jackson RL, Van Sickle WA (1991) Antioxidant activity of probucol and its analogues in hypercholesterolemic Watanabe rabbits. J Med Chem 34:298–302

    Article  CAS  PubMed  Google Scholar 

  • McLean LR, Hagaman KA (1989) Effect of probucol on the physical properties of low-density lipoproteins oxidized by copper. Biochemistry 28:321–327

    Article  CAS  PubMed  Google Scholar 

  • Parthasarathy S, Young SG, Witztum JL, Pittman RC, Steinberg D (1986) Probucol inhibits oxidative modification of low density lipoprotein. J Clin Invest 77:641–644

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Steinberg D, Parthasaraty S, Carew TE (1988) In vivo inhibition of foam cell development by probucol in Watanabe rabbits. Am J Cardiol 62:6B–12B

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto A, Takaishi S, Hara H, Nishikawa O, Yokoyama S, Yamamura T, Yamaguchi T (1986) Probucol prevents lipid storage in macrophages. Atherosclerosis 62:209–217

    Article  CAS  PubMed  Google Scholar 

  • Yoshioka T, Fujita T, Kanai T, Aizawa Y, Kurumada T, Hasegawa K, Horikoshi H (1989) Studies with hindered phenols and analogues. 1. Hypolipidemic and hypoglycemic agents with ability to inhibit lipid peroxidation. J Med Chem 32:421–428

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Basra HJK, Steinbrecher UP (1990) Effects of oxidatively modified LDL on cholesterol esterification in cultured macrophages. J Lipid Res 31:1361–1369

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Boucher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Boucher, P., Vogel, H.G. (2015). Inhibition of Lipid Oxidation. In: Hock, F. (eds) Drug Discovery and Evaluation: Pharmacological Assays. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27728-3_51-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27728-3_51-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27728-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics