Skip to main content

The Biochemistry of Anaerobic Methane Oxidation

  • Reference work entry
Handbook of Hydrocarbon and Lipid Microbiology

Abstract:

The anaerobic oxidation of methane (AOM) is a globally significant biogeochemical process that exerts a profound influence on methane flux between oceanic and atmospheric compartments of the biosphere. In marine sediments AOM occurs in a region of sulfate and methane depletion known as the sulfate–methane transition zone (SMTZ) where methane is converted to carbon dioxide and reduced products that are in turn used as electron donors in the conversion of sulfate to hydrogen sulfide and water. From a bioenergetic perspective, AOM represents a major source of maintenance energy within the SMTZ, and despite low estimated free energy yields supports a vigorous microbial metabolism. Lipid biomarker, phylogenetic stain and environmental PCR studies aimed at determining the biological component of AOM converge on microbial communities dominated by uncultivated anaerobic methane-oxidizing archaea (ANME-1, ANME-2 and ANME-3) and sulfate reducing bacteria (SRB). Specific physical associations between these groups have been observed consistent with syntrophic modes of growth. However, despite extensive mesocosm and labeling studies the precise mode of electron transfer between ANME and SRB remains unknown. Recent cultivation-independent studies of AOM communities from the Eel River Basin, Hydrate Ridge and the Black Sea have led to preliminary reconstruction of the genes and pathways mediating carbon and energy metabolism within ANME subgroups providing a genomic and proteomic basis for inferring substrate ranges, intermediates and terminal electron acceptors. The following chapter reviews biochemical aspects of AOM with special emphasis on pathway validation, electron flow and enzyme function. We consider how ANME subgroup partitioning and gene expression profiles overlap with prevailing thermodynamic models and speculate on syntrophic growth models as they relate to broader aspects of community metabolism within AOM sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alperin MJ, Reeburgh WS (1985) Inhibition experiments on anaerobic methane oxidation. Appl Environ Microbiol 50(4): 940–945.

    PubMed  CAS  Google Scholar 

  • Biddle JF, Lipp JS, et al. (2006) Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. Proc Natl Acad Sci USA 103(10): 3846–3851.

    Article  PubMed  CAS  Google Scholar 

  • Boetius A, Ravenschlag K, et al. (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407(6804): 623–626.

    Article  PubMed  CAS  Google Scholar 

  • Bonacker LG, Baudner S, et al. (1992) Differential expression of the two methyl-coenzyme M reductases in Methanobacterium thermoautotrophicum as determined immunochemically via isoenzyme-specific antisera. Eur J Biochem 206(1): 87–92.

    Article  PubMed  CAS  Google Scholar 

  • Borowski WS, Paull CK, et al. (1999) Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: sensitivity to underlying methane gas hydrates. Mar Geol 159: 131–154.

    Article  CAS  Google Scholar 

  • Caldwell SL, Laidler JR, et al. (2008) Anaerobic oxidation of methane: mechanisms, bioenergetics, and the ecology of associated microorganisms. Environ Sci Technol 42(18): 6791–6799.

    Article  PubMed  CAS  Google Scholar 

  • Devol AH, Ahmed SL (1981) Are high rates of sulfate reduction associated with anaerobic oxidation of methane? Nature 291: 407–408.

    Article  CAS  Google Scholar 

  • Ellefson WL, Wolfe RS (1981) Component C of the methylreductase system of Methanobacterium. J Biol Chem 256(9): 4259–4262.

    PubMed  CAS  Google Scholar 

  • Ermler U, Grabarse W, et al. (1997) Crystal structure of methyl-coenzyme M reductase: the key enzyme of biological methane formation. Science 278(5342): 1457–1462.

    Article  PubMed  CAS  Google Scholar 

  • Ettwig, KF, Shima S, et al. (2008) Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea. Environ Microbiol 10: 2903–2909.

    Article  Google Scholar 

  • Ferguson SJ (2000) ATP synthase: what dictates the size of a ring? Curr Biol 10(21): R804–R808.

    Article  PubMed  CAS  Google Scholar 

  • Ferry JG (1993) Methanogenesis: Ecology, Physiology, Biochemistry and Genetics. New York: Chapman and Hall.

    Google Scholar 

  • Girguis PR, Orphan V, et al. (2003) Growth and methane oxidation rates of anaerobic methanotrophic archaea in a continuous-flow bioreactor. Appl Environ Microbiol 69(9): 5472–5482.

    Article  PubMed  CAS  Google Scholar 

  • Grabarse W, Mahlert F, et al. (2000) Comparison of three methyl-coenzyme M reductases from phylogenetically distant organisms: unusual amino acid modification, conservation and adaptation. J Mol Biol 303(2): 329–344.

