Skip to main content

Molecular Dynamics Simulation and Molecular Orbital Method

  • Reference work entry
Book cover Handbook of Adhesion Technology

Abstract

Computer simulations have provided a powerful technique in understanding the fundamental physics and mechanics of adhesion. In this chapter, various simulation methods pertaining to adhesion technology are introduced, such as the molecular dynamics simulations, the quantum mechanics calculations, the molecular orbital method, the density functional theory and the molecular mechanics simulations. Besides, some combined methods such as the hybrid quantum mechanics/molecular mechanics simulations, ab initio molecular dynamics and the density-functional based tight-binding method are reviewed. General features and routines of these methods as well as the basic theory are described. The advantages and disadvantages of these methods are compared and discussed. Each method has the distinctive advantage and is suitable for specific condition. Some examples are proposed to give the direct perceive when investigating adhesion issues using various simulation methods. All these instances are expected to be helpful to readers when performing the corresponding simulations and analyzing of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alder BJ, Wainwright TE (1959) Studies in molecular dynamics. I. General method. J Chem Phys 31(2):459

    Article  MathSciNet  Google Scholar 

  • Allen MP, Tildesley DJ (1989) Computer simulation of liquids, Oxford University Press, Oxford

    Google Scholar 

  • Arici C, Ercan F, Atakol O, Basgut O (2002) Crystal structure of [N,N'-bis(3,5-dinitrosalicylidene)-1,3-propanediaminato)bis(3,4-dimethylpyridine)]nickel(II)dioxane solvate. Anal Sci 18(3):375

    Article  Google Scholar 

  • Berendsen HJC, Vanderspoel D, Vandrunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91(1-3):43

    Article  Google Scholar 

  • Bharat B (2004) Springer handbook of nanotechnology. Springer, Berlin/Heidelberg

    Google Scholar 

  • Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Computl Chem 4(2): 187

    Article  Google Scholar 

  • Car R, Parrinello M (1985) Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett 55(22):2471

    Article  Google Scholar 

  • Chi M, Zhao YP (2009) Adsorption of formaldehyde molecule on the intrinsic and Al-doped graphene: a first principle study. Comput Mater Sci 46(4):1085

    Article  Google Scholar 

  • Daintith J (2004) Oxford dictionary of chemistry, Oxford University Press, Oxford

    Google Scholar 

  • Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92(1):508

    Article  Google Scholar 

  • Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113(18):7756

    Article  Google Scholar 

  • Delley B (2002) Hardness conserving semilocal pseudopotentials. Phys Rev B 66(15):155125

    Article  Google Scholar 

  • Ferre N, Assfeld X, Rivail JL (2002) Specific force field parameters determination for the hybrid ab initio QM/MM LSCF method. J Comput Chem 23(6):610

    Article  Google Scholar 

  • Field MJ, Bash PA, Karplus M (1990) A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations. J Comput Chem 11(6):700

    Article  Google Scholar 

  • Hehre WJ (1976) Ab initio molecular orbital theory. Acc Chem Res 9(11):399

    Article  Google Scholar 

  • Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 136(3):864

    Article  MathSciNet  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Grap 14(1):33

    Article  Google Scholar 

  • Jones JE (1924) On the determination of molecular fields. II. From the equation of state of a gas. Proc R Soc A 106(738):463

    Article  Google Scholar 

  • Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926

    Article  Google Scholar 

  • Kale L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K, Schulten K (1999) NAMD2: greater scalability for parallel molecular dynamics. J Comput Phys 151(1):283

    Article  MATH  Google Scholar 

  • Kendall K (1975) Thin-film peeling-the elastic term. J Phys D Appl Phys 8(13):1449

    Article  Google Scholar 

  • Kendall K (2001) Molecular adhesion and its applications. Kluwer/Plenum, New York.

    Google Scholar 

  • Khandeparker L, Anil AC (2007) Underwater adhesion: the barnacle way. Int J Adhes Adhes 27(2):165

    Article  Google Scholar 

  • Leach AR (2001) Molecular modelling: principles and applications. Pearson Education, New York

    Google Scholar 

  • Levy M (1979) Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem. Proc Natl Acad Sci USA 76(12):6062

    Article  Google Scholar 

  • Li J (2003) AtomEye: an efficient atomistic configuration viewer. Model Simul Mater Sci Eng 11(2):173

    Article  MATH  Google Scholar 

  • Lindahl E, Hess B, van der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7(8):306

    Google Scholar 

  • Lyne PD, Hodoscek M, Karplus M (1999) A hybrid QM-MM potential employing Hartree-Fock or density functional methods in the quantum region. J Phys Chem A 103(18):3462

    Article  Google Scholar 

  • Maseras F, Morokuma K (1995) IMOMM: a new integrated ab initio + molecular mechanics geometry optimization scheme of equilibrium structures and transition states. J Comput Chem 16(9):1170

    Article  Google Scholar 

  • Mischler C, Horbach J, Kob W, Binder K (2005) Water adsorption on amorphous silica surfaces: a Car-Parrinello simulation study. J Phys Condens Matter 17(26):4005

    Article  Google Scholar 

  • Montemagno C, Bachand G (1999) Constructing nanomechanical devices powered by biomolecular motors. Nanotechnology 10(3):225

    Article  Google Scholar 

  • Mulliken RS (1955) Electronic population analysis on LCAO-MO molecular wave functions. I. J Chem Phys 23(10):1833

    Article  Google Scholar 

  • Nelson MT, Humphrey W, Gursoy A, Dalke A, Kale LV, Skeel RD, Schulten K (1996) NAMD: a parallel, object oriented molecular dynamics program. Int J Supercomputer Appl High Perform Comput 10(4):251

    Article  Google Scholar 

  • Noji H, Yasuda R, Yoshida M, Kinosita K (1997) Direct observation of the rotation of F-1-ATPase. Nature 386(6622):299

    Article  Google Scholar 

  • Payne MC, Teter MP, Allan DC, Arias TA, Joannopoulos JD (1992) Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev Modern Phys 64(4):1045

    Article  Google Scholar 

  • Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham TE, Debolt S, Ferguson D, Seibel G, Kollman P (1995) AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comput Phys Commun 91(1-3):1

    Article  MATH  Google Scholar 

  • Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865

    Article  Google Scholar 

  • Perdew JP, Ruzsinszky A, Tao JM, Staroverov VN, Scuseria GE, Csonka GI (2005) Prescription for the design and selection of density functional approximations: more constraint satisfaction with fewer fits. J Chem Phys 123(6):062201

    Article  Google Scholar 

  • Petrenko PA, Gdaniec M, Simonov YA, Stavila VG, Gulea AP (2004) Crystal structure of monoprotonated Ni(II) nitrilotriacetate tetrahydrate. Russ J Coordination Chem 30(7):813

    Article  Google Scholar 

  • Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Physs 117(1):1

    Article  MATH  Google Scholar 

  • Ponder JW, Richards FM (1987) An efficient newton-like method for molecular mechanics energy minimization of large molecules. J Comput Chem 8(7):1016

    Article  Google Scholar 

  • Pople JA, Beveridge DL (1970) Approximate molecular orbital theory. McGraw Hill, New York

    Google Scholar 

  • Rapaport DC (2004) The art of molecular dynamics simulation, Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Roothaan CCJ (1951) New developments in molecular orbital theory. Rev Modern Phys 23(2):69

    Article  MATH  Google Scholar 

  • Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23(3):327

    Article  Google Scholar 

  • Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14(11):1347

    Article  Google Scholar 

  • Shi XH, Kong Y, Zhao YP, Gao HJ (2005) Molecular dynamics simulation of peeling a DNA molecule on substrate. Acta Mech Sin 21(3):249

    Article  MATH  Google Scholar 

  • Yang ZY, Zhao YP (2006) QM/MM and classical molecular dynamics simulation of His-tagged peptide immobilization on nickel surface. Mater Sci Eng A 423(1-2):84

    Article  Google Scholar 

  • Yin J, Zhao YP (2009) Hybrid QM/MM simulation of the hydration phenomena of dipalmitoylphosphatidylcholine headgroup. J Colloid Interface Sci 329(2):410

    Article  MathSciNet  Google Scholar 

  • Yin J, Zhao YP, Zhu RZ (2005) Molecular dynamics simulation of barnacle cement. Mater Sci Eng A 409(1-2):160

    Article  Google Scholar 

  • Yuan QZ, Zhao YP, Li LM, Wang TH (2009) Ab initio study of ZnO based gas sensing mechanisms: Surface reconstruction and charge transfer. J Phys Chem C 113(15):6107

    Article  Google Scholar 

  • Zang JL, Yuan QZ, Wang FC, Zhao YP (2009) A comparative study of Young’s modulus of single-walled carbon nanotube by CPMD, MD, and first principle simulations. Comput Mater Sci 46(3):621

    Article  Google Scholar 

  • Zhang YK, Lee TS, Yang WT (1999) A pseudobond approach to combining quantum mechanical and molecular mechanical methods. J Chem Phys 110(1):46

    Article  Google Scholar 

  • Zhao YP, Wang LS, Yu TX (2003) Mechanics of adhesion in MEMS-a review. J Adhes Sci Technol 17(4):519

    Article  Google Scholar 

Download references

Acknowledgments

Part of the work presented in this chapter was jointly supported by the National High-tech R&D Program of China (863 Program, Grant No. 2007AA021803), National Basic Research Program of China (973 Program, Grant No. 2007CB310500), and National Natural Science Foundation of China (NSFC, Grant Nos. 10772180, 60936001 and 11072244).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-Pu Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Zhao, YP., Wang, FC., Chi, M. (2011). Molecular Dynamics Simulation and Molecular Orbital Method. In: da Silva, L.F.M., Öchsner, A., Adams, R.D. (eds) Handbook of Adhesion Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01169-6_52

Download citation

Publish with us

Policies and ethics