Skip to main content

GLC/HPLC Methods for Saffron (Crocus sativus L.)

  • Reference work entry
  • First Online:

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Saffron (Crocus sativus L.) is provided from the dried and dark-red stigmas of flowers belonging to the family of Iridaceae. Concerning the total content of saffron production, the biggest producer territory in the world is Iran, followed by Spain, India, Italy, Greece, and Morocco. Crocetin, crocin, picrocrocin, and safranal are the four main bioactive compounds in saffron which contribute both organoleptic profile of saffron (pigment, pigment, taste, and odor, respectively) and the health-progressing features. Isolation, identification, and quantification of bioactive compounds from complex and natural matrix of food stuffs are a main and common trouble of initial interest in food quality measurement and characterization. Chromatography is a set of constituents’ separation techniques in a complex mixture. Recently, chromatographic methods were widely used for the isolation, identification, quantification, and analysis of saffron components. Although there are various kinds of chromatographic techniques, more recently a gas chromatography (GC) with a mass spectrometer (MS) detector for the volatile compounds and reversed-phase high-performance liquid chromatography (RP-HPLC) coupled with a UV-Vis detector are the techniques of choice, permitting the isolation on an analytical value and the quantification and identification of the metabolites of interest in saffron. However, this chapter principally conducted the analysis of saffron compounds comprising the aroma and most aroma-active compounds using GC-MS and GC-MS-olfactometry setups and bioactive compounds such as carotenoids, flavonoids, and phenolic compounds using HPLC techniques.

This is a preview of subscription content, log in via an institution.

Abbreviations

1-D:

One-dimension

2-D:

Two-dimension

3-D:

Three-dimension

AEDA:

Aroma extract dilution analysis

Charm:

Combined hedonic aroma response measurement

DAD:

Diode array detector

ESI:

Electrospray ionization

FD factor:

Flavor dilution factor

GC:

Gas chromatography

GC-FID:

Gas chromatography-flame ionization detector

GC-MS:

Gas chromatography-mass spectrometry

GC-MS-O:

Gas chromatography-mass spectrometry-olfactometry

HD:

Hydrodistillation

HPLC-DAD-MS:

High-performance liquid chromatography with diode array detection and mass spectrometry

HS:

Headspace

HTCC:

4-Hydroxy-2,6,6-trimethyl-1-cyclohexene-1-carboxaldehyde

LLE:

Liquid-liquid extraction

MSDE:

Microsimultaneous hydrodistillation-extraction

MSDE:

Micro-steam distillation extraction

PDA:

Photodiode array

PTE:

Purge and trap extraction

RP-HPLC:

Reversed-phase high-performance liquid chromatography

SAFE:

Solvent-assisted flavor evaporation

SBSE:

Stir bar sorptive extraction

SD:

Steam distillation

SDE:

Simultaneous distillation/extraction

SFE:

Supercritical fluid extraction

SPME:

Solid-phase microextraction

TD:

Thermal desorption

USAE/UV-Vis:

Ultrasound-assisted extraction/ultraviolet−visible spectroscopy

USE:

Ultrasonic solvent extraction

VHS:

Vacuum headspace

References

  1. Kumar R, Singh V, Devi K et al (2008) State of art of saffron (Crocus sativus L.) agronomy: a comprehensive review. Food Rev Int 25:44–85. https://doi.org/10.1080/87559120802458503

    Article  Google Scholar 

  2. Melnyk JP, Wang S, Marcone MF (2010) Chemical and biological properties of the world’s most expensive spice: saffron. Food Res Int 43:1981–1989. https://doi.org/10.1016/j.foodres.2010.07.033

    Article  CAS  Google Scholar 

  3. Baghalian K, Sheshtamand MS, Jamshidi AH (2010) Genetic variation and heritability of agro-morphological and phytochemical traits in Iranian saffron (Crocus sativus L.) populations. Ind Crop Prod 31:401–406. https://doi.org/10.1016/j.indcrop.2009.12.010

    Article  CAS  Google Scholar 

  4. Fernández J-A (2004) Biology, biotechnology and biomedicine of saffron. Recent Res Dev Plant Sci 2:127–159. ISBN 81-7736-239-9

    Google Scholar 

  5. Maggi L, Carmona M, del Campo CP et al (2009) Worldwide market screening of saffron volatile composition. J Sci Food Agric 89:1950–1954. https://doi.org/10.1002/jsfa.3679

    Article  CAS  Google Scholar 

  6. Ghorbani M (2008) The efficiency of saffron’s marketing channel in Iran. World Appl Sci J 4:523–527. ISSN 1818-4952

    Google Scholar 

  7. Gresta F, Lombardo GM, Siracusa L, Ruberto G (2008) Saffron, an alternative crop for sustainable agricultural systems. A review. Agron Sustain Dev 28:95–112. https://doi.org/10.1051/agro:2007030

    Article  CAS  Google Scholar 

  8. Deo B (2003) Growing saffron – the World’s most expensive spice. Crop Food Res (New Zealand Institute for Crop & Food Research) 20:1–4

    Google Scholar 

  9. Sereshti H, Heidari R, Samadi S (2014) Determination of volatile components of saffron by optimised ultrasound-assisted extraction in tandem with dispersive liquid–liquid microextraction followed by gas chromatography–mass spectrometry. Food Chem 143:499–505. https://doi.org/10.1016/j.foodchem.2013.08.024

    Article  CAS  PubMed  Google Scholar 

  10. Sampathu SR, Shivashankar S, Lewis YS, Wood AB (1984) Saffron (Crocus Sativus Linn.) – cultivation, processing, chemistry and standardization. CRC Crit Rev Food Sci Nutr 20:123–157. https://doi.org/10.1080/10408398409527386

    Article  CAS  Google Scholar 

  11. Ríos JL, Recio MC, Giner RM, Máñez S (1996) An update review of saffron and its active constituents. Phyther Res 10:189–193. https://doi.org/10.1002/(SICI)1099-1573(199605)10:3<189::AID-PTR754>3.0.CO;2-C

    Article  Google Scholar 

  12. Grilli Caiola M (2004) Saffron Reproductive Biology. Acta Hortic 650:25–37. https://doi.org/10.17660/ActaHortic.2004.650.1

    Article  Google Scholar 

  13. Winterhalter P, Straubinger M (2000) Saffron – Renewed Interest In An Ancient Spice. Food Rev Int 16:39–59. https://doi.org/10.1081/FRI-100100281