    Article  PubMed  CAS  Google Scholar 

  • Hallam SJ, Girguis PR, et al. (2003) Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing archaea. Appl Environ Microbiol 69(9): 5483–5491.

    Article  PubMed  CAS  Google Scholar 

  • Hallam SJ, Putnam N, et al. (2004) Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305(5689): 1457–1462.

    Article  PubMed  CAS  Google Scholar 

  • Heller C, Hoppert M, et al. (2008) Immunological localization of coenzyme M reductase in anaerobic methane-oxodozong archaea of ANME-1 and ANME-2 type. Geomicrobiol J 25: 149–156.

    Article  CAS  Google Scholar 

  • Hoehler TM, Albert DB, et al. (1994) Field and laboratory studies of methane oxidation in an anoxic marine sediment; evidence for a methanogen-sulfate reducer consortium. Global Biogeochem Cycles 8(4): 451–463.

    Article  CAS  Google Scholar 

  • Inagaki F, Nunoura T, et al. (2006) Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. Proc Natl Acad Sci USA 103(8): 2815–2820.

    Article  PubMed  CAS  Google Scholar 

  • Iverson N, Jorgensen BB (1985) Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark). Limnol Oceanogr 30: 944–955.

    Article  Google Scholar 

  • Joye S, Boetius A, et al. (2004) The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps. Chem Geol 205: 219–238.

    Article  CAS  Google Scholar 

  • Kahnt J, Buchenau B, et al. (2007) Post-translational modifications in the active site region of methyl-coenzyme M reductase from methanogenic and methanotrophic archaea. FEBS J 274(18): 4913–4921.

    Article  PubMed  CAS  Google Scholar 

  • Keller A, Nesvizhskii AI, et al. (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 74(20): 5383–5392.

    Article  PubMed  CAS  Google Scholar 

  • Kniemeyer O, Musat F, et al. (2007) Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria. Nature 449(7164): 898–901.

    Article  PubMed  CAS  Google Scholar 

  • Kruger M, Meyerdierks A, et al. (2003) A conspicuous nickel protein in microbial mats that oxidize methane anaerobically. Nature 426(6968): 878–881.

    Article  PubMed  Google Scholar 

  • Kruger M, Blumenberg M, et al. (2008a) A novel, multi-layered methanotrophic microbial mat system growing on the sediment of the Black Sea. Environ Microbiol 10: 1934–1947.

    Article  PubMed  Google Scholar 

  • Kruger M, Wolters H, et al. (2008b) Tracing the slow growth of anaerobic methane-oxidizing communities by (15)N-labelling techniques. FEMS Microbiol Ecol 63(3): 401–411.

    Article  PubMed  Google Scholar 

  • Lueders T, Chin KJ, et al. (2001) Molecular analyses of methyl-coenzyme M reductase alpha-subunit (mcrA) genes in rice field soil and enrichment cultures reveal the methanogenic phenotype of a novel archaeal lineage. Environ Microbiol 3(3): 194–204.

    Article  PubMed  CAS  Google Scholar 

  • Luton PE, Wayne JM, et al. (2002) The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 148(Pt 11): 3521–3530.

    PubMed  CAS  Google Scholar 

  • Mayr S, Latkoczy C, et al. (2008) Structure of an F430 variant from archaea associated with anaerobic oxidation of methane. J Am Chem Soc 130(32): 10758–10767.

    Article  PubMed  CAS  Google Scholar 

  • Meyerdierks A, Kube M, et al. (2005) Insights into the genomes of archaea mediating the anaerobic oxidation of methane. Environ Microbiol 7(12): 1937–1951.

    Article  PubMed  CAS  Google Scholar 

  • Michaelis W, Seifert R, et al. (2002) Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science 297(5583): 1013–1015.

    Article  PubMed  CAS  Google Scholar 

  • Moran JJ, Beal EJ, et al. (2008) Methyl sulfides as intermediates in the anaerobic oxidation of methane. Environ Microbiol 10(1): 162–173.

    PubMed  CAS  Google Scholar 

  • Nauhaus K, Boetius A, et al. (2002) In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Environ Microbiol 4(5): 296–305.

    Article  PubMed  CAS  Google Scholar 

  • Nauhaus K, Treude T, et al. (2005) Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities. Environ Microbiol 7(1): 98–106.

    Article  PubMed  CAS  Google Scholar 

  • Niemann H, Losekann T, et al. (2006) Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature 443(7113): 854–858.

    Article  PubMed  CAS  Google Scholar 

  • Orcutt B, Samarkin V, et al. (2008) On the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico. Environ Microbiol 10(5): 1108–1117.

    Article  PubMed  CAS  Google Scholar 

  • Pernthaler A, Dekas AE, et al. (2008) Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics. Proc Natl Acad Sci USA 105(19): 7052–7057.

    Article  PubMed  CAS  Google Scholar 

  • Raghoebarsing AA, Pol A, et al. (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440(7086): 918–921.

    Article  PubMed  CAS  Google Scholar 

  • Reeburgh WS (1980) Anaerobic methane oxidation: Rate depth distributions in Skan Bay sediments. Earth Planet Sci Lett 47: 345–352.

    Article  CAS  Google Scholar 

  • Reeburgh WS (2007) Oceanic methane biogeochemistry. Chem Rev 107(2): 486–513.

    Article  PubMed  CAS  Google Scholar 

  • Sassen R, Joye S, et al. (1999) Thermogenic gas hydrates and hydrocarbon gases in complex chemosynthetic communities: Gulf of Mexico continental slope. Org Geochem 30: 485–497.

    Article  CAS  Google Scholar 

  • Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61(2): 262–280.

    PubMed  CAS  Google Scholar 

  • Schleper C, Jurgens G, et al. (2005) Genomic studies of uncultivated archaea. Nat Rev Microbiol 3(6): 479–488.

    Article  PubMed  CAS  Google Scholar 

  • Shima S, Thauer RK (2005) Methyl-coenzyme M reductase and the anaerobic oxidation of methane in methanotrophic Archaea. Curr Opin Microbiol 8(6): 643–648.

    Article  PubMed  CAS  Google Scholar 

  • Stams AJ, Plugge CM, et al. (2005) Metabolic interactions in methanogenic and sulfate-reducing bioreactors. Water Sci Technol 52(1–2): 13–20.

    PubMed  CAS  Google Scholar 

  • Strous M, Jetten MS (2004) Anaerobic oxidation of methane and ammonium. Annu Rev Microbiol 58: 99–117.

    Article  PubMed  CAS  Google Scholar 

  • Thauer RK, Shima S (2008) Methane as fuel for anaerobic microorganisms. Ann N Y Acad Sci 1125: 158–170.

    Article  PubMed  CAS  Google Scholar 

  • Treude T, Knittel K, et al. (2005) Subsurface microbial methanotrophic mats in the Black Sea. Appl Environ Microbiol 71(10): 6375–6378.

    Article  PubMed  CAS  Google Scholar 

  • Treude T, Orphan V, et al. (2007) Consumption of methane and CO2 by methanotrophic microbial mats from gas seeps of the anoxic Black Sea. Appl Environ Microbiol 73(7): 2271–2283.

    Article  PubMed  CAS  Google Scholar 

  • Valentine DL (2002) Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: a review. Anton Van Leeuwenhoek 81(1–4): 271–282.

    Article  CAS  Google Scholar 

  • Washburn MP, Wolters D, et al. (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19(3): 242–247.

    Article  PubMed  CAS  Google Scholar 

  • Wegener G, Niemann H, Elvert M, Hinrichs KU, Boetius A (2008) Assimilation of methane and inorganic carbon by microbial communities mediating the anaerobic oxidation of methane. Environ Microbiol 10(9): 2287–2298.

    Google Scholar 

  • Zehnder AJ, Stumm W (1988) Geochemistry and biogeochemistry of anaerobic habitats. In Biology of Anaerobic Microorganisms. New York: Wiley.AJ Zehnder (ed.).

    Google Scholar 

Download references

Acknowledgments

We would like to thank the Canadian Foundation for Innovation, the British Columbia Knowledge Development Fund and the National Sciences and Engineering Research Council (NSERC) of Canada for supporting ongoing studies on the anaerobic oxidation of methane. L.C. was supported by a fellowship from NSERC and M.T. was supported by fellowships from Deutsche Forschungsgemeinschaft (DFG) Germany and the TULA foundation funded Centre for Microbial Diversity and Evolution. We would also like to thank Heather Mottaz, Angela Norbeck and Ljiljana Pasa-Tolic at the US Department of Energy (DOE) funded Environmental Molecular Sciences Laboratory (EMSL) located at Pacific Northwest National Laboratory (PNNL) for proteomics and bioinformatics capacity and our most excellent friends and colleagues David Walsh, Antoine Page and Leonard Foster for fruitful discussions and advice.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Taupp, M., Constan, L., Hallam, S. (2010). The Biochemistry of Anaerobic Methane Oxidation. In: Timmis, K.N. (eds) Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77587-4_63

Download citation

Publish with us

Policies and ethics