Skip to main content

Design of Biomedical Polymers

  • Reference work entry
  • First Online:
Functional Biopolymers

Part of the book series: Polymers and Polymeric Composites: A Reference Series ((POPOC))

  • 1166 Accesses

Abstract

The utilization of polymers for biomedical applications (“biomedical polymers”) has led to significant advancements in medicine. Biomedical polymers have made a profound impact on human health and improved the quality of life for many patients. Current and evolving biomedical challenges posed by disease, environmental triggers, and physiological processes demand the development of biomedical polymers with specific properties and function. To address these challenges, the design of biomedical polymers has become of paramount importance. Designing polymers with specific structures opens the door to tailored properties and function. In this chapter, we cover the design of biomedical polymers for a variety of applications. We show that key polymer structures and properties are crucial to desired functionality for a given application. The biomedical applications we cover include (1) drug delivery, (2) imaging and tracking biomedical polymers in vivo, (3) scaffolds for tissue engineering, (4) medical devices, (5) surgery and wound repair, and (6) biosensors. By looking at the polymer structure-property-function relationships provided herein, we hope that this will enable improved designs of biomedical polymers to realize enhanced performance and efficacy in transforming human health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CD:

Cyclodextrin

DETOSU-HD:

3,9-bis (ethylidene 2,4,8,10-tetraoxaspiro [5,5] undecane) and 1,6-hexanediol

DPCs:

Dynamic polyconjugates

EPR:

Enhanced permeability and retention

GPa:

Gigapascal

HA:

Hyaluronic acid

hMSCs:

Human mesenchymal stem cells

HPMA:

N-(2-hydroxypropyl)methacrylamide

IC50:

Half maximal inhibitory concentration

MDa:

Megadaltons

MMP2:

Matrix metalloproteinase 2

MPa:

Megapascals

PAMAM:

Poly(amidoamine)

PANI:

Poly(aniline)

PAsp:

Poly(aspartic acid)

PBAE:

Poly(beta-amino ester)

PBAVE:

Poly(butyl and amino vinyl ether)s

PBS:

Phosphate buffered saline

PCL:

Poly(caprolactone)

PCPH:

Poly[1,6-bis(p-carboxyphenoxy)hexane]

PEG:

Poly(ethylene glycol)

PEI:

Poly(ethyleneimine)

PEO:

Poly(ethylene oxide)

PGA:

Poly(glycolic acid)

PGlu:

Poly(glutamic acid)

PLA:

Poly(lactic acid)

PLCL:

Poly(lactide-co-caprolactone)

PLGA:

Poly(lactic-co-glycolic acid)

PLL:

Poly(l-lysine)

POx:

Poly(2-oxazoline)s

PRINT:

Particle Replication In Non-wetting Templates

PSA:

Poly(sebacic anhydride)

siRNA:

Small interfering RNA

UHMWPE:

Ultrahigh molecular weight poly(ethylene)

References

  1. F. Alexis, E. Pridgen, L.K. Molnar, O.C. Farokhzad, Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm. 5, 505–515 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. F. Alexis, Factors affecting the degradation and drug-release mechanism of poly(lactic acid) and poly[(lactic acid)-co-(glycolic acid)]. Polym. Int. 54, 36–46 (2005)

    Article  CAS  Google Scholar 

  3. E. Allémann, J.C. Leroux, R. Gurny, E. Doelker, In vitro extended-release properties of drug-loaded poly(d,l-lactic acid) nanoparticles produced by a salting-out procedure. Pharm. Res. An Off. J. Am. Assoc. Pharm. Sci. 10, 1732–1737 (1993)

    Google Scholar 

  4. H. Gupta, M. Aqil, R.K. Khar, A. Ali, A. Bhatnagar, G. Mittal, Sparfloxacin-loaded PLGA nanoparticles for sustained ocular drug delivery. Nanomed. Nanotechnol. Biol. Med. 6, 324–333 (2010)

    Article  CAS  Google Scholar 

  5. K. Avgoustakis, A. Beletsi, Z. Panagi, P. Klepetsanis, A.G. Karydas, D.S. Ithakissios, PLGA-mPEG nanoparticles of cisplatin: in vitro nanoparticle degradation, in vitro drug release and in vivo drug residence in blood properties. J. Control. Release 79, 123–135 (2002)

    Article  CAS  PubMed  Google Scholar 

  6. M.J. Kipper, E. Shen, A. Determan, B. Narasimhan, Design of an injectable system based on bioerodible polyanhydride microspheres for sustained drug delivery. Biomaterials 23, 4405–4412 (2002)

    Article  CAS  PubMed  Google Scholar 

  7. J.C. Jeong, J. Lee, K. Cho, Effects of crystalline microstructure on drug release behavior of poly(ε-caprolactone) microspheres. J. Control. Release 92, 249–258 (2003)

    Article  CAS  PubMed  Google Scholar 

  8. J. Heller, B.K. Fritziner, S.Y. Ng, D.W.H. Penhale, In vitro and in vivo release of levonorgestrel from poly(ortho esters). J. Control. Release 1, 225–232 (1985)

    Article  CAS  Google Scholar 

  9. M. Richards, B.I. Dahiyat, D.M. Arm, P.R. Brown, K.W. Leong, Evaluation of polyphosphates and polyphosphonates as degradable biomaterials. J. Biomed. Mater. Res. 25, 1151–1167 (1991)

    Article  CAS  PubMed  Google Scholar 

  10. K.W. Leong, B.C. Brott, R. Langer, Bioerodible polyanhydrides as drug-carrier matrices. I: characterization, degradation, and release characteristics. J. Biomed. Mater. Res. 19, 941–955 (1985)

    Article  CAS  PubMed  Google Scholar 

  11. E.M. Bachelder, T.T. Beaudette, K.E. Broaders, J. Dashe, J.M.J. Fréchet, Acetal-derivatized dextran: an acid-responsive biodegradable material for therapeutic applications. J. Am. Chem. Soc. 130, 10494–10495 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. M.D. Krebs, O. Jeon, E. Alsberg, Localized and sustained delivery of silencing RNA from macroscopic biopolymer hydrogels. J. Am. Chem. Soc. 131, 9204–9206 (2009)

    Article  CAS  PubMed  Google Scholar 

  13. B. Lasa-Saracibar, A. Estella-Hermoso de Mendoza, M. Guada, C. Dios-Vieitez, M.J. Blanco-Prieto, Lipid nanoparticles for cancer therapy: state of the art and future prospects. Expert Opin. Drug Deliv. 9, 1245–1261 (2012)

    Article  CAS  PubMed  Google Scholar 

  14. S. Mizrahy, S.R. Raz, M. Hasgaard, H. Liu, N. Soffer-Tsur, K. Cohen, R. Dvash, D. Landsman-Milo, M.G.E.G. Bremer, S.M. Moghimi, D. Peer, Hyaluronan-coated nanoparticles: the influence of the molecular weight on CD44-hyaluronan interactions and on the immune response. J. Control. Release 156, 231–238 (2011)

    Article  CAS  PubMed  Google Scholar 

  15. M. Rinaudo, Chitin and chitosan: properties and applications. Prog. Polym. Sci. 31, 603–632 (2006)

    Article  CAS  Google Scholar 

  16. J.P. Bali, H. Cousse, E. Neuzil, Biochemical basis of the pharmacologic action of chondroitin sulfates on the osteoarticular system. Semin. Arthritis Rheum. 31, 58–68 (2001)

    Article  CAS  PubMed  Google Scholar 

  17. J.M. Gatell, P. D, J.K. Rockstroh, C. Katlama, P. Yeni, A. Lazzarin, B. Clotet, J. Zhao, J. Chen, D.M. Ryan, R.R. Rhodes, J.A. Killar, L.R. Gilde, K.M. Strohmaier, A.R. Meibohm, M.D. Miller, D.J. Hazuda, M.L. Nessly, M.J. Dinubile, R.D. Isaacs, B. Nguyen, H. Teppler, B. Study, Glucosamine, chondroitin sulfate, and the two in combination for painful knee osteoarthritis. N. Engl. J. Med. 354, 795–808 (2006)

    Article  Google Scholar 

  18. A.D. Sezer, E. Cevher, Fucoidan: a versatile biopolymer for biomedical applications, in Active Implants and Scaffolds for Tissue Regeneration, ed. by M. Zilberman (Springer, Berlin Heidelberg, 2011), pp. 377−406

    Google Scholar 

  19. A.D. Sezer, J. Akbuğa, Fucosphere-new microsphere carriers for peptide and protein delivery: preparation and in vitro characterization. J. Microencapsul. 23, 513–522 (2006)

    Article  CAS  PubMed  Google Scholar 

  20. A.D. Sezer, J. Akbuğa, Comparison on in vitro characterization of fucospheres and chitosan microspheres encapsulated plasmid DNA (pGM-CSF): formulation design and release characteristics. AAPS PharmSciTech. 10, 1193–1199 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. M. Ohsaki, T. Okuda, A. Wada, T. Hirayama, T. Niidome, H. Aoyagi, In vitro gene transfection using dendritic poly(l-lysine). Bioconjug. Chem. 13, 510–517 (2002)

    Article  CAS  PubMed  Google Scholar 

  22. J.J. Nie, X.B. Dou, H. Hu, B. Yu, D.F. Chen, R.X. Wang, F. J, Xu: poly(aspartic acid)-based degradable assemblies for highly efficient gene delivery. ACS Appl. Mater. Interfaces 7, 553–562 (2015)

    Article  CAS  PubMed  Google Scholar 

  23. J.J. Green, E. Chiu, E.S. Leshchiner, J. Shi, R. Langer, D.G. Anderson, Electrostatic ligand coatings of nanoparticles enable ligand-specific gene delivery to human primary cells. Nano Lett. 7, 874–879 (2007)

    Article  CAS  PubMed  Google Scholar 

  24. T.J. Harris, J.J. Green, P.W. Fung, R. Langer, D.G. Anderson, S.N. Bhatia, Tissue-specific gene delivery via nanoparticle coating. Biomaterials 31, 998–1006 (2010)

    Article  CAS  PubMed  Google Scholar 

  25. J. Xu, J.C. Luft, X. Yi, S. Tian, G. Owens, J. Wang, A. Johnson, P. Berglund, J. Smith, M.E. Napier, J.M. DeSimone, RNA replicon delivery via lipid-complexed PRINT protein particles. Mol. Pharm. 10, 3366–3374 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. J. Brandrup, E.H. Immergut, E.A. Grulke, Polymer Handbook, 4th ed. John Wiley and Sons, New York, 1999

    Google Scholar 

  27. D.E. Owens, N.A. Peppas, Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 307, 93–102 (2006)

    Article  CAS  PubMed  Google Scholar 

  28. J.L. Perry, K.G. Reuter, M.P. Kai, K.P. Herlihy, S.W. Jones, J.C. Luft, M. Napier, J.E. Bear, J.M. Desimone, PEGylated PRINT nanoparticles: the impact of PEG density on protein binding, macrophage association, biodistribution, and pharmacokinetics. Nano Lett. 12, 5304–5310 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. A. Pitto-Barry, N.P.E. Barry, Pluronic® block-copolymers in medicine: from chemical and biological versatility to rationalisation and clinical advances. Polym. Chem. 5, 3291–3297 (2014)

    Article  CAS  Google Scholar 

  30. G. Niu, F. Du, L. Song, H. Zhang, J. Yang, H. Cao, Y. Zheng, Z. Yang, G. Wang, H. Yang, S. Zhu, Synthesis and characterization of reactive poloxamer 407s for biomedical applications. J. Control. Release 138, 49–56 (2009)

    Article  CAS  PubMed  Google Scholar 

  31. N. Adams, U.S. Schubert, Poly(2-oxazolines) in biological and biomedical application contexts. Adv. Drug Deliv. Rev. 59, 1504–1520 (2007)

    Article  CAS  PubMed  Google Scholar 

  32. T.X. Viegas, M.D. Bentley, J.M. Harris, Z. Fang, K. Yoon, B. Dizman, R. Weimer, A. Mero, G. Pasut, F.M. Veronese, Polyoxazoline: chemistry, properties, and applications in drug delivery. Bioconjug. Chem. 22, 976–986 (2011)

    Article  CAS  PubMed  Google Scholar 

  33. R. Duncan, P. Kopecková-Rejmanová, J. Strohalm, I. Hume, H.C. Cable, J. Pohl, J.B. Lloyd, J. Kopecek, Anticancer agents coupled to N-(2-hydroxypropyl)methacrylamide copolymers. I. Evaluation of daunomycin and puromycin conjugates in vitro. Br. J. Cancer 55, 165–174 (1987)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. K.R. Weyts, E.J. Goethals, New synthesis of linear polyethylenimine. Polym. Bull. 19, 13–19 (1988)

    Article  CAS  Google Scholar 

  35. K. Kunath, A. von Harpe, D. Fischer, H. Petersen, U. Bickel, K. Voigt, T. Kissel, Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine. J. Control. Release 89, 113–125 (2003)

    Article  CAS  PubMed  Google Scholar 

  36. S. Li, A. Burstein, Ultra-high molecular weight polyethylene. The material and its use in total joint implants. J. Bone Joint Surg. Am. 76, 1080–1090 (1994)

    Article  CAS  PubMed  Google Scholar 

  37. J.A. Champion, S. Mitragotri, Shape induced inhibition of phagocytosis of polymer particles. Pharm. Res. 26, 244–249 (2009)

    Article  CAS  PubMed  Google Scholar 

  38. J.A. Champion, S. Mitragotri, Role of target geometry in phagocytosis. Proc. Natl. Acad. Sci. U. S. A. 103, 4930–4934 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. E.D. Pressly, R. Rossin, A. Hagooly, K. Fukukawa, B.W. Messmore, M.J. Welch, K.L. Wooley, M.S. Lamm, R.A. Hule, D.J. Pochan, C.J. Hawker, Structural effects on the biodistribution and positron emission nanoparticles comprised of amphiphilic block graft copolymers. Biomacromolecules 8, 3126–3134 (2007)

    Article  CAS  PubMed  Google Scholar 

  40. G. Borchard, G. Borchard, J. Kreuter, J. Kreuter, The role of serum complement on the organ distribution of intravenously administers poly(methyl methacrylate) nanoparticles: effects of pre-coating with plasma and serum complement. Pharm. Res. 13, 1055–1058 (1996)

    Article  CAS  PubMed  Google Scholar 

  41. D. Ma, S. Tian, J. Baryza, J.C. Luft, J.M. DeSimone, Reductively responsive hydrogel nanoparticles with uniform size, shape, and tunable composition for systemic sirna delivery in vivo. Mol. Pharm. 12, 3518–3526 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. D.H. Wakefield, J.J. Klein, J.A. Wolff, D.B. Rozema, Membrane activity and transfection ability of amphipathic polycations as a function of alkyl group size. Bioconjug. Chem. 16, 1204–1208 (2005)

    Article  CAS  PubMed  Google Scholar 

  43. D.B. Rozema, D.L. Lewis, D.H. Wakefield, S.C. Wong, J.J. Klein, P.L. Roesch, S.L. Bertin, T.W. Reppen, Q. Chu, A.V. Blokhin, J.E. Hagstrom, J.A. Wolff, Dynamic PolyConjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc. Natl. Acad. Sci. U. S. A. 104, 12982–12987 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. X. Zhu, Y. Zhou, D. Yan, Influence of branching architecture on polymer properties. J. Polym. Sci. Part B Polym. Phys. 49, 1277–1286 (2011)

    Article  CAS  Google Scholar 

  45. X. Dong, C.A. Mattingly, M. Tseng, M. Cho, V.R. Adams, R.J. Mumper, Development of new lipid-based paclitaxel nanoparticles using sequential simplex optimization. Eur. J. Pharm. Biopharm. 72, 9–17 (2009)

    Article  CAS  PubMed  Google Scholar 

  46. S.R. Benhabbour, J.C. Luft, D. Kim, A. Jain, S. Wadhwa, M.C. Parrott, R. Liu, J.M. DeSimone, R.J. Mumper, In vitro and in vivo assessment of targeting lipid-based nanoparticles to the epidermal growth factor-receptor (EGFR) using a novel Heptameric ZEGFR domain. J. Control. Release 158, 63–71 (2012)

    Article  CAS  PubMed  Google Scholar 

  47. S.S. Dunn, D.R. Beckford, S.R. Benhabbour, M.C. Parrott, Rapid microwave-assisted synthesis of sub-30 nm lipid nanoparticles. J. Colloid Interface Sci. 488, 240–245 (2017)

    Article  CAS  PubMed  Google Scholar 

  48. W. Mehnert, K. Mäder, Solid lipid nanoparticles: production, characterization and applications. Adv. Drug Deliv. Rev. 47, 165–196 (2001)

    Article  CAS  PubMed  Google Scholar 

  49. M. Kursa, G.F. Walker, V. Roessler, M. Ogris, W. Roedl, R. Kircheis, E. Wagner, Novel shielded transferrin-polyethylene glycol-polyethylenimine/DNA complexes for systemic tumor-targeted gene transfer. Bioconjug. Chem. 14, 222–231 (2003)

    Article  CAS  PubMed  Google Scholar 

  50. S. Xiong, X. Zhao, B.C. Heng, K.W. Ng, J.S.C. Loo, Cellular uptake of poly-(d,l-lactide-co-glycolide) (PLGA) nanoparticles synthesized through solvent emulsion evaporation and nanoprecipitation method. Biotechnol. J. 6, 501–508 (2011)

    Article  CAS  PubMed  Google Scholar 

  51. C.E. Astete, C.M. Sabliov, Synthesis and characterization of PLGA nanoparticles. J. Biomater. Sci. Polym. Ed. 17, 247–289 (2006)

    Article  CAS  PubMed  Google Scholar 

  52. J.-W. Yoo, S. Mitragotri, Polymer particles that switch shape in response to a stimulus. Proc. Natl. Acad. Sci. 107, 11205–11210 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. J.L. Perry, K.P. Herlihy, M.E. Napier, J.M. DeSimone, PRINT: a novel platform toward shape and size specific nanoparticle theranostics. Acc. Chem. Res. 44, 990–998 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. D.A. Canelas, K.P. Herlihy, J.M. DeSimone, Top-down particle fabrication: control of size and shape for diagnostic imaging and drug delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1, 391–404 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. S.E.A. Gratton, P.A. Ropp, P.D. Pohlhaus, J.C. Luft, V.J. Madden, M.E. Napier, J.M. DeSimone, The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. U. S. A. 105, 11613–11618 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. E.M. Enlow, J.C. Luft, M.E. Napier, J.M. DeSimone, Potent engineered PLGA nanoparticles by virtue of exceptionally high chemotherapeutic loadings. Nano Lett. 11, 808–813 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. American Cancer Society, Cancer Facts & Figures 2015 (American Cancer Society, Atlanta, 2015)

    Google Scholar 

  58. K. Cho, X. Wang, S. Nie, Z.G. Chen, D.M. Shin, Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res. 14, 1310–1316 (2008)

    Article  CAS  PubMed  Google Scholar 

  59. A.Z. Wang, R. Langer, O.C. Farokhzad, Nanoparticle delivery of cancer drugs. Annu. Rev. Med. 63, 185–198 (2012)

    Article  CAS  PubMed  Google Scholar 

  60. L. Brannon-Peppas, J.O. Blanchette, Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev. 64, 206–212 (2012)

    Article  Google Scholar 

  61. Y.H. Bae, K. Park, Targeted drug delivery to tumors: myths, reality and possibility. J. Control. Release 153, 198–205 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. J. Cheng, K.T. Khin, G.S. Jensen, A. Liu, M.E. Davis, Synthesis of linear, beta-cyclodextrin-based polymers and their camptothecin conjugates. Bioconjug. Chem. 14, 1007–1017 (2003)

    Article  CAS  PubMed  Google Scholar 

  63. J. Cheng, K.T. Khin, M.E. Davis, Antitumor activity of beta-cyclodextrin polymer-camptothecin conjugates. Mol. Pharm. 1, 183–193 (2004)

    Article  CAS  PubMed  Google Scholar 

  64. R. Satchi-Fainaro, M. Puder, J.W. Davies, H.T. Tran, D.A. Sampson, A.K. Greene, G. Corfas, J. Folkman, Targeting angiogenesis with a conjugate of HPMA copolymer and TNP-470. Nat. Med. 10, 255–261 (2004)

    Article  CAS  PubMed  Google Scholar 

  65. M. Oishi, Y. Nagasaki, K. Itaka, N. Nishiyama, K. Kataoka, Lactosylated poly(ethylene glycol)-siRNA conjugate through acid-labile beta-thiopropionate linkage to construct pH-sensitive polyion complex micelles achieving enhanced gene silencing in hepatoma cells. J. Am. Chem. Soc. 127, 1624–1625 (2005)

    Article  CAS  PubMed  Google Scholar 

  66. S.H. Kim, J.H. Jeong, S.H. Lee, S.W. Kim, T.G. Park, PEG conjugated VEGF siRNA for anti-angiogenic gene therapy. J. Control. Release 116, 123–129 (2006)

    Article  CAS  PubMed  Google Scholar 

  67. Y.A.N. Geng, P. Dalhaimer, S. Cai, R. Tsai, M. Tewari, T. Minko, D.E. Discher, Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol. 2, 249–255 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. D.A. Christian, S. Cai, O.B. Garbuzenko, T. Harada, L. Allison, T. Minko, D.E. Discher, Flexible filaments for in vivo imaging and delivery: persistent circulation of filomicelles opens the dosage window for sustained tumor shrinkage. Mol. Pharm. 6, 1343–1352 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. N. Nishiyama, S. Okazaki, H. Cabral, M. Miyamoto, Y. Kato, Y. Sugiyama, K. Nishio, Y. Matsumura, K. Kataoka, Novel cisplatin-incorporated polymeric micelles can eradicate solid tumors in mice. Cancer Res. 63, 8977–8983 (2003)

