Skip to main content

Synthetic Biopolymers

  • Living reference work entry
  • First Online:
Functional Biopolymers

Abstract

Synthetic biopolymers are polymers that are modified from natural polymers or chemically synthesized from synthetic monomers in such a way that they can undergo natural degradation, without leaving any residues that are harmful to the living and natural environments. Over the last few years, synthetic biopolymers have attracted much attention, because of their distinct advantages over natural polymers in terms of stability and flexibility to suit a variety of applications. On the other hand, synthetic biopolymers are favored over synthetic polymers because of their biodegradable properties and their innocence to the environment. Thanks to the advancements made in new molecular designing tools and polymer chemistry, the synthesis of synthetic biopolymers can now be tailored to fit their specific applications. Synthetic biopolymers have found one of its most important applications in the medical field because of some of their unique properties such as stability, controlled release, nonimmunogenicity, and clearance from the body, which suits their application in human bodies. The current chapter reviews the synthesis, biodegradation, application, and commercial production of synthetic biopolymers, based on most recent literature, with a special focus on biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. C. Chassenieux, D. Durand, P. Jyotishkumar, S. Thomas, Biopolymers: State of the Art, new challenges, and opportunities, in Handbook of Biopolymer-Based Materials: From Blends and Composites to Gels and Complex Networks, ed. by S. Thomas, D. Durand, C. Chassenieux, P. Jyotishkumar (Wiley-VCH Verlag GmbH & Co., Berlin, 2013)

    Google Scholar 

  2. I. Vroman, L. Tighzert, Biodegradable Polymers. Materials 2, 307–344 (2009)

    Article  PubMed Central  CAS  Google Scholar 

  3. A. Tiwari, R.B. Srivastava, R.K. Saini, A.K. Bajpai, L.H. Mei, S.B. Mishra, A. Tiwari, A. Kumar, M. Shahinpoor, G.B. Nando, S.C. Kundu, A. Chadha, Biopolymers: An indispensable tool for biotechnology, in Biotechnology in Biopolymers Developments, Applications & Challenging Areas, ed. by A. Tiwari, R. B. Srivastava (Smithers Rapra Technology, Cambridge, UK, 2012), pp. 1–16

    Google Scholar 

  4. H. Endres, A. Siebart-Raths, Engineering Biopolymers: Markets, Manufacturing, Properties and Applications (Hanser, Munich, 2011)

    Book  Google Scholar 

  5. L. Suggs, S. Moore, A. Mikos, Synthetic biodegradable polymers for medical applications, in Physical Properties of Polymers Handbook, ed. by E. James (Springer, Berlin, 2007)

    Google Scholar 

  6. R. Thomson, M. Wake, M. Yaszemski, A. Mikos, Biodegradable polymer scaffolds to regenerate organs, in Biopolymers II, ed. by N. Peppas, R. Langer (Springer, Berlin/Heidelberg, 2005), pp. 245–274

    Google Scholar 

  7. I. Engelberg, J. Kohn, Physico-mechanical prorerties of degradable polymers used in medical applications: A comparative study. Biomaterials 12, 292–304 (1991)

    Article  PubMed  CAS  Google Scholar 

  8. R.J. Young, Introduction to polymers (Chapman & Hall, Boca Raton, 1987)

    Google Scholar 

  9. M. Kariduraganavar, A. Kittur, R. Kamble, Polymer synthesis and processing, in Natural and Synthetic Biomedical Polymers, ed. by S. Kumbar, C. Laurencin, M. Deng (Elsevier, Burlington, 2014)

    Google Scholar 

  10. Q. Liu, L. Zhang, R. Shi, Degradable bioelastomers: synthesis and biodegradation, in A Handbook of Applied Biopolymer Technology: Synthesis, Degradation and Applications, ed. by S. Sharma, A. Mudhoo (Royal Society of Chemistry, Cambridge, MA, 2011)