    Article  CAS  Google Scholar 

  14. Schmidt M, Betti G, Hensel A (2007) Saffron in phytotherapy: pharmacology and clinical uses. WMW Wien Med Wochenschr 157:315–319. https://doi.org/10.1007/s10354-007-0428-4

    Article  PubMed  Google Scholar 

  15. Dhar AK, Mir GM (1997) Saffron in Kashmir-VI: a review of distribution and production. J Herbs Spices Med Plants 4:83–90. https://doi.org/10.1300/J044v04n04_09

    Article  Google Scholar 

  16. Basker D, Negbi M (1985) Crocetin equivalent of saffron extracts-comparison of 3 extraction methods. J Assoc Publ Analysts 23:65–69. ISSN: 0004-5780

    Google Scholar 

  17. Skrubis B (1989) The cultivation in Greece of Crocus sativus L. In Proceedings of the International Conference on Saffron (Crocus Sativus L.), L’Àquilla, Italy, 1990:171–182

    Google Scholar 

  18. Alonso GL, Salinas MR, Garijo J, Sanchez-fernandez MA (2001) Composition of crocins and picrocrocin from spanish saffron (Crocus Sativus L.). J Food Qual 24:219–233. https://doi.org/10.1111/j.1745-4557.2001.tb00604.x

    Article  CAS  Google Scholar 

  19. Pfander H, Schurtenberger H (1982) Biosynthesis of C20-carotenoids in Crocus sativus. Phytochemistry 21:1039–1042. https://doi.org/10.1016/S0031-9422(00)82412-7

    Article  CAS  Google Scholar 

  20. Gregory MJ, Menary RC, Davies NW (2005) Effect of drying temperature and air flow on the production and retention of secondary metabolites in saffron. J Agric Food Chem 53:5969–5975. https://doi.org/10.1021/jf047989j

    Article  CAS  PubMed  Google Scholar 

  21. Alavizadeh SH, Hosseinzadeh H (2014) Bioactivity assessment and toxicity of crocin: a comprehensive review. Food Chem Toxicol 64:65–80. https://doi.org/10.1016/j.fct.2013.11.016

    Article  CAS  PubMed  Google Scholar 

  22. Assimopoulou AN, Sinakos Z, Papageorgiou VP (2005) Radical scavenging activity of Crocus sativus L. extract and its bioactive constituents. Phyther Res 19:997–1000. https://doi.org/10.1002/ptr.1749

    Article  CAS  Google Scholar 

  23. Soeda S, Ochiai T, Shimeno H et al (2007) Pharmacological activities of crocin in saffron. J Nat Med 61:102–111. https://doi.org/10.1007/s11418-006-0120-9

    Article  CAS  Google Scholar 

  24. Papandreou MA, Kanakis CD, Polissiou MG et al (2006) Inhibitory activity on amyloid-β aggregation and antioxidant properties of Crocus sativus stigmas extract and its Crocin constituents. J Agric Food Chem 54:8762–8768. https://doi.org/10.1021/jf061932a

    Article  CAS  PubMed  Google Scholar 

  25. Kuhn R, Winterstein A (1934) Über die Konstitution des Pikro-crocins und seine Beziehung zu den Carotin-Farbstoffen des Safrans. Ber Dtsch Chem Ges 67:344–357. https://doi.org/10.1002/cber.19340670239

    Article  Google Scholar 

  26. Buchecker R, Eugster CH (1973) Absolute konfiguration von picrocrocin. Helv Chim Acta 56:1121–1124. https://doi.org/10.1002/hlca.1973056033

    Article  CAS  Google Scholar 

  27. Alonso GL, Salinas MR, Esteban-Infantes FJ, Sánchez-Fernández MA (1996) Determination of Safranal from saffron (Crocus sativus L.) by thermal desorption−gas chromatography. J Agric Food Chem 44:185–188. https://doi.org/10.1021/jf940665i

    Article  CAS  Google Scholar 

  28. Cadwallader KR (2002) Flavor chemistry of saffron. ISSN: 0065-7727

    Google Scholar 

  29. Tarantilis PA, Polissiou MG (1997) Isolation and identification of the aroma components from saffron (Crocus sativus). J Agric Food Chem 45:459–462. https://doi.org/10.1021/jf960105e

    Article  CAS  Google Scholar 

  30. Carmona M, Zalacain A, Salinas MR, Alonso GL (2007) A new approach to saffron aroma. Crit Rev Food Sci Nutr 47:145–159. https://doi.org/10.1080/10408390600626511

    Article  CAS  PubMed  Google Scholar 

  31. Kanakis CD, Tarantilis PA, Tajmir-Riahi HA, Polissiou MG (2007) Crocetin, Dimethylcrocetin, and Safranal bind human serum albumin: stability and Antioxidative properties. J Agric Food Chem 55:970–977. https://doi.org/10.1021/jf062638l

    Article  CAS  PubMed  Google Scholar 

  32. Escribano J, Alonso G-L, Coca-Prados M, Fernández J-A (1996) Crocin, safranal and picrocrocin from saffron (Crocus sativus L.) inhibit the growth of human cancer cells in vitro. Cancer Lett 100:23–30. https://doi.org/10.1016/0304-3835(95)04067-6

    Article  CAS  PubMed  Google Scholar 

  33. Davis JM, Giddings JC (1983) Statistical theory of component overlap in multicomponent chromatograms. Anal Chem 55:418–424. https://doi.org/10.1021/ac00254a003

    Article  CAS  Google Scholar 

  34. Cortes HJ (1992) Developments in multidimensional separation systems. J Chromatogr A 626:3–23. https://doi.org/10.1016/0021-9673(92)85324-M

    Article  CAS  Google Scholar 

  35. Liu Z, Phillips JB (1991) Comprehensive two-dimensional gas chromatography using an on-column thermal modulator interface. J Chromatogr Sci 29:227–231. https://doi.org/10.1093/chromsci/29.6.227

    Article  CAS  Google Scholar 

  36. Kajdan T, Cortes H, Kuppannan K, Young SA (2008) Development of a comprehensive multidimensional liquid chromatography system with tandem mass spectrometry detection for detailed characterization of recombinant proteins. J Chromatogr A 1189:183–195. https://doi.org/10.1016/j.chroma.2007.11.031

    Article  CAS  PubMed  Google Scholar 

  37. Mondello L, Tranchida PQ, Dugo P, Dugo G (2008) Comprehensive two-dimensional gas chromatography-mass spectrometry: a review. Mass Spectrom Rev 27:101–124. https://doi.org/10.1002/mas.20158

    Article  CAS  PubMed  Google Scholar 

  38. Cortes HJ, Winniford B, Luong J, Pursch M (2009) Comprehensive two dimensional gas chromatography review. J Sep Sci 32:883–904. https://doi.org/10.1002/jssc.200800654

    Article  CAS  PubMed  Google Scholar 

  39. Nováková L, Vlčková H (2009) A review of current trends and advances in modern bio-analytical methods: chromatography and sample preparation. Anal Chim Acta 656:8–35. https://doi.org/10.1016/j.aca.2009.10.004

    Article  CAS  PubMed  Google Scholar 

  40. Rödel W, Petrzika M (1991) Analysis of the volatile components of saffron. J High Resolut Chromatogr 14:771–774. https://doi.org/10.1002/jhrc.1240141118

    Article  Google Scholar 

  41. Narasimhan S, Chand N, Rarjalakshmi D (1992) Saffron: quality evaluation by sensory profile and gas chromatography. J Food Qual 15:303–314. https://doi.org/10.1111/j.1745-4557.1992.tb00994.x

    Article  CAS  Google Scholar 

  42. Caballero-Ortega H, Pereda-Miranda R, Abdullaev FI (2007) HPLC quantification of major active components from 11 different saffron (Crocus sativus L.) sources. Food Chem 100:1126–1131. https://doi.org/10.1016/j.foodchen.2005.11.020

    Article  CAS  Google Scholar 

  43. Zarghami NS, Heinz DE (1971) Monoterpene aldehydes and isophorone-related compounds of saffron. Phytochemistry 10:2755–2761. https://doi.org/10.1016/S0031-9422(00)97275-3

    Article  CAS  Google Scholar 

  44. Kanakis CD, Daferera DJ, Tarantilis PA, Polissiou MG (2004) Qualitative determination of volatile compounds and quantitative evaluation of Safranal and 4-Hydroxy-2,6,6-trimethyl-1-cyclohexene-1-carboxaldehyde (HTCC) in Greek saffron. J Agric Food Chem 52:4515–4521. https://doi.org/10.1021/jf049808j

    Article  CAS  PubMed  Google Scholar 

  45. Grosch W (1993) Detection of potent odorants in foods by aroma extract dilution analysis. Trends Food Sci Technol 4:68–73. https://doi.org/10.1016/0924-2244(93)90187-F

    Article  CAS  Google Scholar 

  46. Amanpour A, Sonmezdag AS, Kelebek H, Selli S (2015) GC-MS-olfactometric characterization of the most aroma-active components in a representative aromatic extract from Iranian saffron (Crocus sativus L.). Food Chem 182:251–256. https://doi.org/10.1016/j.foodchem.2015.03.005

    Article  CAS  PubMed  Google Scholar 

  47. Chen Y, Guo Z, Wang X, Qiu C (2008) Sample preparation. J Chromatogr A 1184:191–219. https://doi.org/10.1016/j.chroma.2007.10.026

    Article  CAS  PubMed  Google Scholar 

  48. van Ruth SM (2001) Methods for gas chromatography-olfactometry: a review. Biomol Eng 17:121–128. https://doi.org/10.1016/S1389-0344(01)00070-3

    Article  PubMed  Google Scholar 

  49. Plutowska B, Wardencki W (2008) Application of gas chromatography–olfactometry (GC–O) in analysis and quality assessment of alcoholic beverages – a review. Food Chem 107:449–463. https://doi.org/10.1016/j.foodchem.2007.08.058

    Article  CAS  Google Scholar 

  50. Bonino M, Schellino R, Rizzi C et al (2003) Aroma compounds of an Italian wine (Ruché) by HS–SPME analysis coupled with GC–ITMS. Food Chem 80:125–133. https://doi.org/10.1016/S0308-8146(02)00340-0

    Article  CAS  Google Scholar 

  51. López EF, Gómez EF (2000) Comparison of solvents for determination of monoterpenes in wine using liquid-liquid extraction. Chromatographia 52:798–802. https://doi.org/10.1007/BF02491007

    Article  Google Scholar 

  52. Nonato EA, Carazza F, Silva FC et al (2001) A headspace solid-phase microextraction method for the determination of some secondary compounds of Brazilian sugar cane spirits by gas chromatography. J Agric Food Chem 49:3533–3539. https://doi.org/10.1021/jf000896r

    Article  CAS  PubMed  Google Scholar 

  53. Plutowska B, Wardencki W (2007) Aromagrams–aromatic profiles in the appreciation of food quality. Food Chem 101:845–872

    Article  CAS  Google Scholar 

  54. Sides A (2000) Developments in extraction techniques and their application to analysis of volatiles in foods. TrAC Trends Anal Chem 19:322–329. https://doi.org/10.1016/S0165-9936(99)00225-3

    Article  CAS  Google Scholar 

  55. Pollien P, Ott A, Montigon F et al (1997) Hyphenated headspace-gas chromatography-sniffing technique: screening of impact odorants and quantitative Aromagram comparisons. J Agric Food Chem 45:2630–2637. https://doi.org/10.1021/jf960885r

    Article  CAS  Google Scholar 

  56. Maggi L, Carmona M, del Campo CP et al (2008) Multi-residue contaminants and pollutants analysis in saffron spice by stir bar sorptive extraction and gas chromatography–ion trap tandem mass spectrometry. J Chromatogr A 1209:55–60. https://doi.org/10.1016/j.chroma.2008.09.026

    Article  CAS  PubMed  Google Scholar 

  57. Zougagh M, Ríos A, Valcárcel M (2006) Determination of total safranal by in situ acid hydrolysis in supercritical fluid media: application to the quality control of commercial saffron. Anal Chim Acta 578:117–121. https://doi.org/10.1016/j.aca.2006.06.064

    Article  CAS  PubMed  Google Scholar 

  58. Tarantilis PA, Polissiou M, Manfait M (1994) Separation of picrocrocin, cis-trans-crocins and safranal of saffron using high-performance liquid chromatography with photodiode-array detection. J Chromatogr A 664:55–61. https://doi.org/10.1016/0021-9673(94)80628-4

    Article  CAS  PubMed  Google Scholar 

  59. D’Auria M, Mauriello G, Rana GL (2004) Volatile organic compounds from saffron. Flavour Fragr J 19:17–23. https://doi.org/10.1002/ffj.1266

    Article  CAS  Google Scholar 

  60. Jalali-Heravi M, Parastar H, Ebrahimi-Najafabadi H (2009) Characterization of volatile components of Iranian saffron using factorial-based response surface modeling of ultrasonic extraction combined with gas chromatography–mass spectrometry analysis. J Chromatogr A 1216:6088–6097. https://doi.org/10.1016/j.chroma.2009.06.067

    Article  CAS  PubMed  Google Scholar 

  61. Sánchez AM, Carmona M, del Campo CP, Alonso GL (2009) Solid-phase extraction for picrocrocin determination in the quality control of saffron spice (Crocus sativus L.). Food Chem 116:792–798. https://doi.org/10.1016/j.foodchem.2009.03.039

    Article  CAS  Google Scholar 

  62. Ammann A, Hinz DC, Addleman RS et al (1999) Superheated water extraction, steam distillation and SFE of peppermint oil. Fresenius J Anal Chem 364:650–653. https://doi.org/10.1007/s002160051406

    Article  CAS  Google Scholar 

  63. Kanasawud P, Crouzet JC (1990) Mechanism of formation of volatile compounds by thermal degradation of carotenoids in aqueous medium. 1. .beta.-Carotene degradation. J Agric Food Chem 38:237–243. https://doi.org/10.1021/jf00091a052

    Article  CAS  Google Scholar 

  64. Zareena AV, Variyar PS, Gholap AS, Bongirwar DR (2001) Chemical investigation of gamma-irradiated saffron (Crocus sativus L.). J Agric Food Chem 49:687–691. https://doi.org/10.1021/jf000922l

    Article  CAS  PubMed  Google Scholar 

  65. Golumbic C (1951) Liquid-liquid extraction analysis. Anal Chem 23:1210–1217. https://doi.org/10.1021/ac60057a004

    Article  CAS  Google Scholar 

  66. Cadwallader KR, Baek HH, Cai M (1997) Characterization of saffron flavor by aroma extract dilution analysis. ACS Symp Ser 660:66–79

    Article  CAS  Google Scholar 

  67. Augusto F, Leite e Lopes A, Zini CA (2003) Sampling and sample preparation for analysis of aromas and fragrances. TrAC Trends Anal Chem 22:160–169. https://doi.org/10.1016/S0165-9936(03)00304-2

    Article  CAS  Google Scholar 

  68. Cares MG, Vargas Y, Gaete L et al (2010) Ultrasonically assisted extraction of bioactive principles from Quillaja Saponaria Molina. Phys Procedia 3:169–178. https://doi.org/10.1016/j.phpro.2010.01.024

    Article  CAS  Google Scholar 

  69. Sujata V, Ravishankar GA, Venkataraman LV (1992) Methods for the analysis of the saffron metabolites crocin, crocetins, picrocrocin and safranal for the determination of the quality of the spice using thin-layer chromatography, high-performance liquid chromatography and gas chromatography. J Chromatogr A 624:497–502. https://doi.org/10.1016/0021-9673(92)85699-T

    Article  CAS  Google Scholar 

  70. Romanik G, Gilgenast E, Przyjazny A, Kamiński M (2007) Techniques of preparing plant material for chromatographic separation and analysis. J Biochem Biophys Methods 70:253–261. https://doi.org/10.1016/j.jbbm.2006.09.012

    Article  CAS  PubMed  Google Scholar 

  71. Jadhav D, Rekha BN, Gogate PR, Rathod VK (2009) Extraction of vanillin from vanilla pods: a comparison study of conventional soxhlet and ultrasound assisted extraction. J Food Eng 93:421–426. https://doi.org/10.1016/j.jfoodeng.2009.02.007

    Article  Google Scholar 

  72. Dai J, Mumper RJ (2010) Plant Phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15:7313–7352. https://doi.org/10.3390/molecules15107313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Xu H, Zhang Y, He C (2007) Ultrasonically assisted extraction of Isoflavones from stem of Pueraria lobata (Willd.) Ohwi and its mathematical model. Chin J Chem Eng 15:861–867. https://doi.org/10.1016/S1004-9541(08)60015-4

    Article  CAS  Google Scholar 

  74. Metherel AH, Taha AY, Izadi H, Stark KD (2009) The application of ultrasound energy to increase lipid extraction throughput of solid matrix samples (flaxseed). Prostaglandins Leukot Essent Fat Acids 81:417–423. https://doi.org/10.1016/j.plefa.2009.07.003

    Article  CAS  Google Scholar 

  75. Kadkhodaee R, Hemmati-Kakhki A (2006) Ultrasonic extraction of active compounds from saffron. II Int Symp Saffron Biol Technol 739:417–425

    Google Scholar 

  76. Huie CW (2002) A review of modern sample-preparation techniques for the extraction and analysis of medicinal plants. Anal Bioanal Chem 373:23–30. https://doi.org/10.1007/s00216-002-1265-3

    Article  CAS  PubMed  Google Scholar 

  77. Maggi L, Sánchez AM, Carmona M et al (2011) Rapid determination of safranal in the quality control of saffron spice (Crocus sativus L.). Food Chem 127:369–373. https://doi.org/10.1016/j.foodchem.2011.01.028

    Article  CAS  Google Scholar 

  78. Tonthubthimthong P, Chuaprasert S, Douglas P, Luewisutthichat W (2001) Supercritical CO2 extraction of nimbin from neem seeds – an experimental study. J Food Eng 47:289–293. https://doi.org/10.1016/S0260-8774(00)00131-X

    Article  Google Scholar 

  79. Wang L, Weller CL (2006) Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Technol 17:300–312. https://doi.org/10.1016/j.tifs.2005.12.004

    Article  CAS  Google Scholar 

  80. Lozano P, Delgado D, Gómez D et al (2000) A non-destructive method to determine the safranal content of saffron (Crocus sativus L.) by supercritical carbon dioxide extraction combined with high-performance liquid chromatography and gas chromatography. J Biochem Biophys Methods 43:367–378. https://doi.org/10.1016/S0165-022X(00)00090-7

    Article  CAS  PubMed  Google Scholar 

  81. Culleré L, San-Juan F, Cacho J (2011) Characterisation of aroma active compounds of Spanish saffron by gas chromatography–olfactometry: quantitative evaluation of the most relevant aromatic compounds. Food Chem 127:1866–1871. https://doi.org/10.1016/j.foodchem.2011.02.015

    Article  CAS  Google Scholar 

  82. Arthur CL, Pawliszyn J (1990) Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem 62:2145–2148. https://doi.org/10.1021/ac00218a019

    Article  CAS  Google Scholar 

  83. D’Auria M, Mauriello G, Racioppi R, Rana GL (2006) Use of SPME-GC-MS in the study of time evolution of the constituents of saffron aroma: modifications of the composition during storage. J Chromatogr Sci 44:18–21. https://doi.org/10.1093/chromsci/44.1.18

    Article  Google Scholar 

  84. Du H, Wang J, Hu Z, Yao X (2008) Quantitative structure-retention relationship study of the constituents of saffron aroma in SPME-GC–MS based on the projection pursuit regression method. Talanta 77:360–365. https://doi.org/10.1016/j.talanta.2008.06.038

    Article  CAS  PubMed  Google Scholar 

  85. Sarafraz-Yazdi A, Piri moghadam H, Es’haghi Z, Sepehr S (2010) Comparative study of the three sol–gel based solid phase microextraction fibers in extraction of BTEX from water samples using gas chromatography-flame ionization detection. Anal Methods 2:746. https://doi.org/10.1039/c0ay00175a

    Article  CAS  Google Scholar 

  86. Baltussen E, Sandra P, David F, Cramers C (1999) Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: theory and principles. J Microcolumn Sep 11:737–747. https://doi.org/10.1002/(SICI)1520-667X(1999)11:10<737::AID-MCS7>3.0.CO;2-4

    Article  CAS  Google Scholar 

  87. He M, Chen B, Hu B (2014) Recent developments in stir bar sorptive extraction. Anal Bioanal Chem 406:2001–2026. https://doi.org/10.1007/s00216-013-7395-y

    Article  CAS  PubMed  Google Scholar 

  88. Wilkes JG, Conte ED, Kim Y et al (2000) Sample preparation for the analysis of flavors and off-flavors in foods. J Chromatogr A 880:3–33. https://doi.org/10.1016/S0021-9673(00)00318-6

    Article  CAS  PubMed  Google Scholar 

  89. Amini M, Ghoranneviss M, Abdijadid S (2017) Effect of cold plasma on crocin esters and volatile compounds of saffron. Food Chem 235:290–293. https://doi.org/10.1016/j.foodchem.2017.05.067

    Article  CAS  PubMed  Google Scholar 

  90. Engel W, Bahr W, Schieberle P (1999) Solvent assisted flavour evaporation – a new and versatile technique for the careful and direct isolation of aroma compounds from complex food matrices. Eur Food Res Technol 209:237–241. https://doi.org/10.1007/s002170050486

    Article  CAS  Google Scholar 

  91. Amanpour A, Kelebek H, Selli S (2017) Aroma constituents of shade-dried aerial parts of Iranian dill (Anethum graveolens L.) and savory (Satureja sahendica Bornm.) by solvent-assisted flavor evaporation technique. J Food Meas Charact 11:1430–1439. https://doi.org/10.1007/s11694-017-9522-5

    Article  Google Scholar 

  92. Amanpour A, Kelebek H, Selli S (2016) Aroma components of Iranian dried Heracleum persicum fruit (golpar) using solvent-assisted flavour evaporation technique. J Food Nutr Res 55:141–147. ISSN: 1336-8672

    CAS  Google Scholar 

  93. Selli S, Kelebek H (2011) Aromatic profile and odour-activity value of blood orange juices obtained from Moro and Sanguinello (Citrus sinensis L. Osbeck). Ind Crop Prod 33:727–733. https://doi.org/10.1016/j.indcrop.2011.01.016

    Article  CAS  Google Scholar 

  94. Sanz C, Czerny M, Cid C, Schieberle P (2002) Comparison of potent odorants in a filtered coffee brew and in an instant coffee beverage by aroma extract dilution analysis (AEDA). Eur Food Res Technol 214:299–302. https://doi.org/10.1007/s00217-001-0459-9

    Article  CAS  Google Scholar 

  95. Silva Ferreira AC, Hogg T, Guedes de Pinho P (2003) Identification of key odorants related to the typical aroma of oxidation-spoiled white wines. J Agric Food Chem 51:1377–1381. https://doi.org/10.1021/jf025847o

    Article  CAS  PubMed  Google Scholar 

  96. Priser C, Etiévant PX, Nicklaus S, Brun O (1997) Representative champagne wine extracts for gas chromatography olfactometry analysis. J Agric Food Chem 45:3511–3514. https://doi.org/10.1021/jf970123b

    Article  CAS  Google Scholar 

  97. Selli S, Kelebek H, Ayseli MT, Tokbas H (2014) Characterization of the most aroma-active compounds in cherry tomato by application of the aroma extract dilution analysis. Food Chem 165:540–546. https://doi.org/10.1016/j.foodchem.2014.05.147

    Article  CAS  PubMed  Google Scholar 

  98. Kesen S, Kelebek H, Selli S (2014) Characterization of the key aroma compounds in Turkish olive oils from different geographic origins by application of aroma extract dilution analysis (AEDA). J Agric Food Chem 62:391–401. https://doi.org/10.1021/jf4045167

    Article  CAS  PubMed  Google Scholar 

  99. Selli S, Gubbuk H, Kafkas E, Gunes E (2012) Comparison of aroma compounds in Dwarf Cavendish banana (Musa spp. AAA) grown from open-field and protected cultivation area. Sci Hortic (Amsterdam) 141:76–82. https://doi.org/10.1016/j.scienta.2012.04.008

    Article  CAS  Google Scholar 

  100. Carmona M, Sánchez AM, Ferreres F et al (2007) Identification of the flavonoid fraction in saffron spice by LC/DAD/MS/MS: comparative study of samples from different geographical origins. Food Chem 100:445–450. https://doi.org/10.1016/j.foodchem.2005.09.065. Published: 2007

    Article  CAS  Google Scholar 

  101. Pollien P, Fay LB, Baumgartner M, Chaintreau A (1999) First attempt of odorant quantitation using gas chromatography−olfactometry. Anal Chem 71:5391–5397. https://doi.org/10.1021/ac990367q

    Article  CAS  PubMed  Google Scholar 

  102. Ferreira V, Pet’ka J, Aznar M (2002) Aroma extract dilution analysis. Precision and optimal experimental design. J Agric Food Chem 50:1508–1514. https://doi.org/10.1021/jf010933u

    Article  CAS  PubMed  Google Scholar 

  103. Iborra JOL, Castellar MR, Canovas MA, Manjon AR (1992) TLC preparative purification of Picrocrocin, HTCC and Crocin from saffron. J Food Sci 57:714–716. https://doi.org/10.1111/j.1365-2621.1992.tb08079.x

    Article  CAS  Google Scholar 

  104. Piana M, Zadra M, de Brum TF et al (2013) Analysis of Rutin in the extract and gel of Viola tricolor. J Chromatogr Sci 51:406–411. https://doi.org/10.1093/chromsci/bms155

    Article  CAS  PubMed  Google Scholar 

  105. Heidarbeigi K, Mohtasebi SS, Foroughirad A et al (2015) Detection of adulteration in saffron samples using electronic nose. Int J Food Prop 18:1391–1401. https://doi.org/10.1080/10942912.2014.915850

    Article  CAS  Google Scholar 

  106. Sasidharan S, Chen Y, Saravanan D et al (2011) Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr J Tradit Complement Altern Med 8:1. ISSN: 0189-6016

    CAS  PubMed  Google Scholar 

  107. de la Torre-Carbot K, Jauregui O, Gimeno E et al (2005) Characterization and quantification of phenolic compounds in olive oils by solid-phase extraction, HPLC-DAD, and HPLC-MS/MS. J Agric Food Chem 53:4331–4340. https://doi.org/10.1021/jf0501948

    Article  CAS  PubMed  Google Scholar 

  108. Gazdag M (2000) 2.7 high performance liquid chromatography (HPLC) and related techniques. Prog Pharm Biomed Anal. 4:210–239. Elsevier

    Google Scholar 

  109. Peng J, Elias JE, Thoreen CC et al (2003) Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC−MS/MS) for large-scale protein analysis: the yeast proteome. J Proteome Res 2:43–50. https://doi.org/10.1021/pr025556v

    Article  CAS  PubMed  Google Scholar 

  110. Atanasov AG, Waltenberger B, Pferschy-Wenzig E-M et al (2015) Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv 33:1582–1614. https://doi.org/10.1016/j.biotechadv.2015.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Pferschy-Wenzig E-M, Bauer R (2015) The relevance of pharmacognosy in pharmacological research on herbal medicinal products. Epilepsy Behav 52:344–362. https://doi.org/10.1016/j.yebeh.2015.05.037

    Article  PubMed  Google Scholar 

  112. Lage M, Cantrell CL (2009) Quantification of saffron (Crocus sativus L.) metabolites crocins, picrocrocin and safranal for quality determination of the spice grown under different environmental Moroccan conditions. Sci Hortic (Amsterdam) 121:366–373. https://doi.org/10.1016/j.scienta.2009.02.017

    Article  CAS  Google Scholar 

  113. Aschoff S (1818) Beiträge sur kenntnis des safrans. Berl Jb Pharm 19:142–157

    Google Scholar 

  114. Speranza G, Dada G, Manitto P et al (1984) 13-cis-Crocin-a new Crocinoid of saffron. Gazz Chim Ital 114:189–192. ISSN: 0016-5603

    CAS  Google Scholar 

  115. Tarantilis PA, Tsoupras G, Polissiou M (1995) Determination of saffron (Crocus sativus L.) components in crude plant extract using high-performance liquid chromatography-UV-visible photodiode-array detection-mass spectrometry. J Chromatogr A 699:107–118. https://doi.org/10.1016/0021-9673(95)00044-N

    Article  CAS  PubMed  Google Scholar 

  116. Carmona M, Zalacain A, Sánchez AM et al (2006) Crocetin esters, picrocrocin and its related compounds present in Crocus sativus stigmas and Gardenia jasminoides fruits. Tentative identification of seven new compounds by LC-ESI-MS. J Agric Food Chem 54:973–979. https://doi.org/10.1021/jf052297w

    Article  CAS  PubMed  Google Scholar 

  117. Sánchez AM, Carmona M, Ordoudi SA et al (2008) Kinetics of individual Crocetin Ester degradation in aqueous extracts of saffron (Crocus sativus L.) upon thermal treatment in the dark. J Agric Food Chem 56:1627–1637. https://doi.org/10.1021/jf0730993

    Article  CAS  PubMed  Google Scholar 

  118. Ordoudi SA, de los Mozos Pascual M, Tsimidou MZ (2014) On the quality control of traded saffron by means of transmission Fourier-transform mid-infrared (FT-MIR) spectroscopy and chemometrics. Food Chem 150:414–421. https://doi.org/10.1016/j.foodchem.2013.11.014

    Article  CAS  PubMed  Google Scholar 

  119. Anastasaki E, Kanakis C, Pappas C et al (2010) Differentiation of saffron from four countries by mid-infrared spectroscopy and multivariate analysis. Eur Food Res Technol 230:571–577. https://doi.org/10.1007/s00217-009-1197-7

    Article  CAS  Google Scholar 

  120. Breukers S, Øpstad CL, Sliwka H, Partali V (2009) Hydrophilic carotenoids: surface properties and aggregation behavior of the potassium salt of the highly unsaturated diacid norbixin. Helv Chim Acta 92:1741–1747. ISSN: 0018-019X

    Article  CAS  Google Scholar 

  121. Serrano-Díaz J, Sánchez AM, Maggi L et al (2011) Synergic effect of water-soluble components on the coloring strength of saffron spice. J Food Compos Anal 24:873–879. https://doi.org/10.1016/j.jfca.2011.03.014

    Article  CAS  Google Scholar 

  122. Castellar MR, Montijano H, Manjón A, Iborra JL (1993) Preparative high-performance liquid chromatographic purification of saffron secondary metabolites. J Chromatogr A 648:187–190. https://doi.org/10.1016/0021-9673(93)83301-8

    Article  CAS  Google Scholar 

  123. PITSIKAS N, ZISOPOULOU S, TARANTILIS P et al (2007) Effects of the active constituents of Crocus sativus L., crocins on recognition and spatial rats’ memory. Behav Brain Res 183:141–146. https://doi.org/10.1016/j.bbr.2007.06.001

    Article  CAS  PubMed  Google Scholar 

  124. Li N, Lin G, Kwan Y-W, Min Z-D (1999) Simultaneous quantification of five major biologically active ingredients of saffron by high-performance liquid chromatography. J Chromatogr A 849:349–355. https://doi.org/10.1016/S0021-9673(99)00600-7

    Article  CAS  PubMed  Google Scholar 

  125. Winterstein E, Teleczky J (1922) Constituents of the saffron. I. Picrocrocin. Helv Chim Acta 5:376–400

    Article  CAS  Google Scholar 

  126. Straubinger M, Jezussek M, Waibel R, Winterhalter P (1997) Novel Glycosidic constituents from saffron. J Agric Food Chem 45:1678–1681. https://doi.org/10.1021/jf960861k

    Article  CAS  Google Scholar 

  127. Straubinger M, Bau B, Eckstein S et al (1998) Identification of novel glycosidic aroma precursors in Saffron (Crocus sativus L.). J Agric Food Chem 46:3238–3243. https://doi.org/10.1021/jf980119f

    Article  CAS  Google Scholar 

  128. Carmona M, Zalacain A, Alonso GL (2006) The aroma, in the chemical composition of saffron: color, taste and aroma, ed. by. Editorial Bomarzo SL, Albacete, pp. 123–124

    Google Scholar 

  129. Sánchez AM, Carmona M, Jarén-Galán M et al (2011) Picrocrocin kinetics in aqueous saffron spice extracts (Crocus sativus L.) upon thermal treatment. J Agric Food Chem 59:249–255. https://doi.org/10.1021/jf102828v

    Article  CAS  PubMed  Google Scholar 

  130. Orfanou O, Tsimidou M (1996) Evaluation of the colouring strength of saffron spice by UV – vis spectrometry. Food Chem 57:463–469

    Article  CAS  Google Scholar 

  131. Lozano P, Castellar M, Simancas M, Iborra J (1999) A quantitative high-performance liquid chromatographic method to analyse commercial saffron (Crocus sativus L.) products. J Chromatogr A 830:477–483. https://doi.org/10.1016/S0021-9673(98)00938-8

    Article  CAS  Google Scholar 

  132. Hamid B, Sam S, Islam T et al (2009) The free radical scavenging and the lipid peroxidation inhibition of Crocin isolated from Kashmiri saffron (Crocus sativus) occurring in northern part of India. Int J Pharm Tech Res 1:1317–1321. ISSN: 0974-4304

    CAS  Google Scholar 

  133. Hosseinzadeh H, Sadeghnia HR, Ghaeni FA et al (2011) Effects of saffron (Crocus sativus L.) and its active constituent, Crocin, on recognition and spatial memory after chronic cerebral Hypoperfusion in rats. Phyther Res 26:381. https://doi.org/10.1002/ptr.3566

    Article  CAS  Google Scholar 

  134. Nilakshi N, Gadiya RV, Abhyankar M, Champalal KD (2011) Detailed profile of Crocus sativus. Int J Pharma Bio Sci 2:530–540. ISSN: 0975-6299

    Google Scholar 

  135. Gismondi A, Serio M, Canuti L, Canini A (2012) Biochemical, antioxidant and antineoplastic properties of Italian saffron (<i>Crocus sativus L<i>.). Am J Plant Sci 3:1573–1580. https://doi.org/10.4236/ajps.2012.311190

    Article  CAS  Google Scholar 

  136. Bolhasani A, Bathaie SZ, Yavari I et al (2005) Separation and purification of some components of Iranian saffron. Asian J Chem 17:725. ISSN: 0970-7077

    CAS  Google Scholar 

  137. Madan CL, Kapur BM, Gupta US (1966) Saffron. Econ Bot 20:377–385

    Article  Google Scholar 

  138. Cossignani L, Urbani E, Simonetti MS et al (2014) Characterisation of secondary metabolites in saffron from Central Italy (Cascia, Umbria). Food Chem 143:446–451. https://doi.org/10.1016/j.foodchem.2013.08.020

    Article  CAS  PubMed  Google Scholar 

  139. Zougagh M, Ríos A, Valcárcel M (2005) An automated screening method for the fast, simple discrimination between natural and artificial colorants in commercial saffron products. Anal Chim Acta 535:133–138. https://doi.org/10.1016/j.aca.2004.11.060

    Article  CAS  Google Scholar 

  140. Corti P, Mazzei E, Ferri S et al (1996) High performance thin layer chromatographic quantitative analysis of Picrocrocin and Crocetin, active principles of saffron (Crocus sativus L.-Iridaceae): a new method. Phytochem Anal 7:201–203. https://doi.org/10.1002/(SICI)1099-1565(199607)7:4<201::AID-PCA304>3.0.CO;2-4

    Article  CAS  Google Scholar 

  141. Lech K, Witowska-Jarosz J, Jarosz M (2009) Saffron yellow: characterization of carotenoids by high performance liquid chromatography with electrospray mass spectrometric detection. J Mass Spectrom 44:1661. https://doi.org/10.1002/jms.1631

    Article  CAS  PubMed  Google Scholar 

  142. Pfister S, Meyer P, Steck A, Pfander H (1996) Isolation and structure elucidation of carotenoid−Glycosyl esters in Gardenia fruits (Gardenia jasminoides Ellis) and saffron (Crocus sativus Linne). J Agric Food Chem 44:2612–2615. https://doi.org/10.1021/jf950713e

    Article  CAS  Google Scholar 

  143. Sugiura M, Shoyama Y, Saito H, Abe K (1994) Crocin (crocetin di-gentiobiose ester) prevents the inhibitory effect of ethanol on long-term potentiation in the dentate gyrus in vivo. J Pharmacol Exp Ther 271:703–707. ISSN: 0022-3565

    CAS  PubMed  Google Scholar 

  144. Zalacain A, Ordoudi SA, Díaz-Plaza EM et al (2005) Near-infrared spectroscopy in saffron quality control: determination of chemical composition and geographical origin. J Agric Food Chem 53:9337–9341. https://doi.org/10.1021/jf050846s

    Article  CAS  PubMed  Google Scholar 

  145. García-Rodríguez MV, López-Córcoles H, Alonso GL et al (2017) Comparative evaluation of an ISO 3632 method and an HPLC-DAD method for safranal quantity determination in saffron. Food Chem 221:838–843. https://doi.org/10.1016/j.foodchem.2016.11.089

    Article  CAS  PubMed  Google Scholar 

  146. D’Archivio AA, Giannitto A, Maggi MA, Ruggieri F (2016) Geographical classification of Italian saffron (Crocus sativus L.) based on chemical constituents determined by high-performance liquid-chromatography and by using linear discriminant analysis. Food Chem 212:110–116. https://doi.org/10.1016/j.foodchem.2016.05.149

    Article  CAS  PubMed  Google Scholar 

  147. Rodríguez-Neira L, Lage-Yusty MA, López-Hernández J (2014) Influence of culinary processing time on Saffron’s bioactive compounds (Crocus sativus L.). Plant Foods Hum Nutr 69:291–296. https://doi.org/10.1007/s11130-014-0447-4

    Article  CAS  PubMed  Google Scholar 

  148. Valle García-Rodríguez M, Serrano-Díaz J, Tarantilis PA et al (2014) Determination of saffron quality by high-performance liquid chromatography. J Agric Food Chem 62:8068–8074. https://doi.org/10.1021/jf5019356

    Article  CAS  PubMed  Google Scholar 

  149. Karimi E, Oskoueian E, Hendra R, Jaafar HZE (2010) Evaluation of Crocus sativus L. stigma phenolic and flavonoid compounds and its antioxidant activity. Molecules 15:6244–6256. https://doi.org/10.3390/molecules15096244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Martinez-Tome M, Jimenez AM, Ruggieri S et al (2001) Antioxidant properties of Mediterranean spices compared with common food additives. J Food Prot 64:1412–1419. ISSN: 0362-028X

    Article  CAS  PubMed  Google Scholar 

  151. NORBAK R, KONDO T (1999) Flavonol glycosides from flowers of Crocus speciosus and C. antalyensis. Phytochemistry 51:1113–1119. https://doi.org/10.1016/S0031-9422(99)00109-0

    Article  Google Scholar 

  152. Makhlouf H, Saksouk M, Habib J, Chahine R (2011) Determination of antioxidant activity of saffron taken from the flower of Crocus sativus grown in Lebanon. Afr J Biotechnol 10:8093–8100. ISSN: 1684-5315

    Article  Google Scholar 

  153. Asdaq SMB, Inamdar MN (2010) Potential of Crocus sativus (saffron) and its constituent, Crocin, as Hypolipidemic and antioxidant in rats. Appl Biochem Biotechnol 162:358–372. https://doi.org/10.1007/s12010-009-8740-7

    Article  CAS  PubMed  Google Scholar 

  154. Straubinger M, Jezussek M, Waibel R, Winterhalter P (1997) Two Kaempferol Sophorosides from Crocus Sativus. Nat Prod Lett 10:213–216. https://doi.org/10.1080/10575639708041197

    Article  CAS  Google Scholar 

  155. Forkmann G, Martens S (2001) Metabolic engineering and applications of flavonoids. Curr Opin Biotechnol 12:155–160. https://doi.org/10.1016/S0958-1669(00)00192-0

    Article  CAS  PubMed  Google Scholar 

  156. Harborne JB, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55:481–504. https://doi.org/10.1016/S0031-9422(00)00235-1

    Article  CAS  PubMed  Google Scholar 

  157. Hosseinzadeh H, Karimi G, Niapoor M (2004) Antidepressant effect of Crocus sativus L. stigma extracts and their constituents, crocin and safranal, in mice. Acta Hortic 650:435–445. https://doi.org/10.17660/ActaHortic.2004.650.54

    Article  CAS  Google Scholar 

  158. Bouhsain Z, Garrigues S, de la Guardia M (1997) PLS-UV spectrophotometric method for the simultaneous determination of paracetamol, acetylsalicylic acid and caffeine in pharmaceutical formulations. Fresenius J Anal Chem 357:973–976. https://doi.org/10.1007/s002160050284

    Article  CAS  Google Scholar 

  159. Espinosa-Mansilla A, Salinas F, Zamoro A (1994) Simultaneous determination of chlorpyrifos and carbaryl by differential degradation using diode-array spectrophotometry optimized by partial least squares. Analyst 119:1183. https://doi.org/10.1039/an9941901183

    Article  CAS  Google Scholar 

  160. de la Peña AM, Durán-Merás I, Moreno MD et al (1995) Resolution of ternary mixtures of salicylic, salicyluric and gentisic acids by partial least squares and principal component regression: optimization of the scanning path in the excitation-emission matrices. Fresenius J Anal Chem 351:571–576. ISSN: 0937-0633

    Article  Google Scholar 

  161. Berzas NJJ, Gomez LMA, Murillo PJA, Amador-Hernandez J (1998) Simultaneous fluorimetric determination of pyridoxal, pyridoxamine and pyridoxic acid by partial least squares using non-linear variable angle synchronous spectra. Analyst 123:483–488. ISSN: 0003-2654

    Article  Google Scholar 

  162. Haghighi B, Feizy J, Kakhki AH (2007) LC determination of adulterated saffron prepared by adding styles colored with some natural colorants. Chromatographia 66:325–332. https://doi.org/10.1365/s10337-007-0321-8

    Article  CAS  Google Scholar 

  163. Carmona M, Zalacaín A, Rodríguez MI et al (2003) Comparison of different extraction procedures and HPLC methods to detect crocins in saffron. I Int Symp Saffron Biol Biotechnol 650:303–306

    Google Scholar 

  164. Loskutov A, Beninger C, Hosfield G, Sink K (2000) Development of an improved procedure for extraction and quantitation of safranal in stigmas of Crocus sativus L. using high performance liquid chromatography. Food Chem 69:87–95. https://doi.org/10.1016/S0308-8146(99)00246-0

    Article  CAS  Google Scholar 

  165. Rambla FJ, Garrigues S, de la Guardia M (1997) PLS-NIR determination of total sugar, glucose, fructose and sucrose in aqueous solutions of fruit juices. Anal Chim Acta 344:41–53. https://doi.org/10.1016/S0003-2670(97)00032-9

    Article  CAS  Google Scholar 

  166. Verma RS, Middha D (2010) Analysis of saffron (Crocus sativus L. Stigma) components by LC–MS–MS. Chromatographia 71:117–123. https://doi.org/10.1365/s10337-009-1398-z

    Article  CAS  Google Scholar 

  167. Tarantilis PA, Beljebbar A, Manfait M, Polissiou M (1998) FT-IR, FT-Raman spectroscopic study of carotenoids from saffron (Crocus sativus L.) and some derivatives. Spectrochim Acta A Mol Biomol Spectrosc 54:651–657. https://doi.org/10.1016/S1386-1425(98)00024-9

    Article  Google Scholar 

  168. Anastasaki E, Kanakis C, Pappas C et al (2009) Geographical differentiation of saffron by GC–MS/FID and chemometrics. Eur Food Res Technol 229:899–905. https://doi.org/10.1007/s00217-009-1125-x

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serkan Selli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Amanpour, A., Kelebek, H., Selli, S. (2019). GLC/HPLC Methods for Saffron (Crocus sativus L.). In: Mérillon, JM., Ramawat, K.G. (eds) Bioactive Molecules in Food. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-78030-6_42

Download citation

Publish with us

Policies and ethics