    CAS  PubMed  Google Scholar 

  70. H. Cabral, Y. Matsumoto, K. Mizuno, Q. Chen, M. Murakami, M. Kimura, Y. Terada, M.R. Kano, K. Miyazono, M. Uesaka, N. Nishiyama, K. Kataoka, Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat. Nanotechnol. 6, 815–823 (2011)

    Article  CAS  PubMed  Google Scholar 

  71. Y. Miura, T. Takenaka, K. Toh, S. Wu, H. Nishihara, M.R. Kano, Y. Ino, T. Nomoto, Y. Matsumoto, H. Koyama, H. Cabral, N. Nishiyama, K. Kataoka, Cyclic RGD-linked polymeric micelles for targeted delivery of platinum anticancer drugs to glioblastoma through the blood-brain tumor barrier. ACS Nano 7, 8583–8592 (2013)

    Article  CAS  PubMed  Google Scholar 

  72. T.Y. Kim, D.W. Kim, J.Y. Chung, S.G. Shin, S.C. Kim, D.S. Heo, N.K. Kim, Y.J. Bang, Phase I and pharmacokinetic study of Genexol-PM, a Cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin. Cancer Res. 10, 3708–3716 (2004)

    Article  CAS  PubMed  Google Scholar 

  73. J.W. Valle, A. Armstrong, C. Newman, V. Alakhov, G. Pietrzynski, J. Brewer, S. Campbell, P. Corrie, E.K. Rowinsky, M. Ranson, A phase 2 study of SP1049C, doxorubicin in P-glycoprotein-targeting pluronics, in patients with advanced adenocarcinoma of the esophagus and gastroesophageal junction. Investig. New Drugs 29, 1029–1037 (2011)

    Article  CAS  Google Scholar 

  74. D.Y. Alakhova, Y. Zhao, S. Li, A.V. Kabanov, Effect of doxorubicin/pluronic SP1049C on tumorigenicity, aggressiveness, DNA methylation and stem cell markers in murine leukemia. PLoS One 8, e72238 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. T. Nakanishi, S. Fukushima, K. Okamoto, M. Suzuki, Y. Matsumura, M. Yokoyama, T. Okano, Y. Sakurai, K. Kataoka, Development of the polymer micelle carrier system for doxorubicin. J. Control. Release 74, 295–302 (2001)

    Article  CAS  PubMed  Google Scholar 

  76. Y. Matsumura, T. Hamaguchi, T. Ura, K. Muro, Y. Yamada, Y. Shimada, K. Shirao, T. Okusaka, H. Ueno, M. Ikeda, N. Watanabe, Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. Br. J. Cancer 91, 1775–1781 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. R. Luxenhofer, Y. Han, A. Schulz, J. Tong, Z. He, A.V. Kabanov, R. Jordan, Poly (2-oxazoline)s as polymer therapeutics. Macromol. Rapid Commun. 33, 1613–1631 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Z. He, A. Schulz, X. Wan, J. Seitz, H. Bludau, D.Y. Alakhova, D.B. Darr, C.M. Perou, R. Jordan, I. Ojima, A.V. Kabanov, R. Luxenhofer, Poly (2-oxazoline) based micelles with high capacity for 3rd generation taxoids: preparation , in vitro and in vivo evaluation. J. Control. Release 208, 67–75 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. S.V. Muginova, D.A. Myasnikova, A.E. Polyakov, T.N. Shekhovtsova, Crosslinked block ionomer complex. Mendeleev Commun. 23, 74–75 (2013)

    Article  CAS  Google Scholar 

  80. J. Dai, S. Lin, D. Cheng, S. Zou, X. Shuai, Interlayer-crosslinked micelle with partially hydrated core showing reduction and pH dual sensitivity for pinpointed intracellular drug release. Angew. Chem. Int. Ed. 50, 9404–9408 (2011)

    Article  CAS  Google Scholar 

  81. T. Musacchio, O. Vaze, G. D’Souza, V.P. Torchilin, Effective stabilization and delivery of siRNA: reversible siRNA-phospholipid conjugate in nanosized mixed polymeric micelles. Bioconjug. Chem. 21, 1530–1536 (2010)

    Article  CAS  PubMed  Google Scholar 

  82. L. Zhu, F. Perche, T. Wang, V.P. Torchilin, Matrix metalloproteinase 2-sensitive multifunctional polymeric micelles for tumor-specific co-delivery of siRNA and hydrophobic drugs. Biomaterials 35, 4213–4222 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. M.E. Fox, S. Guillaudeu, J.M.J. Fre, K. Jerger, N. Macaraeg, F.C. Szoka, Synthesis and in vivo antitumor efficacy of PEGylated poly(l-lysine) dendrimer-camptothecin conjugates. Mol. Pharm. 6, 1562–1572 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. C.C. Lee, E.R. Gillies, M.E. Fox, S.J. Guillaudeu, J.M.J. Fréchet, E.E. Dy, F.C. Szoka, A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proc. Natl. Acad. Sci. U. S. A. 103, 16649–16654 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. J.F.G.A. Jansen, E.W. de Brander-van der Berg, E.M.M. Meijer, Encapsulation of guest molecules into a dendritic box. Science 266, 1226–1229 (1994)

    Article  CAS  PubMed  Google Scholar 

  86. C.J. Hawker, K.L. Wooley, J.M.J. Fréchet, Unimolecular micelles and globular amphiphiles: dendritic macromolecules as novel recyclable solubilization agents. J. Chem. Soc. Perkin Trans. 1(1), 1287–1297 (1993)

    Article  Google Scholar 

  87. T. Okuda, A. Sugiyama, T. Niidome, H. Aoyagi, Characters of dendritic poly(l-lysine) analogues with the terminal lysines replaced with arginines and histidines as gene carriers in vitro. Biomaterials 25, 537–544 (2004)

    Article  CAS  PubMed  Google Scholar 

  88. M.C. Parrott, M. Finniss, J.C. Luft, A. Pandya, A. Gullapalli, M.E. Napier, J.M. DeSimone, Incorporation and controlled release of silyl ether prodrugs from PRINT nanoparticles. J. Am. Chem. Soc. 134, 7978–7982 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. M.C. Parrott, J.C. Luft, J.D. Byrne, J.H. Fain, M.E. Napier, J.M. DeSimone, Tunable bifunctional silyl ether cross-linkers for the design of acid-sensitive biomaterials. J. Am. Chem. Soc. 132, 17928–17932 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. S.S. Dunn, J.D. Byrne, J.L. Perry, K. Chen, J.M. Desimone, Generating better medicines for cancer. ACS Macro Lett. 2, 393–397 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. X. Dong, C.A. Mattingly, M.T. Tseng, M.J. Cho, Y. Liu, V.R. Adams, R.J. Mumper, Doxorubicin and paclitaxel-loaded lipid-based nanoparticles overcome multidrug resistance by inhibiting P-glycoprotein and depleting ATP. Cancer Res. 69, 3918–3926 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. L. Feng, R.J. Mumper, A critical review of lipid-based nanoparticles for taxane delivery. Cancer Lett. 334, 157–175 (2013)

    Article  CAS  PubMed  Google Scholar 

  93. S.S. Dunn, S. Tian, S. Blake, J. Wang, A.L. Galloway, A. Murphy, P.D. Pohlhaus, J.P. Rolland, M.E. Napier, J.M. Desimone, Reductively responsive siRNA-conjugated hydrogel nanoparticles for gene silencing. J. Am. Chem. Soc. 134, 7423–7430 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. K.A. Woodrow, Y. Cu, C.J. Booth, J.K. Saucier-Sawyer, M.J. Wood, W.M. Saltzman, Intravaginal gene silencing using biodegradable polymer nanoparticles densely loaded with small-interfering RNA. Nat. Mater. 8, 526–533 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. P. Kolhar, N. Doshi, S. Mitragotri, Polymer nanoneedle-mediated intracellular drug delivery. Small 7, 2094–2100 (2011)

    Article  CAS  PubMed  Google Scholar 

  96. W. Hasan, K. Chu, A. Gullapalli, S.S. Dunn, E.M. Enlow, J.C. Luft, S. Tian, M.E. Napier, P.D. Pohlhaus, J.P. Rolland, J.M. DeSimone, Delivery of multiple siRNAs using ipid-coated PLGA nanoparticles for treatment of prostate cancer. Nano Lett. 12, 287–292 (2012)

    Google Scholar 

  97. S. Dhar, F.X. Gu, R. Langer, O.C. Farokhzad, S.J. Lippard, Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proc. Natl. Acad. Sci. U. S. A. 105, 17356–17361 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. J.J. Green, R. Langer, D.G. Anderson, A. Combinatorial Polymer, Library approach yields insight into nonviral gene delivery. Acc. Chem. Res. 41, 749–759 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. D. Siegwart, K. Whitehead, Combinatorial synthesis of chemically diverse core-shell nanoparticles for intracellular delivery. Proc. Natl. Acad. Sci. 108, 12996–13001 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. S.H. Pun, M.E. Davis, Development of a nonviral gene delivery vehicle for systemic application. Bioconjug. Chem. 13, 630–639 (2002)

    Article  CAS  PubMed  Google Scholar 

  101. S. Mishra, J.D. Heidel, P. Webster, M.E. Davis, Imidazole groups on a linear, cyclodextrin-containing polycation produce enhanced gene delivery via multiple processes. J. Control. Release 116, 179–191 (2006)

    Article  CAS  PubMed  Google Scholar 

  102. M.E. Davis, J.E. Zuckerman, C.H.J. Choi, D. Seligson, A. Tolcher, C.A. Alabi, Y. Yen, J.D. Heidel, A. Ribas, Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464, 1067–1070 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. R. Duncan, Development of HPMA copolymer-anticancer conjugates: clinical experience and lessons learnt. Adv. Drug Deliv. Rev. 61, 1131–1148 (2009)

    Article  CAS  PubMed  Google Scholar 

  104. P.A. Vasey, S.B. Kaye, R. Morrison, C. Twelves, P. Wilson, R. Duncan, A.H. Thomson, L.S. Murray, T.E. Hilditch, T. Murray, S. Burtles, D. Fraier, E. Frigerio, Phase I clinical and pharmacokinetic study of PK1 [N-(2-Hydroxypropyl) methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents–drug-polymer conjugates. Clin. Cancer Res. 5, 83–94 (1999)

    CAS  PubMed  Google Scholar 

  105. L.W. Seymour, D.R. Ferry, D.J. Kerr, D. Rea, M. Whitlock, R. Poyner, C. Boivin, S. Hesslewood, C. Twelves, R. Blackie, A. Schatzlein, D. Jodrell, D. Bissett, H. Calvert, M. Lind, A. Robbins, S. Burtles, R. Duncan, J. Cassidy, Phase II studies of polymer-doxorubicin (PK1, FCE28068) in the treatment of breast, lung and colorectal cancer. Int. J. Oncol. 34, 1629–1636 (2009)

    Article  CAS  PubMed  Google Scholar 

  106. H. Kobayashi, M.W. Brechbiel, Nano-sized MRI contrast agents with dendrimer cores. Adv. Drug Deliv. Rev. 57, 2271–2286 (2005)

    Article  CAS  PubMed  Google Scholar 

  107. H. Kobayashi, S. Kawamoto, S.K. Jo, H.L. Bryant, M.W. Brechbiel, R.A. Star, Macromolecular MRI contrast agents with small dendrimers: pharmacokinetic differences between sizes and cores. Bioconjug. Chem. 14, 388–394 (2003)

    Article  CAS  PubMed  Google Scholar 

  108. M.C. Parrott, S. Rahima Benhabbour, C. Saab, J.A. Lemon, S. Parker, J.F. Valliant, A. Adronov, Synthesis, radiolabeling, and bio-imaging of high-generation polyester dendrimers. J. Am. Chem. Soc. 131, 2906–2916 (2009)

    Article  CAS  PubMed  Google Scholar 

  109. E.R. Gillies, E. Dy, J.M.J. Fréchet, F.C. Szoka, Biological evaluation of polyester dendrimer: poly(ethylene oxide) “bow-tie” hybrids with tunable molecular weight and architecture. Mol. Pharm. 2, 129–138 (2005)

    Article  CAS  PubMed  Google Scholar 

  110. X. Sun, R. Rossin, J.L. Turner, M.L. Becker, M.J. Joralemon, M.J. Welch, K.L. Wooley, An assessment of the effects of shell cross-linked nanoparticle size, core composition, and surface PEGylation on in vivo biodistribution. Biomacromolecules 6, 2541–2554 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. J. Xu, G. Sun, R. Rossin, A. Hagooly, Z. Li, K.I. Fukukawa, B.W. Messmore, D.A. Moore, M.J. Welch, C.J. Hawker, K.L. Wooley, Labeling of polymer nanostructures for medical imaging: importance of cross-linking extent, spacer length, and charge density. Macromolecules 40, 2971–2973 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. D. Zhang, J. Chang, Electrospinning of three-dimensional nanofibrous tubes with controllable. Nano Lett. 8, 3283–3287 (2008)

    Article  CAS  PubMed  Google Scholar 

  113. S. Panseri, C. Cunha, J. Lowery, U. Del Carro, F. Taraballi, S. Amadio, A. Vescovi, F. Gelain, Electrospun micro- and nanofiber tubes for functional nervous regeneration in sciatic nerve transections. BMC Biotechnol. 8, 1–12 (2008)

    Article  CAS  Google Scholar 

  114. X. Li, J. Xie, X. Yuan, Y. Xia, Coating electrospun poly (ε-caprolactone) fibers with gelatin and calcium phosphate and their use as biomimetic scaffolds for bone tissue engineering. Langmuir 24, 14145–14150 (2008)

    Article  CAS  PubMed  Google Scholar 

  115. N. Hild, O.D. Schneider, D. Mohn, N.A. Luechinger, F.M. Koehler, S. Hofmann, J.R. Vetsch, B.W. Thimm, R. Müller, W.J. Stark, Two-layer membranes of calcium phosphate/collagen/PLGA nanofibres: in vitro biomineralisation and osteogenic differentiation of human mesenchymal stem cells. Nanoscale 3, 401–409 (2011)

    Article  CAS  PubMed  Google Scholar 

  116. L. Ghasemi-Mobarakeh, M.P. Prabhakaran, M. Morshed, M.H. Nasr-Esfahani, S. Ramakrishna, Electrical stimulation of nerve cells using conductive nanofibrous scaffolds for nerve tissue engineering. Tissue Eng. Part A 15, 3605–3619 (2009)

    Article  CAS  PubMed  Google Scholar 

  117. S.I. Jeong, I.D. Jun, M.J. Choi, Y.C. Nho, Y.M. Lee, H. Shin, Development of electroactive and elastic nanofibers that contain polyaniline and poly(l-lactide-co-ε-caprolactone) for the control of cell adhesion. Macromol. Biosci. 8, 627–637 (2008)

    Article  CAS  PubMed  Google Scholar 

  118. C.W. Hsiao, M.Y. Bai, Y. Chang, M.F. Chung, T.Y. Lee, C.T. Wu, B. Maiti, Z.X. Liao, R.K. Li, H.W. Sung, Electrical coupling of isolated cardiomyocyte clusters grown on aligned conductive nanofibrous meshes for their synchronized beating. Biomaterials 34, 1063–1072 (2013)

    Article  CAS  PubMed  Google Scholar 

  119. S.K. Seidlits, C.T. Drinnan, R.R. Petersen, J.B. Shear, L.J. Suggs, C.E. Schmidt, Fibronectin-hyaluronic acid composite hydrogels for three-dimensional endothelial cell culture. Acta Biomater. 7, 2401–2409 (2011)

    Article  CAS  PubMed  Google Scholar 

  120. A.K. Jha, X. Xu, R.L. Duncan, X. Jia, Controlling the adhesion and differentiation of mesenchymal stem cells using hyaluronic acid-based, doubly crosslinked networks. Biomaterials 32, 2466–2478 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. H. Park, B. Choi, J. Hu, M. Lee, Injectable chitosan hyaluronic acid hydrogels for cartilage tissue engineering. Acta Biomater. 9, 4779–4786 (2013)

    Article  CAS  PubMed  Google Scholar 

  122. R. Gauvin, Y.C. Chen, J.W. Lee, P. Soman, P. Zorlutuna, J.W. Nichol, H. Bae, S. Chen, A. Khademhosseini, Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials 33, 3824–3834 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. H. Lin, D. Zhang, P.G. Alexander, G. Yang, J. Tan, A.W.M. Cheng, R.S. Tuan, Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture. Biomaterials 34, 331–339 (2013)

    Article  CAS  PubMed  Google Scholar 

  124. B. Duan, E. Kapetanovic, L.A. Hockaday, J.T. Butcher, Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater. 10, 1836–1846 (2014)

    Article  CAS  PubMed  Google Scholar 

  125. B. Duan, L.A. Hockaday, K.H. Kang, J.T. Butcher, 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J. Biomed. Mater. Res. Part A 101A, 1255–1264 (2013)

    Article  CAS  Google Scholar 

  126. T. Shinoka, D. Shum-Tim, P.X. Ma, R.E. Tanel, N. Isogai, R. Langer, J.P. Vacanti, J.E. Mayer, J.H. Kennedy, E.D. Verrier, L.K. Von Segesser, Creation of viable pulmonary artery autografts through tissue engineering. J. Thorac. Cardiovasc. Surg. 115, 536–546 (1998)

    Article  CAS  PubMed  Google Scholar 

  127. S. de Valence, J.C. Tille, D. Mugnai, W. Mrowczynski, R. Gurny, M. Möller, B.H. Walpoth, Long term performance of polycaprolactone vascular grafts in a rat abdominal aorta replacement model. Biomaterials 33, 38–47 (2012)

    Article  PubMed  CAS  Google Scholar 

  128. L.A. Pruitt, Deformation, yielding, fracture and fatigue behavior of conventional and highly cross-linked ultra high molecular weight polyethylene. Biomaterials 26, 905–915 (2005)

    Article  CAS  PubMed  Google Scholar 

  129. S.M. Kurtz, O.K. Muratoglu, M. Evans, A.A. Edidin, Advances in the processing, sterilization, and crosslinking of ultra-high molecular weight polyethylene for total joint arthroplasty. Biomaterials 20, 1659–1688 (1999)

    Article  CAS  PubMed  Google Scholar 

  130. P. Bracco, E. Oral, Vitamin E-stabilized UHMWPE for total joint implants: a review. Clin. Orthop. Relat. Res. 469, 2286–2293 (2011)

    Article  PubMed  Google Scholar 

  131. R.A.A. Muzzarelli, Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr. Polym. 76, 167–182 (2009)

    Article  CAS  Google Scholar 

  132. R.A.A. Muzzarelli, P. Morganti, G. Morganti, P. Palombo, M. Palombo, G. Biagini, M. Mattioli Belmonte, F. Giantomassi, F. Orlandi, C. Muzzarelli, Chitin nanofibrils/chitosan glycolate composites as wound medicaments. Carbohydr. Polym. 70, 274–284 (2007)

    Article  CAS  Google Scholar 

  133. K. Murakami, H. Aoki, S. Nakamura, S.I. Nakamura, M. Takikawa, M. Hanzawa, S. Kishimoto, H. Hattori, Y. Tanaka, T. Kiyosawa, Y. Sato, M. Ishihara, Hydrogel blends of chitin/chitosan, fucoidan and alginate as healing-impaired wound dressings. Biomaterials 31, 83–90 (2010)

    Article  CAS  PubMed  Google Scholar 

  134. Y.H. Lee, J.J. Chang, M.C. Yang, C.T. Chien, W.F. Lai, Acceleration of wound healing in diabetic rats by layered hydrogel dressing. Carbohydr. Polym. 88, 809–819 (2012)

    Article  CAS  Google Scholar 

  135. K.R. Kirker, Y. Luo, J.H. Nielson, J. Shelby, G.D. Prestwich, Glycosaminoglycan hydrogel films as bio-interactive dressings for wound healing. Biomaterials 23, 3661–3671 (2002)

    Article  CAS  PubMed  Google Scholar 

  136. T.W. Wang, J.S. Sun, H.C. Wu, Y.H. Tsuang, W.H. Wang, F.H. Lin, The effect of gelatin-chondroitin sulfate-hyaluronic acid skin substitute on wound healing in SCID mice. Biomaterials 27, 5689–5697 (2006)

    Article  CAS  PubMed  Google Scholar 

  137. B. Liu, G.C. Bazan, Interpolyelectrolyte complexes of conjugated copolymers and DNA: platforms for multicolor biosensors. J. Am. Chem. Soc. 126, 1942–1943 (2004)

    Article  CAS  PubMed  Google Scholar 

  138. K.Y. Pu, B. Liu, A multicolor cationic conjugated polymer for naked-eye detection and quantification of heparin. Macromolecules 41, 6636–6640 (2008)

    Article  CAS  Google Scholar 

  139. J.H. Wosnick, C.M. Mello, T.M. Swager, Synthesis and application of poly (phenylene ethynylene)s for bioconjugation: a conjugated polymer-based fluorogenic probe for proteases. J. Am. Chem. Soc. 127, 3400–3405 (2005)

    Article  CAS  PubMed  Google Scholar 

  140. C. Fan, K.W. Plaxco, A.J. Heeger, High-efficiency fluorescence quenching of conjugated polymers by proteins. J. Am. Chem. Soc. 124, 5642–5643 (2002)

    Article  CAS  PubMed  Google Scholar 

  141. Y. Tang, F. Feng, F. He, S. Wang, Y. Li, D. Zhu, Direct visualization of enzymatic cleavage and oxidative damage by hydroxyl radicals of single-stranded DNA with a cationic polythiophene derivative. J. Am. Chem. Soc. 128, 14972–14976 (2006)

    Article  CAS  PubMed  Google Scholar 

  142. H.A. Ho, M. Leclerc, Optical sensors based on hybrid aptamer/conjugated polymer complexes. J. Am. Chem. Soc. 126, 1384–1387 (2004)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matthew Parrott or Stuart Dunn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Parrott, M., Dunn, S. (2019). Design of Biomedical Polymers. In: Jafar Mazumder, M., Sheardown, H., Al-Ahmed, A. (eds) Functional Biopolymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-95990-0_10

Download citation

Publish with us

Policies and ethics