    Google Scholar 

  11. A. Gopferich, Mechanisms of polymer degradation and erosion. Biomaterials 17, 103–114 (1996)

    Article  PubMed  CAS  Google Scholar 

  12. M. Okada, Chemical syntheses of biodegradable polymers. Prog. Polym. Sci., 27, 87–133 (2002)

    Google Scholar 

  13. R. Singh, J.W. Lillard Jr., Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol. 86, 215–223 (2009)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. G.V. Betageri, V.G. Kadajji, Water soluble polymers for pharmaceutical applications. Polymers (Basel) 3, 1972–2009 (2011)

    Article  CAS  Google Scholar 

  15. H. Tian, Z. Tang, X. Zhuang, X. Chen, X. Jing, Biodegradable synthetic polymers: Preparation, functionalization and biomedical application. Prog. Polym. Sci. 37, 237–280 (2012)

    Article  CAS  Google Scholar 

  16. R. Yoda, Elastomers for biomedical applications. J. Biomater. Sci. Polym. Ed. 9, 561–626 (1998)

    Article  PubMed  CAS  Google Scholar 

  17. J. Rydz, W. Sikorska, M. Kyulavska, D. Christova, Polyester-based (bio)degradable polymers as environmentally friendly materials for sustainable development. Int. J. Mol. Sci. 16, 564–596 (2015)

    Article  CAS  Google Scholar 

  18. T. Volova, E. Shishatskaya, A. Sinskey, Degradable Polymers : Production, Properties, Applications (Nova Science, New York, 2013)

    Google Scholar 

  19. L. Nair, C. Laurencin, Biodegradable polymers as biomaterials. Prog. Polym. Sci. 32, 762–798 (2007)

    Article  CAS  Google Scholar 

  20. A.W. Lloyd, Interfacial bioengineering to enhance surface biocompatibility. Med. Device Technol. 13, 18–21 (2002)

    PubMed  Google Scholar 

  21. S. Li, M. Vert, Biodegradation of aliphatic polyesters, in Degradable Polymers: Principles and Application, ed. by G. Scott (Kluwer Academic Publishers, Berlin, 2002), p. 71

    Google Scholar 

  22. N. Lucas, C. Bienaime, C. Belloy, M. Queneudec, F. Silvestre, J.E. Nava-Saucedo, Polymer biodegradation: Mechanisms and estimation techniques. Chemosphere 73, 429–442 (2008)

    Article  PubMed  CAS  Google Scholar 

  23. A.A. Shah, F. Hasan, A. Hameed, S. Ahmed, Biological degradation of plastics: A comprehensive review. Biotechnol. Adv. 26, 246–265 (2008)

    Article  PubMed  CAS  Google Scholar 

  24. J. Djonlagic, M. Nikolic, Biodegradable polyesters: Synthesis and physical properties, in A Handbook of Applied Biopolymer Technology: Synthesis, Degradation and Applications, ed. by S. Sharma, A. Mudhoo (Royal Society of Chemistry, Cambridge, MA, 2011)

    Google Scholar 

  25. B. Guo, P. Ma, Synthetic biodegradable functional polymers for tissue engineering: A brief review. Sci China Chem 57, 490–500 (2014)

    Article  CAS  Google Scholar 

  26. S. Philip, T. Keshavarz, I. Roy, Polyhydroxyalkanoates: Biodegradable polymers with a range of applications. J. Chem. Technol. Biotechnol. 82, 233–247 (2007)

    Article  CAS  Google Scholar 

  27. U. Edlund, A.C. Albertsson, Polyesters based on diacid monomers. Adv. Drug Deliv. Rev. 55, 585–609 (2003)

    Article  PubMed  CAS  Google Scholar 

  28. P. Gunatillake, R. Mayadunne, R. Adhikari, Recent developments in biodegradable synthetic polymers. Biotechnol. Annu. Rev. 12, 301–347 (2006)

    Article  PubMed  CAS  Google Scholar 

  29. S. Dutta, W. Hung, B. Huang, C. Lin, Recent developments in metal-catalyzed ring-opening polymerization of Lactides and Glycolides: Preparation of Polylactides, Polyglycolide, and poly(lactide-co-glycolide). Adv. Polym. Sci. 245, 219–284 (2012)

    Article  CAS  Google Scholar 

  30. P. Gunatillake, R. Adhikari, Biodegradable synthetic polymers for tissues engineering. Eur. Cell. Mater. 5, 1–16 (2003)

    Article  PubMed  CAS  Google Scholar 

  31. A. Sodergard, M. Stolt, Properties of lactic acid based polymers and their correlation with composition. Prog. Polym. Sci. 27, 1123–1163 (2002)

    Article  CAS  Google Scholar 

  32. M. Goldberg, R. Langer, X. Jia, Nanostructured materials for applications in drug delivery and tissue engineering. J. Biomater. Sci. Polym. Ed. 18, 241–268 (2007)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. P. Maurus, C. Kaeding, Bioabsorbable implant material review. Oper Tech Sport Med 12, 158–160 (2004)

    Article  Google Scholar 

  34. T. Prior, D. Grace, J. MacLean, P. Allen, P. Chapman, A. Day, Correction of hallux abductus valgus by Mitchell’s metatarsal osteotomy: Comparing standard fixation methods with absorbable polydioxanone pins. Foot 7, 121–125 (1997)

    Article  Google Scholar 

  35. L. Nair, C. Laurencin, Polymers as biomaterials for tissue engineering and controlled drug delivery, in Tissue engineering I. Advances in biochemical engineering/biotechnology, ed. by K. Lee, D. Kaplan (Springer, Berlin, 2006), pp. 47–90

    Google Scholar 

  36. C. Chiari, U. Koller, R. Dorotka, C. Eder, R. Plasenzotti, S. Lang, L. Ambrosio, E. Tognana, E. Kon, D. Salter, S. Nehrer, A tissue engineering approach to meniscus regeneration in a sheep model. Osteoarthr. Cartil. 14, 1056–1065 (2006)

    Article  CAS  Google Scholar 

  37. R. Smith, Biodegradable Polymers for Industrial Applications (Woodhead Publishing Limited, Cambridge, UK, 2005)

    Book  Google Scholar 

  38. X. Zhan, X. Shen, Z. Li, X. Li, F. Cao, Preparation of high molecular weight poly(L-lactide-co-caprolactone)(85-15). Journal of Wuhan University of Technology-Mater. Sci. Ed. 28, 139–143 (2013)

    Article  CAS  Google Scholar 

  39. Z. Zhang, R. Kuijer, S.K. Bulstra, D.W. Grijpma, J. Feijen, The in vivo and in vitro degradation behavior of poly(trimethylene carbonate). Biomaterials 27, 1741–1748 (2006)

    Article  PubMed  CAS  Google Scholar 

  40. M. Niaounakis, Biopolymers: Applications and Trends (Elsevier, New York, 2015)

    Google Scholar 

  41. T. Fujimaki, Processability and properties of aliphatic polyesters, “Bionolle”, synthesized by polycondensation reaction. Polym. Degrad. Stab. 59, 209–214 (1998)

    Article  CAS  Google Scholar 

  42. Y. Ichikawa, T. Mizukoshi, Bionolle (Polybutylenesuccinate). Adv. Polym. Sci. 245, 285–314 (2012)

    Article  CAS  Google Scholar 

  43. R.J. Muller, U. Witt, E. Rantze, W. Deckwer, Architecture of biodegradable copolyesters containing aromatic constituents. Polym. Degrad. Stab. 59, 203–208 (1998)

    Article  CAS  Google Scholar 

  44. X. Wang, J. Zhou, L. Li, Multiple melting behavior of poly(butylene succinate). during heating scan by DSC, J. Polym. Sci. Polym. Phys. 43, 3163–3170 (2007)

    CAS  Google Scholar 

  45. G. Papageorgiou, G. Achilias, D. Bikiaris, Crystallization kinetics of biodegradable poly(butylenes succinate) under isothermal and non-isothermal conditions. Macromol. Chem. Phys. 208, 1250–1264 (2007)

    Article  CAS  Google Scholar 

  46. J.S. Temenoff, A.G. Mikos, Injectable biodegradable materials for orthopedic tissue engineering. Biomaterials 21, 2405–2412 (2000)

    Article  PubMed  CAS  Google Scholar 

  47. S. Peter, M. Miller, M. Yaszemski, A. Mikos, Poly(propylene fumarate), in Handbook of biodegradable polymers, ed. by A. Domb, J. Kost, D. Wiseman (Harwood Academic, Amsterdam, 1997)

    Google Scholar 

  48. J.S. Temenoff, K.A. Athanasiou, R.G. LeBaron, A.G. Mikos, Effect of poly(ethylene glycol) molecular weight on tensile and swelling properties of oligo(poly(ethylene glycol) fumarate) hydrogels for cartilage tissue engineering. J. Biomed. Mater. Res. 59, 429–437 (2002)

    Article  PubMed  CAS  Google Scholar 

  49. J.S. Temenoff, H. Park, E. Jabbari, T.L. Sheffield, R.G. LeBaron, C.G. Ambrose, A.G. Mikos, In vitro osteogenic differentiation of marrow stromal cells encapsulated in biodegradable hydrogels. J. Biomed. Mater. Res. A 70, 235–244 (2004)

    Article  PubMed  CAS  Google Scholar 

  50. C.S. Reddy, R. Ghai, Rashmi, V.C. Kalia, Polyhydroxyalkanoates: An overview. Bioresour. Technol. 87, 137–146 (2003)

    Article  PubMed  CAS  Google Scholar 

  51. L. Savenkova, Z. Gercberga, V. Nikolaeva, A. Dzene, I. Bibers, M. Kahlnin, Mechanical properties and biodegradation characteristics of PHB bases films. Process Biochem. 35, 573 (2000)

    Article  CAS  Google Scholar 

  52. K. Sudesh, H. Abe, Y. Doi, Synthesis, structure and properties of polyhydroxyalkanoates : Biological polyesters. Prog. Polym. Sci. 25, 1503–1555 (2000)

    Article  CAS  Google Scholar 

  53. W.C. Hsieh, Y. Wada, C.P. Chang, Fermentation, biodegradation and tensile strength of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) synthesized by Delfia acidovorans. J. Tw. Inst. Chem. 40, 143–147 (2009)

    Article  CAS  Google Scholar 

  54. E.A. Dawes, Polyhydroxybutyrate: An intriguing biopolymer. Biosci. Rep. 8, 537–547 (1988)

    Article  PubMed  CAS  Google Scholar 

  55. M. Avella, B. Immirzi, M. Malinconico, E. Martuscelli, M.G. Volpe, Reactive blending methodologies for biopol. Polym. Int. 39, 191–204 (1996)

    Article  CAS  Google Scholar 

  56. D.S. Sheu, W.M. Chen, J.Y. Yang, R.C. Chang, Thermophilic bacterium caldimonas taiwanensis produces poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from starch and valerate as carbon sources. Enz. Microbial. Technol. 44, 289–294 (2009)

    Article  CAS  Google Scholar 

  57. M. Zinn, B. Witholt, T. Egli, Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv. Drug Deliv. Rev. 53, 5–21 (2001)

    Article  PubMed  CAS  Google Scholar 

  58. S. Philips, T. Keshavarz, I. Roy, Polyhydroxyalkanoates: Biodegradable polymers with a range of applications. J. Chem. Technol. Biotechnol. 82, 233–247 (2007)

    Article  CAS  Google Scholar 

  59. R. Muller, Aliphatic-aromatic polyesters, in Handbook of Biodegradable Polymers, ed. by A. Domb, J. Kost, D. Wiseman (CRC Press, Baco Raton, 1998)

    Google Scholar 

  60. U. Witt, R.J. Muller, W.D. Deckwer, Biodegradation behavior and material properties of aliphatic/aromatic polyesters of commercial importance. J. Envir. Polym. Degrad. 5, 81–89 (1997)

    Article  CAS  Google Scholar 

  61. N. Paredes, A. Rodriguez-Galan, J. Puiggali, Synthesis and characterization of a family of biodegradable poly(ester amide)s derived from glycine. J. Polym. Sci. A-Polym. Chem. 36, 1271–1282 (1998)

    Article  CAS  Google Scholar 

  62. A.K. Mohanty, M. Misra, G. Hinrichsen, Biofibres, biodegradable polymers and biocomposites: An overview. Macromol. Mater. Eng. 276, 1–24 (2000)

    Article  Google Scholar 

  63. E. Grigat, R. Koch, R. Timmermann, Thermoplastic and biodegradable polymers of cellulose. Polym. Degrad. Stab. 59, 223 (1998)

    Article  CAS  Google Scholar 

  64. B.K. Kim, J.W. Seo, H.M. Jeong, Morphology and properties of waterborne polyurethane/clay nanocomposites. Eur. Polym. J. 39, 85–91 (2003)

    Article  CAS  Google Scholar 

  65. T. Nakajima-Kambe, Y. Shigeno-Akutsu, N. Nomura, F. Onuma, T. Nakarahara, Microbial degradation of polyurethane, polester polyurethanes and polyether polyurethanes. Appl. Microbiol.Biotechnol. 51, 134–140 (1999)

    Article  PubMed  CAS  Google Scholar 

  66. S.A. Guelcher, K.M. Gallagher, J.E. Didier, D.B. Klinedinst, J.S. Doctor, A.S. Goldstein, Synthesis of biocompatible segmented polyurethanes from aliphatic diisocyanates and diurea diol chain extenders. Acta Biomater. 1, 471–484 (2005)

    Article  PubMed  Google Scholar 

  67. M.K. Hassan, K.A. Mauritz, R.F. Storey, J.S. Wiggins, Biodegradable aliphatic thermoplastic polyurethane based on poly(ε-caprolactone) and L-lysine diisocyanate. J. Polym. Sci. A-Polym. Chem. 44, 2990–3000 (2006)

    Article  CAS  Google Scholar 

  68. R.F. Storey, J.S. Wiggins, A.D. Puckett, Hydrolysable poly(ester urethane) networks from Llysine diisocyanate and D,L- lactide/e-caprolactone homo and copolyester triols. J. Polym. Sci. APolym. Chem. 32, 2342–2345 (1994)

    Google Scholar 

  69. J.Y. Zhang, E.J. Beckman, N.P. Piesco, S. Agarwal, A new peptide-based urethane polymer: Synthesis, biodegradation, and potential to support cell growth in vitro. Biomaterials 21, 1247–1258 (2000)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. J.B. Zeng, Y.D. Li, Q.Y. Zhu, K.K. Yang, X.L. Wang, Y.Z. Wang, A novel biodegrable multiblock poly(ester urethane) containing poly(L-lactic acid) and poly(butylene succinate) blocks. Polymer 50, 1178–1186 (2009)

    Article  CAS  Google Scholar 

  71. K.M. Zia, M. Zuber, I.A. Bhatti, M. Barikani, M.A. Sheikh, Evaluation of biocompatibility and mechanical behaviour of polyurethane elastomers based on chitin/1,4-butane diol blends. Int. J. Biol. Macromol. 44, 18–22 (2009)

    Article  PubMed  CAS  Google Scholar 

  72. K.M. Zia, M. Barikani, M. Zuber, I.A. Bhatti, M.A. Sheikh, Molecular engineering of chitin based polyurethane elastomers. Carbohydr. Polym. 74, 149–158 (2008)

    Article  CAS  Google Scholar 

  73. K.L. Nobel, Waterborne polyurethanes. Prog. Org. Coating 32, 131–136 (1997)

    Article  Google Scholar 

  74. Z.W. Wicks, D.A. Wicks, J.W. Rosthauser, Two package waterborne urethane systems. Prog. Org. Coatings. 44, 161–183 (2002)

    Article  CAS  Google Scholar 

  75. M.C. Delpecha, F.M.B. Coutinho, Waterborne anionic polyurethanes and poly(urethane-urea)s: Influence of the chain extender on mechanical and adhesive properties. Polym. Test. 19, 939–952 (2000)

    Article  Google Scholar 

  76. Y. Lu, L. Tighzert, F. Berzin, S. Rondot, Innovative plasticized starch films modified with waterborne polyurethane from renewable resources. Carbohydr. Polym. 61, 174–182 (2005)

    Article  CAS  Google Scholar 

  77. Y. Lu, L. Tighzert, P. Dole, D. Erre, Preparation and properties of starch thermoplastics modified with waterborne polyurethane from renewable resources. Polymer 46, 9863–9870 (2005)

    Article  CAS  Google Scholar 

  78. J. Heller, J. Barr, S.Y. Ng, K.S. Abdellauoi, R. Gurny, Poly(ortho esters): Synthesis, characterization, properties and uses. Adv. Drug Deliv. Rev. 54, 1015–1039 (2002)

    Article  PubMed  CAS  Google Scholar 

  79. J. Heller, J. Barr, Poly(ortho esters)-from concept to reality. Biomacromolecules 5, 1625–1632 (2004)

    Article  PubMed  CAS  Google Scholar 

  80. J. Heller, Ocular delivery using poly(ortho esters). Adv. Drug Deliv. Rev. 57, 2053–2062 (2005)

    Article  PubMed  CAS  Google Scholar 

  81. J. Tamada, R.J. Langer, The development of polyanhydrides for drug delivery applications. Biomater. Sci. Polym. Ed. 3, 315–353 (1992)

    Article  CAS  Google Scholar 

  82. K.W. Leong, B.C. Brott, R. Langer, Biodegradable polyanhydrides as drug carrier matrices: Characterization, degradation and release characteristics. J. Biomed. Mater. Res. 19, 941–955 (1985)

    Article  PubMed  CAS  Google Scholar 

  83. S.E. Ibim, K.E. Uhrich, M. Attawia, V.R. Shastri, S.F. El-Amin, E. Bronson, Preliminary in vivo report on the osteocompatibility of poly(anhydride-co-imides) evaluated in a tibial model. J. Biomed. Mater. Res. 43, 374–379 (1998)

    Article  PubMed  CAS  Google Scholar 

  84. K.S. Anseth, D.C. Svaldi, C.T. Laurencin, R. Langer, Photopolymerisation of novel degradable networks for orthopaedic applications, in Photopolymerization. ACS Symposium series, vol. 673, ed. by A. Scranton, C. Bowman, R. Peiffer (American Chemical Society, Washington, DC, 1997), pp. 189–202

    Google Scholar 

  85. D.S. Katti, S. Lakshmi, R. Langer, C.T. Laurencin, Toxicity, biodegradation and elimination of polyanhydrides. Adv. Drug Deliv. Rev. 54, 933–961 (2002)

    Article  PubMed  CAS  Google Scholar 

  86. C.T. Laurencin, T. Gerhart, P. Witschger, R. Satcher, A. Domb, A.E. Rosenberg, P. Hanff, L. Edsberg, W. Hayes, R. Langer, Bioerodible polyanhydrides for antibiotic drug delivery: In vivo osteomyelitis treatment in a rat model system. J. Orthop. Res. 11, 256–262 (1993)

    Article  PubMed  CAS  Google Scholar 

  87. L.C. Li, J. Deng, D. Stephens, Polyanhydride implant for antibiotic delivery-from the bench to the clinic. Adv. Drug Deliv. Rev. 54, 963–986 (2002)

    Article  PubMed  Google Scholar 

  88. S.I. Ertel, J. Kohn, Evaluation of a series of tyrosine-derived polypolycarbonates for biomaterial applications. J. Biomed. Mater. Res. 28, 919–930 (1994)

    Article  PubMed  CAS  Google Scholar 

  89. C. Vauthier, C. Dubernet, C. Chauvierre, I. Brigger, P. Couvreur, Drug delivery to resistant tumors: The potential of poly(alkyl cyanoacrylate) nanoparticles. J. Control. Release 93, 151–160 (2003)

    Article  PubMed  CAS  Google Scholar 

  90. H.R. Allcock, Chemistry and applications of polyphosphazenes (Wiley, New York, 2003)

    Google Scholar 

  91. S. Penczek, J. Pretula, K. Kaluzynski, Poly(alkylene phosphates): From synthetic models of biomacromolecules and biomembranes toward polymer-inorganic hybrids (mimicking biomineralization). Biomacromolecules 6, 547–551 (2005)

    Article  PubMed  CAS  Google Scholar 

  92. Z. Zhao, J. Wang, H.Q. Mao, K.W. Leong, Polyphosphoesters in drug and gene delivery. Adv. Drug Deliv. Rev. 55, 483–499 (2003)

    Article  PubMed  CAS  Google Scholar 

  93. S.X. Liu, Z.S. Xia, Y.Q. Zhong, Gene therapy in pancreatic cancer. World J. Gastroenterol. 20, 13343–13368 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. P. Suriyamongkol, R. Weselake, S. Narine, M. Moloney, S. Shah, Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants – A review. Biotechnol. Adv. 25, 148–175 (2007)

    Article  PubMed  CAS  Google Scholar 

  95. J. Ruiz, A. Manteco, V. Cadiz, Synthesis and properties of hydrogels from poly (vinyl alcohol) and ethylenediaminetetraacetic dianhydride. Polymer 42, 6347–6354 (2001)

    Article  CAS  Google Scholar 

  96. S. Guilbert, B. Cuq, Material formed from proteins, in Handbook of Biodegradable Polymers, ed. by A.J. Domb, J. Kost, D. Wiseman (CRC Press, Boca Raton, 1998)

    Google Scholar 

  97. J.C. Haarer, K.C. Dee, Proteins and amino acid-derived polymers, in An introduction to biomaterials, ed. by S. A. Guelcher, J. O. Hollinger (CRC Taylor and Francis, Boca Raton, 2006), pp. 121–138

    Google Scholar 

  98. G.H. Altman, F. Diaz, C. Jakuba, T. Calabro, R.L. Horan, J. Chen, H. Lu, J. Richmond, D.L. Kaplan, Silk-based biomaterials. Biomaterials 24, 401–416 (2003)

    Article  PubMed  CAS  Google Scholar 

  99. K. Gelse, E. Poschl, T. Aigner, Collagens-structure, function, and biosynthesis. Adv. Drug Deliv. Rev. 55, 1531–1546 (2003)

    Article  PubMed  CAS  Google Scholar 

  100. J.F. Thornton, R.J. Rohrich, Dermal substitute (Integra) for open nasal wounds. Plast. Reconstr. Surg. 116, 677 (2005)

    Article  PubMed  CAS  Google Scholar 

  101. S.K. Purna, M. Babu, Collagen based dressings-a review. Burns 26, 54–62 (2000)

    Article  PubMed  CAS  Google Scholar 

  102. P.K. Narotam, S. Jose, N. Nathoo, C. Taylon, Y. Vora, Collagen matrix (DuraGen) in dural repair: Analysis of a new modified technique. Spine 29, 2861–2867 (2004)

    Article  PubMed  Google Scholar 

  103. X. Duan, C. McLaughlin, M. Griffith, H. Sheardown, Biofunctionalization of collagen for improved biological response: Scaffolds for corneal tissue engineering. Biomaterials 28, 78–88 (2007)

    Article  PubMed  CAS  Google Scholar 

  104. R. Chandra, R. Rustgi, Biodegradable polymers. Progr. Polym. Sci. 23, 1273–1335 (1998)

    Article  CAS  Google Scholar 

  105. S.M. Mithieux, J.E. Rasko, A.S. Weiss, Synthetic elastin hydrogels derived from massive elastic assemblies of self-organized human protein monomers. Biomaterials 25, 4921–4927 (2004)

    Article  PubMed  CAS  Google Scholar 

  106. A. Chilkoti, T. Christensen, J.A. MacKay, Stimulus responsive elastin biopolymers: Applications in medicine and biotechnology. Curr. Opin. Chem. Biol. 10, 652–657 (2006)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. V.T. Chuang, U. Kragh-Hansen, M. Otagiri, Pharmaceutical strategies utilizing recombinant human serum albumin. Pharm. Res. 19, 569–577 (2002)

    Article  PubMed  Google Scholar 

  108. E. Grassl, R.T. Tranquillo, Fibrillar fibrin gels, in Scaffolds in tissue engineering, ed. by X.P. Ma, J. Elisseeff (CRC, Taylor and Francis, Boca Raton, 2006), pp. 61–70

    Google Scholar 

  109. S. Domenek, P. Feuilloley, J. Gratraud, M.H. Morel, S. Guilbert, Biodegradability of wheat gluten based bioplastics. Chemosphere 54, 551–559 (2004)

    Article  PubMed  CAS  Google Scholar 

  110. S. Tansaz, A.R. Boccaccini, Biomedical applications of soy protein: A brief overview. J. Biomed. Mater. Res. A 104, 553–569 (2016)

    Article  PubMed  CAS  Google Scholar 

  111. M. Obst, A. Steinbuchel, Microbial degradation of poly(amino acid)s. Biomacromolecules 5, 1166–1176 (2004)

    Article  PubMed  CAS  Google Scholar 

  112. T. Shimokuri, T. Kaneko, M. Akashi, Specific thermosensitive volume change of biopolymer gels derived from propylated poly(g-glutamate)s. J. Polym. Sci. A Polym. Chem. 42, 4492–4501 (2004)

    Article  CAS  Google Scholar 

  113. T. Yoshida, J. Hiraki, T. Nagasawa, e-Poly-L-lysine, in Biopolymers, ed. by S.R. Fahnestock, A. Steinbuchel (Wiley-VCH, Weinheim, 2003), pp. 107–121

    Google Scholar 

  114. C. Li, Poly(L-glutamic acid)-anticancer drug conjugates. Adv. Drug Deliv. Rev. 54, 695–713 (2002)

    Article  PubMed  CAS  Google Scholar 

  115. Y. Otani, Y. Tabata, Y. Ikada, Hemostatic capability of rapidly curable glues from gelatin, poly(L-glutamic acid), and carbodiimide. Biomaterials 19, 2091–2098 (1998)

    Article  PubMed  CAS  Google Scholar 

  116. G. Pitarresi, F. Saiano, G. Cavallaro, D. Mandracchia, F.S. Palumbo, A new biodegradable and biocompatible hydrogel with polyaminoacid structure. Int. J. Pharm. 335, 130–137 (2007)

    Article  PubMed  CAS  Google Scholar 

  117. N. Volpi, Therapeutic applications of glycosaminoglycans. Curr. Med. Chem. 13, 1799–1810 (2006)

    Article  PubMed  CAS  Google Scholar 

  118. Y. Kato, S. Nakamura, M. Nishimura, Beneficial actions of hyaluronan (HA) on arthritic joints: Effects of molecular weight of HA on elasticity of cartilage matrix. Biorheology 43, 347–354 (2006)

    PubMed  Google Scholar 

  119. J.K. Suh, H.W. Matthew, Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: A review. Biomaterials 21, 2589–2598 (2000)

    Article  PubMed  CAS  Google Scholar 

  120. M. Dash, F. Chiellini, R.M. Ottenbrite, E. Chiellini, Chitosan-a versatile semi-synthetic polymer in biomedical applications. Prog. Polym. Sci. 36, 981–1014 (2011)

    Article  CAS  Google Scholar 

  121. V.K. Mourya, N.N. Inamdar, Chitosan-modifications and applications: Opportunities galore. React. Funct. Polym. 68, 1013–1051 (2008)

    Article  CAS  Google Scholar 

  122. C.J. Weber, Biobased Packaging Materials Biobased Packaging Materials for the Food Industry (KVL, Frederiksberg, 2000)

    Google Scholar 

  123. C. Bastioloi, Starch-Based Technology, in Handbook of Biodegradable Polymers, ed. by C. Bastioloi (Rapra Technology Limited, Shropshire, 2003)

    Google Scholar 

  124. A. Rodriguez-Galan, L. Franco, J. Puiggali, Degradable poly(ester amide)s for biomedical applications. Polymers 3, 65–99 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahbuba Rahman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rahman, M., Hasan, M.R. (2018). Synthetic Biopolymers. In: Jafar Mazumder, M., Sheardown, H., Al-Ahmed, A. (eds) Functional Biopolymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-92066-5_1-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92066-5_1-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92066-5

  • Online ISBN: 978-3-319-92066-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics