Skip to main content

Abstract

The inclusion of pharmacological studies (also known as general, secondary, or ancillary pharmacology) in the safety evaluation of new drugs is a well-established practice (Zbinden 1966; Alder and Zbinden 1973). These studies contribute to the safety profile of potential new drugs and provide pharmacological data that can be used for optimization of further compounds and the ultimate selection of compounds suitable for clinical development. The emergence of safety pharmacology as a specialty area distinct from toxicology was facilitated by the appearance of the ICH S7A guideline in which the rationale for safety pharmacology studies was laid out, and study types were defined (The European Agency for the Evaluation of Medicinal Products. Human Medicine Evaluation Unit 2000). However, one topic in particular was instrumental in focusing attention on safety pharmacology studies, namely the concern about drugs causing severe ventricular arrhythmias, including torsades de pointes and, in some cases, sudden death. One must not forget, however, that the purpose of conducting cardiovascular safety pharmacology studies is not just to define a specific proarrhythmic risk but to examine potential effects on the peripheral vasculature, the heart, or any other effect that may secondarily lead to an activation or depression of cardiovascular performance (Sarazan et al. 2011).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Further Reading

  • Alder S, Zbinden G (1973) Use of pharmacological screening tests in subacute neurotoxicity studies of isoniazid, pyridoxine HCl and hexachlorophene. Agents Actions 3:233–243

    Article  PubMed  CAS  Google Scholar 

  • Antzelevitch C, Sun Z-Q, Zhan Z-Q, Yan G-X (1996) Cellular and ionic mechanisms underlying erythromycin-induced long QT intervals and Torsade de Pointes. J Am Coll Cardiol 28:1836–1848

    Article  PubMed  CAS  Google Scholar 

  • Antzelevitch C, Shimizu W, Yan G-X et al (1999) The M cell: its contribution to the ECG and to normal and abnormal electrical function of the heart. J Cardiovasc Electrophysiol 10:1124–1152

    Article  PubMed  CAS  Google Scholar 

  • Authier S, J-f T, Gauvin D, Fruscia RD, Troncy E (2007) A cardiovascular monitoring system in conscious cynomolgus monkey for regulator safety pharmacology part 1: non-pharmacological validation. J Pharmacol Toxicol Methods 56(2):122–130

    Article  PubMed  CAS  Google Scholar 

  • Bachmann A, Mueller S, Kopp K, Brueggemann A, Suessbrich H, Gelach U, Busch AE (2002) Inhibition of cardiac potassium currents by pentobarbital. Naunyn-Schmiedeberg’s Arch Pharmacol 365:29–37

    Article  CAS  Google Scholar 

  • Champeroux P, Martel E, Vannier C, Blanc V, Leguennec JY, Fowler J, Richard S (2000) The preclinical assessment of the risk for QT interval prolongation. Therapie 55:101–109

    PubMed  CAS  Google Scholar 

  • Champeroux P, Viaud K, El Amrani AI, Fowler JS, Martel E, Le Guennec JY, Richard S (2005) Prediction of the risk of Torsade de Pointes using the model of isolated canine Purkinje fibres. Br J Pharmacol 144:376–385

    Article  PubMed  CAS  Google Scholar 

  • Champeroux P, Ouillé A, Martel E, Fowler JS, Maurin A, Jude S, Lala P, Le Guennec JY, Richard S (2010) Interferences of the autonomic nervous system with drug induced QT prolongation: a point to consider in non-clinical safety studies. J Pharmacol Toxicol Methods 61:251–263

    Article  PubMed  CAS  Google Scholar 

  • Champeroux P, Ouillé A, Martel E, Fowler JS, Maurin A, Richard S, Le Guennec JY (2011) A step towards characterisation of electrophysiological profile of torsadogenic drugs. J Pharmacol Toxicol Methods 63(3):269–278

    Article  PubMed  CAS  Google Scholar 

  • Deveney AM, Kjellström A, Forsberg T, Jackson DM (1998) A pharmacological validation of radiotelemetry in conscious, freely moving rats. J Pharmacol Toxicol Methods 40:71–79

    Article  PubMed  CAS  Google Scholar 

  • Dumaine R, Cordeiro JM (2007) Comparison of K + currents in cardiac Purkinje cells isolated from rabbit and dog. J Mol Cell Cardiol 42(2):378–389

    Article  PubMed  CAS  Google Scholar 

  • Eckardt L, Haverkamp W, Mertens H et al (1998) Drug-related torsades de pointes in the isolated rabbit heart: comparison of clofilium, d, l-sotalol, and erythromycin. J Cardiovasc Pharmacol 32:425–434

    Article  PubMed  CAS  Google Scholar 

  • Finlayson K, Turnbull L, January CT, Sharkey J, Kelly JS (2001a) 3 H-Dofetilide binding to HERG transfected membranes: a potential high throughput preclinical screen. Eur J Pharmacol 430(1):147–148

    Article  PubMed  CAS  Google Scholar 

  • Finlayson K, Pennington AJ, Kelly JS (2001b) 3 H-Dofetilide binding in SHSY5Y and HEK 293 cells expressing a HERG-like K + channel? Eur J Pharmacol 412(3):202–212

    Article  Google Scholar 

  • Fossa AA, Gorczyca W, Wisialowski T, Yasgar A, Wang E, Crimin K, Volberg W, Zhou J (2007) Electrical alternans and hemodynamics in the anesthetized guinea pig can discriminate the cardiac safety of antidepressants. J Pharmacol Toxicol Methods 55(1):78–85

    Article  PubMed  CAS  Google Scholar 

  • Franz MR (1991) Method and theory of monophasic action potential recording. Prog Cardiovasc Dis 6:347–368

    Article  Google Scholar 

  • Gintant GA, Limberis JT, McDermott JS et al (2001) The canine Purkinje fiber: an in vitro model system for acquired long QT syndrome and drug-induced arrhythmogenesis. J Cardiovasc Pharmacol 37:607–618

    Article  PubMed  CAS  Google Scholar 

  • Gralinski M (2000) The assessment of potential for QT interval prolongation with new pharmaceuticals. Impact on drug development. J Pharmacol Toxicol Methods 43:91–99

    Article  PubMed  CAS  Google Scholar 

  • Gralinski MR (2003) The dog’s role in the preclinical assessment of QT interval prolongation. Toxicol Pathol 31(Suppl):11–16

    PubMed  CAS  Google Scholar 

  • Guth BD, Germeyer S, Kolb W, Markert M (2004) Developing a strategy for the nonclinical assessment of proarrhythmic risk of pharmaceutical due to prolonged ventricular repolarization. J Pharmacol Toxicol Methods 49:159–169

    Article  PubMed  CAS  Google Scholar 

  • Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflüger’s Arch 391:85–100

    Article  CAS  Google Scholar 

  • Hamlin RL, Kijtawornrat A, Keene BW, Hamlin DM (2003) QT and RR intervals in conscious and anesthetized guinea pigs with highly varying RR intervals and given QTc-lengthening test articles. Toxicol Sci 76(2):437–442

    Article  PubMed  CAS  Google Scholar 

  • Hanson LA, Bass AS, Gintant G, Mittelstadt S, Rampe D, Thomas K (2006) ILSI-HESI cardiovascular safety subcommittee initiative: evaluation of three non-clinical models of QT prolongation. J Pharmacol Toxicol Methods 54(2):116–129

    Article  PubMed  CAS  Google Scholar 

  • Haverkamp W, Breithardt G, Camm AJ et al (2000) The potential for QT prolongation and pro-arrhythmia by non-anti-arrhythmic drugs: clinical and regulatory implications report on a policy conference of the European society of cardiology. Cardiovasc Res 47:219–233

    Article  PubMed  CAS  Google Scholar 

  • Hey JA, del Prado M, Kreutner W, Egan RW (1996) Cardiotoxic and drug interaction profile of the second generation antihistamines ebastine and terfenadine in an experimental model of torsade de pointes. (Arzneim Forsch) Drug Res 46:159–163

    CAS  Google Scholar 

  • Holzgrefe HH, Cavero I, Gleason CR, Warner WA, Buchanan LV, Gill MW, Burkett DE, Durham SK (2007) Novel probabilistic method for precisely correcting the QT interval for heart rate in telemetered dogs and cynomolgus monkeys. J Pharmacol Toxicol Methods 55:159–175

    Article  PubMed  CAS  Google Scholar 

  • Hondeghem LM (1994) Computer aided development of antiarrhythmic agents with class IIIa properties. J Cardiovasc Electrophysiol 5:711–721

    Article  PubMed  CAS  Google Scholar 

  • Hondeghem LM, Carlsson L, Duker G (2001) Instability and triangulation of the action potential predict serious proarrhythmia, but action potential duration prolongation is antiarrhythmic. Circulation 103:2004–2013

    Article  PubMed  CAS  Google Scholar 

  • Japanese Ministry of Health and Welfare (1995) Japanese guidelines for nonclinical studies of drugs manual. Pharmaceutical Affairs Bureau, Japanese Ministry of Health and Welfare, Yakugi Nippo, Japan

    Google Scholar 

  • Johna R, Mertens H, Haverkamp W et al (1998) Clofilium in the isolated perfused rabbit heart: a new model to study proarrhythmia by class III antiarrhythmic drugs. Basic Res Cardiol 93:127–135

    Article  PubMed  CAS  Google Scholar 

  • Kattman SJ, Koonce CH, Swanson BJ, Anson BD (2011) Stem cells and their derivatives: a renaissance in cardiovascular translational research. J Cardiovasc Transl Res 4(1):66–72

    Article  PubMed  Google Scholar 

  • Kii Y, Hayashi S, Tabo M, Shimosato T, Fukuda H, Itoh T, Amano H, Saito M, Morimoto H, Yamada K, Kanda A, Ishitsuka T, Yamazaki T, Kiuchi Y, Taniguchi S, Mori T, Shimizu S, Tsurubuchi Y, Yasuda S-I, Kitani S-I, Shimada C, Kabayashi K, Komeno M, Kasai C, Hombo T, Yamamoto K (2005) J Pharmacol Sci 99(5):449–457

    Article  PubMed  CAS  Google Scholar 

  • Kinter LB, Valentin J-P (2002) Safety pharmacology and risk assessment. Fundam Clin Pharmacol 16:175–182

    Article  PubMed  CAS  Google Scholar 

  • Lacroix P, Provost D (2000) Safety pharmacology: the cardiovascular system. Therapie 55:63–69

    PubMed  CAS  Google Scholar 

  • Leisgen C, Kuester M, Methfessel C (2007) The roboocyte: automated electrophysiology based on Xenopus oocytes. Methods Mol Biol 403:87–109

    Article  PubMed  CAS  Google Scholar 

  • Markert M, Klumpp A, Trautmann T, Guth BD (2004) A novel propellant-free inhalation drug delivery system for cardiovascular safety pharmacology evaluations in dogs. J Pharmacol Toxicol Methods 50:109–119

    Article  PubMed  CAS  Google Scholar 

  • Markert M, Shen R, Trautmann T, Guth B (2011) Heart rate correction models to detect QT interval prolongation in novel pharmaceutical development. J PharmacolToxicol Methods 64:25–41

    Article  CAS  Google Scholar 

  • Mellor PM, Pettinger SJ (1986) Application of radio telemetry to cardiovascular monitoring in unrestrained animals. J Pharmacol Methods 16:181–184

    Article  PubMed  CAS  Google Scholar 

  • Meyners M, Markert M (2004) Correcting the QT interval for changes in HR in pre-clinical drug development. J Pharmacol Toxicol Methods 43:445–450

    CAS  Google Scholar 

  • Nattel S (1999) The molecular and ionic specificity of antiarrhythmic drug actions. J Cardiovasc Electrophysiol 19:272–282

    Article  Google Scholar 

  • Netzer R, Ebneth A, Bischoff U, Pongs O (2001) Screening lead compounds for QT interval prolongation. Drug Discov Today 6(2):78–84

    Article  PubMed  CAS  Google Scholar 

  • Netzer R, Bischoff U, Ebneth A (2003) HTS techniques to investigate the potential effects of compounds on cardiac ion channels at early-stages of drug discovery. Curr Opin Drug Discov Devel 6(4):462–469

    PubMed  CAS  Google Scholar 

  • Pourrias B, Porsolt RD, Lacroix P (1999) QT interval prolongation by noncardiovascular drugs. A proposed assessment strategy. Drug Dev Res 47:55–62

    Article  CAS  Google Scholar 

  • Rocchiccioli C, Saad MA, Elghozi JL (1989) Attenuation of the baroreceptor reflex by propofol anesthesia in the rat. J Cardiovasc Pharmacol 14(4):631–635

    Article  PubMed  CAS  Google Scholar 

  • Sarazan RD, Mittelstadt S, Guth B, Koerner J, Zhang J, Pettit S (2011) Cardiovascular function in non-clinical drug safety assessment: current issues & opportunities. Int J Toxicol 30(3):272–286

    Article  PubMed  Google Scholar 

  • Schierok H, Markert M, Pairet M, Guth B (2000) Continuous assessment of multiple vital physiological functions in conscious freely moving rats using telemetry and a plethysmography system. J Pharmacol Toxicol Methods 43:211–217

    Article  PubMed  CAS  Google Scholar 

  • Snyders DJ, Chaudhary A (1996) High affinity open channels blockade by dofetilide of HERG expressed in a human cell line. Mol Pharmacol 49:949–955

    PubMed  CAS  Google Scholar 

  • Stubhan M, Markert M, Mayer K, Trautmann T, Klumpp A, Henke J, Guth B (2008) Evaluation of cardiovascular and ECG parameters in the normal, freely moving Göttingen Minipig. J Pharmacol Toxicol Methods 57(3):202–211

    Article  PubMed  CAS  Google Scholar 

  • Tashibu H, Mizazaki H, Aoki K, Akie Y, Yamamoto K (2005) QT PRODACT: In vivo QT assay in anesthetized dog for detecting the potential for QT interval prolongation by human pharmaceuticals. J Pharmacol Sci 99(5):473–486

    Article  PubMed  CAS  Google Scholar 

  • Teschemacher AG, Seward EP, Hancox JC, Witchel HJ (1999) Inhibition of the current of heterologously expressed HERG potassium channels by imipramine and amitriptyline. Br J Pharmacol 128:479–485

    Article  PubMed  CAS  Google Scholar 

  • The European Agency for the Evaluation of Medicinal Products. Human Medicine Evaluation Unit (2000) ICH topic S7, safety pharmacology studies for human pharmaceuticals. Note for guidance on safety pharmacology studies in human pharmaceuticals

    Google Scholar 

  • The European Agency for the Evaluation of Medicinal Products. Human Medicines Evaluation Unit. Committee for Proprietary Medicinal Products (1997) Points to consider: the assessment of the potential for QT prolongation by non-cardiovascular medicinal products

    Google Scholar 

  • Usui T, Sugiyama A, Ishida Y, Satoh Y, Sasaki Y, Hashimoto K (1998) Simultaneous assessment of the hemodynamic, cardiomechanical and electrophysiological effects of terfenadine on the in vivo canine model. Heart Vessels 13:49–57

    Article  PubMed  CAS  Google Scholar 

  • Valentin JP, Hoffmann P, DeClerck F et al (2004) Review of the predictive value of the Langendorff heart model (Screenit system) in assessing the proarrhythmic potential of drugs. J Pharmacol Toxicol Methods 49:171–181

    Article  PubMed  CAS  Google Scholar 

  • Van der Linde HJ, Van Deuren B, Teisman A, Towart R, Gallagher DJ (2008) The effect of changes in core body temperature on the QT interval in beagle dogs: a previously ignored phenomenon, with a method for correction. Br J Pharmacol 154:1474–1481

    Article  PubMed  Google Scholar 

  • Wang J, Della Penna K, Wang H, Karczewski J, Connolly TM, Koblan KS, Bennett PB, Salata JJ (2003) Functional and pharmacological properties of canine ERG potassium channels. Am J Physiol Heart Circ Physiol 284(1):H256–H267

    PubMed  CAS  Google Scholar 

  • Weissenburger J, Davy JM, Chézalviel F (1993) Experimental models of torsades de pointes. Fundam Clin Pharmacol 7:29–38

    Article  PubMed  CAS  Google Scholar 

  • Weissenburger J, Nesterenko VV, Antzelevitch C (2000) Transmural heterogeneity of ventricular repolarization under baseline and long QT conditions in the canine heart in vivo: torsades de pointes develops with halothane but not pentobarbital anesthesia. J Cardiovasc Electrophysiol 11(3):290–304

    Article  PubMed  CAS  Google Scholar 

  • Witchell HJ, Milnes JT, Mitcheson JS, Hancox JC (2002) Troubleshooting problems with in vitro screening of drugs for QT interval prolongation using HERG K+ channels expressed in mammalian cell lines and Xenopus oocytes. J Pharmacol Toxicol Methods 48:65–80

    Article  Google Scholar 

  • Yao X, Anderson DL, Ross SA, Lang DG, Desai BZ, Cooper DC, Wheelan P, McIntyre MS, Bergquist ML, MacKenzie KI, Becherer JD, Hashim MA (2008) Predicting QT prolongation in humans during early drug development using hERG inhibition and an anaesthetized guinea-pig model. Br J Pharmacol 154:1446–1456

    Article  PubMed  CAS  Google Scholar 

  • Yuill KH, Borg JJ, Ridley JM et al (2004) Potent inhibition of human cardiac potassium (HERG) channels by the anti-estrogen agent clomiphene- without QT interval prolongation. Biochem Biophys Res Commun 318:556–561

    Article  PubMed  CAS  Google Scholar 

  • Zbinden G (1966) The significance of pharmacological screening tests in the preclinical safety evaluation of new drugs. J New Drugs 6:1–7

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Champeroux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Champeroux, P., Guth, B.D., Markert, M., Rast, G. (2013). Methods in Cardiovascular Safety Pharmacology. In: Vogel, H.G., Maas, J., Hock, F.J., Mayer, D. (eds) Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25240-2_4

Download citation

Publish with us

Policies and ethics