Skip to main content

Probiotics in Aging Skin

  • Reference work entry
Textbook of Aging Skin

Abstract

Health benefits of probiotics have been established by several studies in animals and humans and the scientific literature shows that the clinical uses of probiotics are broad and are open to continuing evaluation. The most common microorganisms used as probiotics are strains of lactic acid bacteria (LAB), which are gram-positive, nonsporing, catalase-negative organisms that are devoid of cytochromes and of nonaerobic habit, but are aerotolerant, acid-tolerant, and strictly fermentative; lactic acid is the major end product of sugar fermentation. Particular attention is paid to specific species of lactic acid bacteria (LAB), including Lactobacilli and Bifidobacteria, that are part of the intestinal microbiota. Most probiotics are included in foods or dietary supplements and are aimed at functioning in the intestine. However, even if gastrointestinal tract has been the primary target, it is becoming evident that other conditions not initially associated with the gut microbiota might also be affected by probiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fioramonti J, et al. Probiotics: what are they? What are their effects on gut physiology? Best Pract Res Clin Gastroenterol. 2003;17(5):711–724.

    CAS  PubMed  Google Scholar 

  2. Reid G. How science will help shape future clinical applications of probiotics. Clin Infect Dis. 2008;46(Suppl. 2):S62–S66.

    PubMed  Google Scholar 

  3. Silva M, et al. Antimicrobial substance from a human Lactobacillus strain. Antimicrob Agents Chemother. 1987;31:1231–1233.

    CAS  PubMed  Google Scholar 

  4. Heczko PB, et al. Critical evaluation of probiotic activity of lactic acid bacteria and their effects. J Physiol Pharmacol. 2006;57(Suppl 9):S5–S12.

    Google Scholar 

  5. Gionchetti P, et al. Antibiotics and probiotics in treatment of inflammatory bowel disease. World J Gastroenterol. 2006;12:3306–3313.

    CAS  PubMed  Google Scholar 

  6. Farnworth ER. The evidence to support health claims for probiotics. J Nutr. 2008;138(6):1250S–1254S.

    CAS  PubMed  Google Scholar 

  7. Sleator RD, et al. New frontiers in probiotic research. Lett Appl Microbiol. 2008;46(2):143–147.

    CAS  PubMed  Google Scholar 

  8. Di Marzio L, et al. Apoptotic effects of selected strains of lactic acid bacteria on a human T leukemia cell line are associated with bacterial arginine deiminase and/or sphingomyelinase activities. Nutr Cancer. 2001;40(2):185–196.

    CAS  PubMed  Google Scholar 

  9. de Moreno de LeBlanc A, et al. The application of probiotics in cancer. Br J Nutr. 2007;98(Suppl 1):S105–S110.

    CAS  PubMed  Google Scholar 

  10. Goldin BR. Clinical indications for probiotics: an overview. Clin Infect Dis. 2008;46(Suppl 2):S96–S100.

    PubMed  Google Scholar 

  11. Macpherson AJ, et al. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science. 2004;303:1662–1665.

    CAS  PubMed  Google Scholar 

  12. Fisher GJ, et al. Mechanisms of photoaging and chronological skin aging. Arch Dermatol. 2002;138(11):1462–1470.

    CAS  PubMed  Google Scholar 

  13. Bojar RA, et al. Review: the human cutaneous microflora and factors controlling colonisation. World J Microbiol Biotechnol. 2002;18(9):889–903.

    CAS  Google Scholar 

  14. Cogen AL, et al. Skin microbiota: a source of disease or defence? Br  J Dermatol. 2008;158(3):442–455.

    CAS  Google Scholar 

  15. Ouwehand AC, et al. Probiotics for the skin: a new area of potential application? Lett. Appl Microbiol. 2003;36(5):327–331.

    CAS  Google Scholar 

  16. Tannock GW. Normal Microflora. An Introduction to Microbes Inhabiting the Human Body. London: Chapman & Hall, 1995.

    Google Scholar 

  17. Suomalainen R, et al. Propionic acid bacteria as protective cultures in fermented milks and breads. Lait. 1999;79:165–174.

    CAS  Google Scholar 

  18. Fluhr JW, et al. Generation of free fatty acids from phospholipids regulates stratum corneum acidification and integrity. J Invest Dermatol. 2001;117:44–51.

    CAS  PubMed  Google Scholar 

  19. Fluhr JW, et al. Stratum corneum acidification in neonatal skin: secretory phospholipase A2 and the sodium/hydrogen antiporter-1 acidify neonatal rat stratum corneum. J Invest Dermatol. 2004;122:320–329.

    CAS  PubMed  Google Scholar 

  20. Lambers H, et al. Natural skin surface pH is on average below 5, which is beneficial for its resident flora. Int J Cosmet Sci. 2006;28(5):359–370.

    CAS  PubMed  Google Scholar 

  21. Mauro T. SC pH: measurement, origins, and functions. In: Elias P, Feingold K (eds) Skin Barrier. New York: Taylor & Francis, 2006, pp. 223–229.

    Google Scholar 

  22. Fluhr JW, et al. Functional consequences of a neutral pH in neonatal rat stratum corneum. J Invest Dermatol. 2004;123:140–151.

    CAS  PubMed  Google Scholar 

  23. Hachem JP, et al. pH directly regulates epidermal permeability barrier homeostasis, and stratum corneum integrity/cohesion. J Invest Dermatol. 2003;121:345–353.

    CAS  PubMed  Google Scholar 

  24. Hachem JP, et al. Sustained serine proteases activity by prolonged increase in pH leads to degradation of lipid processing enzymes and profound alterations of barrier function and stratum corneum integrity. J Invest Dermatol. 2005;125:510–520.

    CAS  PubMed  Google Scholar 

  25. Waller JM, et al. Age and skin structure and function, a quantitative approach (I): blood flow, pH, thickness, and ultrasound echogenicity. Skin Res Technol. 2005;11(4):221–235.

    PubMed  Google Scholar 

  26. Choi EH, et al. Stratum corneum acidification is impaired in moderately aged human and murine skin. J Invest Dermatol. 2007;127(12):2847–2856.

    CAS  PubMed  Google Scholar 

  27. Yadav H, et al. Production of free fatty acids and conjugated linoleic acid in probiotic dahi containing Lactobacillus acidophilus and Lactobacillus casei during fermentation and storage. Intern. Dairy J. 2007;17(8):1006–1010.

    CAS  Google Scholar 

  28. Holleran WM, et al. Epidermal sphingolipids: metabolism, function, and roles in skin disorders. FEBS Lett. 2006;580(23):5456–5466.

    CAS  PubMed  Google Scholar 

  29. Di Marzio L, et al. Effect of the lactic acid bacterium Streptococcus thermophilus on ceramide levels in human keratinocytes in vitro and stratum corneum in vivo. J Invest Dermatol. 1999;113(1):98–106.

    CAS  PubMed  Google Scholar 

  30. Di Marzio L, et al. Effect of the lactic acid bacterium Streptococcus thermophilus on stratum corneum ceramide levels and signs and symptoms of atopic dermatitis patients. Exp Dermatol. 2003;12(5):615–620.

    PubMed  Google Scholar 

  31. Di Marzio L, et al. Increase of skin-ceramide levels in aged subjects following a short-term topical application of bacterial sphingomyelinase from Streptococcus thermophilus. Int J Immunopathol Pharmacol. 2008;21(1):137–143.

    CAS  PubMed  Google Scholar 

  32. Denda M, et al. Age- and sex-dependent change in stratum corneum sphingolipids. Arch Dermatol Res. 1993;285(7):415–417.

    CAS  PubMed  Google Scholar 

  33. Motta S, et al. Abnormality of water barrier function in psoriasis. Role of ceramide fractions. Arch Dermatol. 1994;130(4):452–456.

    CAS  PubMed  Google Scholar 

  34. Jensen JM, et al. Acid and neutral sphingomyelinase, ceramide synthase, and acid ceramidase activities in cutaneous aging. Exp Dermatol. 2005;14(8):609–618.

    CAS  PubMed  Google Scholar 

  35. Kohen R, et al. Skin low molecular weight antioxidants and their role in aging and in oxidative stress. Toxicology. 2000;148(2–3):149–157.

    CAS  PubMed  Google Scholar 

  36. Hensley K, et al. Reactive oxygen species and protein oxidation in aging: a look back, a look ahead. Arch Biochem Biophys. 2002;397(2):377–383.

    CAS  PubMed  Google Scholar 

  37. Tzaphlidou M. The role of collagen and elastin in aged skin: an image processing approach. Micron. 2004;35(3):73–177.

    Google Scholar 

  38. Dalle Carbonare M, et al. Skin photosensitizing agents and the role of reactive oxygen species in photoaging. J Photochem Photobiol. 1992;14(1–2):105–124.

    CAS  Google Scholar 

  39. Helfrich YR, et al. Overview of skin aging and photoaging. Dermatol Nurs. 2008;20(3):177–183.

    PubMed  Google Scholar 

  40. Kodali VP, et al. Antioxidant and free radical scavenging activities of an exopolysaccharide from a probiotic bacterium. Biotechnol J. 2008;3(2):245–251.

    CAS  PubMed  Google Scholar 

  41. Cerning J. Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiol Rev. 1990;7(1–2):113–130.

    CAS  PubMed  Google Scholar 

  42. Welman AD, et al. Exopolysaccharides from lactic acid bacteria: perspectives and challenges. Trends Biotechnol. 2003;21(6):269–274.

    CAS  PubMed  Google Scholar 

  43. Kishk YFM, et al. Free-radical scavenging and antioxidative activities of some polysaccharides in emulsions. LWT Food Sci Technol. 2007;40(2):270–277.

    CAS  Google Scholar 

  44. Bruno-Bárcena JM, et al. Expression of a heterologous manganese superoxide dismutase gene in intestinal lactobacilli provides protection against hydrogen peroxide toxicity. Appl Environ Microbiol. 2004;70(8):4702–4710.

    PubMed  Google Scholar 

  45. Kang S, et al. Photoaging and topical tretinoin: therapy, pathogenesis, and prevention. Arch Dermatol. 1997;133(10):1280–1284.

    CAS  PubMed  Google Scholar 

  46. Massagué J. TGF-β signal transduction. Annu Rev Biochem. 1998;67:753–791.

    PubMed  Google Scholar 

  47. Chung JH, et al. Decreased extracellular-signal-regulated kinase and increased stress-activated MAP kinase activities in aged human skin in vivo. J Invest Dermatol. 2000;115(2):177–182.

    CAS  PubMed  Google Scholar 

  48. Fisher GJ, et al. Mechanisms of photoaging and chronological skin aging. Arch Dermatol. 2002;138(11):1462–1470.

    CAS  PubMed  Google Scholar 

  49. Varani J, et al. Vitamin A antagonizes decreased cell growth and elevated collagen-degrading matrix metalloproteinases and stimulates collagen accumulation in naturally aged human skin. J Invest Dermatol. 2000;114(3):480–486.

    CAS  PubMed  Google Scholar 

  50. Jenkins G. Molecular mechanisms of skin ageing. Mech Ageing Dev. 2002;123(7):801–810.

    CAS  PubMed  Google Scholar 

  51. Ulisse S, et al. Expression of cytokines, inducible nitric oxide synthase, and matrix metalloproteinases in pouchitis: effects of probiotic treatment. Am J Gastroenterol. 2001;96(9):2691–2699.

    CAS  PubMed  Google Scholar 

  52. Riccia DN, et al. Anti-inflammatory effects of Lactobacillus brevis (CD2) on periodontal disease. Oral Dis. 2007;13(4):376–385.

    PubMed  Google Scholar 

  53. Moorthy G, et al. Protective role of lactobacilli in Shigella dysenteriae 1-induced diarrhea in rats. Nutrition. 2007;23(5):424–433.

    PubMed  Google Scholar 

  54. Dorshkind K. The ageing immune system: is it ever too old to become young again? Nat Rev Immunol. 2009;9(1):57–62.

    CAS  Google Scholar 

  55. Victor VM, et al. N-acetylcysteine improves in vitro the function of macrophages from mice with endotoxininduced oxidative stress. Free Radic Res. 2002;36:33–45.

    CAS  PubMed  Google Scholar 

  56. Dewberry C, et al. Skin cancer in elderly patients. Dermatol Clin North Am. 2004;22:93–96.

    Google Scholar 

  57. Nova E, et al. Immunomodulatory effects of probiotics in different stages of life. Br J Nutr. 2007;98(Suppl 1):S90–S95.

    CAS  PubMed  Google Scholar 

  58. Chiang BL, et al. Enhancing immunity by dietary consumption of a probiotic lactic acid bacterium (Bifidobacterium lactis HN019): optimization and definition of cellular immune responses. Eur J Clin Nutr. 2000;54:849–855.

    CAS  PubMed  Google Scholar 

  59. Gill HS, et al. Optimizing immunity and gut function in the elderly. J Nutr Health Aging. 2001;5:80–91.

    CAS  PubMed  Google Scholar 

  60. Caramia G, et al. Probiotics and the skin. Clin Dermatol. 2008;26(1):4–11.

    PubMed  Google Scholar 

  61. Isolauri E. Probiotics in human disease. Am J Clin Nutr. 2001;73:S1142–S1146.

    Google Scholar 

  62. Cals-Grierson MM, et al. Nitric oxide function in the skin. Nitric Oxide. 2004;10(4):179–193.

    CAS  PubMed  Google Scholar 

  63. Ouwehand AC, et al. Bifidobacterium microbiota and parameters of immune function in elderly subjects. FEMS Immunol Med Microbiol. 2008;53(1):18–25.

    CAS  PubMed  Google Scholar 

  64. Guéniche A, et al. Supplementation with oral probiotic bacteria maintains cutaneous immune homeostasis after UV exposure. Eur J Dermatol. 2006;16:511–517.

    PubMed  Google Scholar 

  65. Peguet-Navarro J, et al. Supplementation with oral probiotic bacteria protects human cutaneous immune homeostasis after UV exposure-double blind, randomized, placebo controlled clinical trial. Eur J Dermatol. 2008;18:504–511.

    CAS  PubMed  Google Scholar 

  66. Canche-Pool EB, et al. Probiotics and autoimmunity: an evolutionary perspective. Med Hypotheses. 2008;70:657–660.

    CAS  PubMed  Google Scholar 

  67. Hsu CJ, et al. Emerging treatment of atopic dermatitis. Clin Rev Allergy Immunol. 2007;33:199–203.

    CAS  PubMed  Google Scholar 

  68. Railan D, et al. Ablative treatment of photoaging. Dermatol Ther. 2005;18:227–241.

    PubMed  Google Scholar 

  69. Gorbach SL. Probiotics in the Third Millennium. Digest Liver Dis. 2002;34(Suppl 2):2–7.

    Google Scholar 

  70. Fan YF, et al. Preparation of insulin nanoparticles and their encapsulation with biodegradable polyelectrolytes via the layer-by-layer adsorption. Int J Pharm. 2006;324:158–167.

    CAS  PubMed  Google Scholar 

  71. Hooper LV, et al. A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc Natl Acad Sci USA 1999;17(96):9833–9838.

    Google Scholar 

  72. Sheehan VM, et al. Heterologous expression of BetL, a betaine uptake system, enhances the stress tolerance of Lactobacillus salivarius UCC118. Appl Environ Microbiology. 2006;72(3):2170–2177.

    CAS  Google Scholar 

  73. Sheehan VM, et al. Improving gastric transit, gastrointestinal persistence and therapeutic efficacy of the probiotic strain Bifidobacterium breve UCC2003. Microbiol. 2007;153(10):3563–3571.

    CAS  Google Scholar 

  74. Saunders S, et al. Effect of Lactobacillus challenge on Gardnerella vaginalis biofilms. Colloids Surf B Biointerfaces. 2007;55(2):138–142.

    CAS  PubMed  Google Scholar 

  75. Thurnheer T, et al. Multiplex FISH analysis of a six-species bacterial biofilm. J Microbiol Methods. 2004;56:37–47.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Cinque, B. et al. (2010). Probiotics in Aging Skin. In: Farage, M.A., Miller, K.W., Maibach, H.I. (eds) Textbook of Aging Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89656-2_78

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89656-2_78

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89655-5

  • Online ISBN: 978-3-540-89656-2

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics