Skip to main content

Silk-Based Hydrogels for Biomedical Applications

  • Reference work entry
  • First Online:
Cellulose-Based Superabsorbent Hydrogels

Abstract

Among the naturally occurring fibers, silk occupies a special position due to its properties. Silk fibroins, the unique proteins of silkworm fibers, are high-molecular-weight block copolymers consisting of a heavy (~370 kDa) and a light (~26 kDa) chain with varying amphiphilicity linked by a single disulphide bond. Bombyx mori silk is the most characterized silkworm silk. Researchers have investigated fibroin as one of the promising resources of biotechnology and biomedical materials due to its other unique properties including excellent biocompatibility, favorable oxygen permeability, and outstanding biodegradability, and the degradation product can be readily absorbed by the body with minimal inflammatory reaction. Silk hydrogels have been thoroughly studied for potential biotechnological applications due to their mechanical properties, biocompatibility, controllable degradation rates, and self-assembly into β-sheet networks. Hydrogels made from silk proteins have shown a potential in overcoming limitations of hydrogels prepared from conventional polymers. This chapter offers overview of the recent developments in silk protein-based hydrogels, both of fibroin and sericin proteins. It describes the approaches for obtaining silk hydrogels and ideas to improve the existing properties or to incorporate new features in the hydrogels by making composites. Characterization tools and modern bioapplications of the silk hydrogels for tissue engineering and controlled release are also reviewed. A special focus is given to silk fibroin composite hydrogels for bone tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stoppel WL, Raia N, Kimmerling E, Wang S, Ghezzi CE, Kaplan DL (2017) 2.12 Silk biomaterials. In: Ducheyne P, Healy K, Hutmacher DW, Grainger DW, Kirkpatrick CJ (eds) Comprehensive biomaterials II. Elsevier, Amsterdam, pp 253–278

    Chapter  Google Scholar 

  2. Naskar D, Barua RR, Ghosh AK, Kundu SC (2014) 1 – Introduction to silk biomaterials. In: Kundu SC (ed) Silk biomaterials for tissue engineering and regenerative medicine. Woodhead Publishing, Amsterdam, pp 3–40

    Chapter  Google Scholar 

  3. Kundu B, Rajkhowa R, Kundu SC, Wang X (2013) Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev 65(4):457–470. https://doi.org/10.1016/j.addr.2012.09.043

    Article  CAS  PubMed  Google Scholar 

  4. Huang Y, Bailey K, Wang S, Feng X (2017) Silk fibroin films for potential applications in controlled release. React Funct Polym 116(Suppl C):57–68. https://doi.org/10.1016/j.reactfunctpolym.2017.05.007

    Article  CAS  Google Scholar 

  5. Shimura K, Kikuchi A, Ohtomo K, Katagata Y, Hyodo A (1976) Studies on silk fibroin of Bombyx mori. I. Fractionation of fibroin prepared from the posterior silk gland. J Biochem 80(4):693–702

    Article  CAS  Google Scholar 

  6. Tanaka K, Inoue S, Mizuno S (1999) Hydrophobic interaction of P25, containing Asn-linked oligosaccharide chains, with the H-L complex of silk fibroin produced by Bombyx mori. Insect Biochem Mol Biol 29(3):269–276

    Article  CAS  Google Scholar 

  7. Sehnal F, Žurovec M (2004) Construction of silk fiber core in lepidoptera. Biomacromolecules 5(3):666–674. https://doi.org/10.1021/bm0344046

    Article  CAS  PubMed  Google Scholar 

  8. Koh L-D, Cheng Y, Teng C-P, Khin Y-W, Loh X-J, Tee S-Y, Low M, Ye E, Yu H-D, Zhang Y-W, Han M-Y (2015) Structures, mechanical properties and applications of silk fibroin materials. Prog Polym Sci 46(Suppl C):86–110. https://doi.org/10.1016/j.progpolymsci.2015.02.001

    Article  CAS  Google Scholar 

  9. Kapoor S, Kundu SC (2016) Silk protein-based hydrogels: promising advanced materials for biomedical applications. Acta Biomater 31:17–32. https://doi.org/10.1016/j.actbio.2015.11.034

    Article  CAS  PubMed  Google Scholar 

  10. Raia NR, Partlow BP, McGill M, Kimmerling EP, Ghezzi CE, Kaplan DL (2017) Enzymatically crosslinked silk-hyaluronic acid hydrogels. Biomaterials 131(Suppl C):58–67. https://doi.org/10.1016/j.biomaterials.2017.03.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Numata K (2014) 19 – Silk hydrogels for tissue engineering and dual-drug delivery. In: Kundu SC (ed) Silk biomaterials for tissue engineering and regenerative medicine. Woodhead Publishing, Amsterdam, pp 503–518

    Chapter  Google Scholar 

  12. Zhang C, Chen X, Shao Z (2016) Sol–gel transition of regenerated silk fibroins in ionic liquid/water mixtures. ACS Biomater Sci Eng 2(1):12–18. https://doi.org/10.1021/acsbiomaterials.5b00149

    Article  CAS  Google Scholar 

  13. Ming J, Jiang Z, Wang P, Bie S, Zuo B (2015) Silk fibroin/sodium alginate fibrous hydrogels regulated hydroxyapatite crystal growth. Mater Sci Eng C 51(Suppl C):287–293. https://doi.org/10.1016/j.msec.2015.03.014

    Article  CAS  Google Scholar 

  14. Wu J, Liu J, Shi Y, Wan Y (2016) Rheological, mechanical and degradable properties of injectable chitosan/silk fibroin/hydroxyapatite/glycerophosphate hydrogels. J Mech Behav Biomed Mater 64:161–172. https://doi.org/10.1016/j.jmbbm.2016.07.007

    Article  CAS  PubMed  Google Scholar 

  15. Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A (2015) Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 73(Suppl C):254–271. https://doi.org/10.1016/j.biomaterials.2015.08.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang J, Yang Q, Cheng N, Tao X, Zhang Z, Sun X, Zhang Q (2016) Collagen/silk fibroin composite scaffold incorporated with PLGA microsphere for cartilage repair. Mater Sci Eng C Mater Biol Appl 61(Suppl C):705–711. https://doi.org/10.1016/j.msec.2015.12.097

    Article  CAS  PubMed  Google Scholar 

  17. Joo Kim H, Kim H, Matsumoto A, Chin I-J, Jin H-J, Kaplan D (2005) Processing windows for forming silk fibroin biomaterials into a 3D porous matrix. Aust J Chem 58:716–720. https://doi.org/10.1071/CH05170

    Article  CAS  Google Scholar 

  18. Horan RL, Antle K, Collette AL, Wang Y, Huang J, Moreau JE, Volloch V, Kaplan DL, Altman GH (2005) In vitro degradation of silk fibroin. Biomaterials 26(17):3385–3393. https://doi.org/10.1016/j.biomaterials.2004.09.020

    Article  CAS  PubMed  Google Scholar 

  19. Yan L-P, Oliveira JM, Oliveira AL, Caridade SG, Mano JF, Reis RL (2012) Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications. Acta Biomater 8(1):289–301. https://doi.org/10.1016/j.actbio.2011.09.037

    Article  CAS  PubMed  Google Scholar 

  20. Bhumiratana S, Grayson WL, Castaneda A, Rockwood DN, Gil ES, Kaplan DL, Vunjak-Novakovic G (2011) Nucleation and growth of mineralized bone matrix on silk-hydroxyapatite composite scaffolds. Biomaterials 32(11):2812–2820. https://doi.org/10.1016/j.biomaterials.2010.12.058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hofmann S, Knecht S, Langer R, Kaplan DL, Vunjak-Novakovic G, Merkle HP, Meinel L (2006) Cartilage-like tissue engineering using silk scaffolds and mesenchymal stem cells. Tissue Eng 12(10):2729–2738. https://doi.org/10.1089/ten.2006.12.2729

    Article  CAS  PubMed  Google Scholar 

  22. Wang Y, Blasioli DJ, Kim H-J, Kim HS, Kaplan DL (2006) Cartilage tissue engineering with silk scaffolds and human articular chondrocytes. Biomaterials 27(25):4434–4442. https://doi.org/10.1016/j.biomaterials.2006.03.050

    Article  CAS  PubMed  Google Scholar 

  23. Mauney JR, Nguyen T, Gillen K, Kirker-Head C, Gimble JM, Kaplan DL (2007) Engineering adipose-like tissue in vitro and in vivo utilizing human bone marrow and adipose-derived mesenchymal stem cells with silk fibroin 3D scaffolds. Biomaterials 28(35):5280–5290. https://doi.org/10.1016/j.biomaterials.2007.08.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kang JH, Gimble JM, Kaplan DL (2009) In vitro 3D model for human vascularized adipose tissue. Tissue Eng Part A 15(8):2227–2236. https://doi.org/10.1089/ten.tea.2008.0469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lovett M, Eng G, Kluge JA, Cannizzaro C, Vunjak-Novakovic G, Kaplan DL (2010) Tubular silk scaffolds for small diameter vascular grafts. Organogenesis 6(4):217–224. https://doi.org/10.4161/org.6.4.13407

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chen J, Altman GH, Karageorgiou V, Horan R, Collette A, Volloch V, Colabro T, Kaplan DL (2003) Human bone marrow stromal cell and ligament fibroblast responses on RGD-modified silk fibers. J Biomed Mater Res A 67(2):559–570. https://doi.org/10.1002/jbm.a.10120

    Article  CAS  PubMed  Google Scholar 

  27. Correia C, Bhumiratana S, Yan L-P, Oliveira AL, Gimble JM, Rockwood D, Kaplan DL, Sousa RA, Reis RL, Vunjak-Novakovic G (2012) Development of silk-based scaffolds for tissue engineering of bone from human adipose-derived stem cells. Acta Biomater 8(7):2483–2492. https://doi.org/10.1016/j.actbio.2012.03.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ren Y-J, Zhou Z-Y, Liu B-F, Xu Q-Y, Cui F-Z (2009) Preparation and characterization of fibroin/hyaluronic acid composite scaffold. Int J Biol Macromol 44(4):372–378. https://doi.org/10.1016/j.ijbiomac.2009.02.004

    Article  CAS  PubMed  Google Scholar 

  29. Lun B, Jianmei X, Qilong S, Chuanxia D, Jiangchao S, Zhengyu W (2007) On the growth model of the capillaries in the porous silk fibroin films. J Mater Sci Mater Med 18(10): 1917–1921. https://doi.org/10.1007/s10856-007-3105-7

    Article  CAS  PubMed  Google Scholar 

  30. Lu Q, Hu K, Feng Q, Cui F (2009) Growth of fibroblast and vascular smooth muscle cells in fibroin/collagen scaffold. Mater Sci Eng C 29:2239–2245. https://doi.org/10.1016/j.msec.2009.05.014

    Article  CAS  Google Scholar 

  31. Lu Q, Zhang S, Hu K, Feng Q, Cao C, Cui F (2007) Cytocompatibility and blood compatibility of multifunctional fibroin/collagen/heparin scaffolds. Biomaterials 28(14):2306–2313. https://doi.org/10.1016/j.biomaterials.2007.01.031

    Article  CAS  PubMed  Google Scholar 

  32. Lv Q, Hu K, Feng Q, Cui F, Cao C (2007) Preparation and characterization of PLA/fibroin composite and culture of HepG2 (human hepatocellular liver carcinoma cell line) cells. Compos Sci Technol 67(14):3023–3030. https://doi.org/10.1016/j.compscitech.2007.05.003

    Article  CAS  Google Scholar 

  33. Hu K, Lv Q, Cui FZ, Feng QL, Kong XD, Wang HL, Huang LY, Li T (2006) Biocompatible fibroin blended films with recombinant human-like collagen for hepatic tissue engineering. J Bioact Compat Polym 21(1):23–37. https://doi.org/10.1177/0883911506060455

    Article  CAS  Google Scholar 

  34. Vasconcelos A, Freddi G, Cavaco-Paulo A (2008) Biodegradable materials based on silk fibroin and keratin. Biomacromolecules 9(4):1299–1305. https://doi.org/10.1021/bm7012789

    Article  CAS  PubMed  Google Scholar 

  35. Kweon H, Ha HC, Um IC, Park YH (2001) Physical properties of silk fibroin/chitosan blend films. J Appl Polym Sci 80(7):928–934. https://doi.org/10.1002/app.1172

    Article  CAS  Google Scholar 

  36. Foss C, Merzari E, Migliaresi C, Motta A (2013) Silk fibroin/hyaluronic acid 3D matrices for cartilage tissue engineering. Biomacromolecules 14(1):38–47. https://doi.org/10.1021/bm301174x

    Article  CAS  PubMed  Google Scholar 

  37. Whitesides GM, Wong AP (2006) The intersection of biology and materials science. MRS Bull 31(1):19–27. https://doi.org/10.1557/mrs2006.2

    Article  CAS  Google Scholar 

  38. Zaharia C, Tudora M-R, Stancu I-C, Galateanu B, Lungu A, Cincu C (2012) Characterization and deposition behavior of silk hydrogels soaked in simulated body fluid. Mater Sci Eng C 32(4):945–952. https://doi.org/10.1016/j.msec.2012.02.018

    Article  CAS  Google Scholar 

  39. Wu S, Liu X, Yeung KWK, Liu C, Yang X (2014) Biomimetic porous scaffolds for bone tissue engineering. Mater Sci Eng R 80(Suppl C):1–36. https://doi.org/10.1016/j.mser.2014.04.001

    Article  Google Scholar 

  40. Miyamoto S, Koyanagi R, Nakazawa Y, Nagano A, Abiko Y, Inada M, Miyaura C, Asakura T (2013) Bombyx mori silk fibroin scaffolds for bone regeneration studied by bone differentiation experiment. J Biosci Bioeng 115(5):575–578. https://doi.org/10.1016/j.jbiosc.2012.11.021

    Article  CAS  PubMed  Google Scholar 

  41. Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32(8):762–798. https://doi.org/10.1016/j.progpolymsci.2007.05.017

    Article  CAS  Google Scholar 

  42. Li M, Li J (2014) 12 – Biodegradation behavior of silk biomaterials. In: Kundu SC (ed) Silk biomaterials for tissue engineering and regenerative medicine. Woodhead Publishing, Amsterdam, pp 330–348

    Chapter  Google Scholar 

  43. Wintterlin J, Bocquet M-L (2009) Graphene on metal surfaces. Surf Sci 603(10):1841–1852. https://doi.org/10.1016/j.susc.2008.08.037

    Article  CAS  Google Scholar 

  44. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191. https://doi.org/10.1038/nmat1849

    Article  CAS  PubMed  Google Scholar 

  45. Steurer P, Wissert R, Thomann R, Mülhaupt R (2009) Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide. Macromol Rapid Commun 30(4–5):316–327. https://doi.org/10.1002/marc.200800754

    Article  CAS  PubMed  Google Scholar 

  46. Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S (2011) Graphene based materials: past, present and future. Prog Mater Sci 56(8):1178–1271. https://doi.org/10.1016/j.pmatsci.2011.03.003

    Article  CAS  Google Scholar 

  47. Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S (2007) The structure of suspended graphene sheets. Nature 446:60–63

    Article  CAS  Google Scholar 

  48. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6): 1339–1339. https://doi.org/10.1021/ja01539a017

    Article  CAS  Google Scholar 

  49. Kim HH, Song DW, Kim MJ, Ryu SJ, Um IC, Ki CS, Park YH (2016) Effect of silk fibroin molecular weight on physical property of silk hydrogel. Polymer 90(Suppl C):26–33. https://doi.org/10.1016/j.polymer.2016.02.054

    Article  CAS  Google Scholar 

  50. Brown J, Lu C-L, Coburn J, Kaplan DL (2015) Impact of silk biomaterial structure on proteolysis. Acta Biomater 11(Suppl C):212–221. https://doi.org/10.1016/j.actbio.2014.09.013

    Article  CAS  PubMed  Google Scholar 

  51. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27(15):2907–2915. https://doi.org/10.1016/j.biomaterials.2006.01.017

    Article  CAS  PubMed  Google Scholar 

  52. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27(18): 3413–3431. https://doi.org/10.1016/j.biomaterials.2006.01.039

    Article  CAS  PubMed  Google Scholar 

  53. Taguchi T, Kishida A, Akashi M (1999) Apatite formation on/in hydrogel matrices using an alternate soaking process: II. Effect of swelling ratios of poly(vinyl alcohol) hydrogel matrices on apatite formation. J Biomater Sci Polym Ed 10(3):331–339

    Article  CAS  Google Scholar 

  54. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63

    Article  CAS  Google Scholar 

  55. Legrand C, Bour JM, Jacob C, Capiaumont J, Martial A, Marc A, Wudtke M, Kretzmer G, Demangel C, Duval D (1992) Lactate dehydrogenase (LDH) activity of the cultured eukaryotic cells as marker of the number of dead cells in the medium [corrected]. J Biotechnol 25(3): 231–243

    Article  CAS  Google Scholar 

  56. Xu S, Yong L, Wu P (2013) One-pot, green, rapid synthesis of flowerlike gold nanoparticles/reduced graphene oxide composite with regenerated silk fibroin as efficient oxygen reduction electrocatalysts. ACS Appl Mater Interfaces 5(3):654–662. https://doi.org/10.1021/am302076x

    Article  CAS  PubMed  Google Scholar 

  57. An J, Gou Y, Yang C, Hu F, Wang C (2013) Synthesis of a biocompatible gelatin functionalized graphene nanosheets and its application for drug delivery. Mater Sci Eng C 33(5):2827–2837. https://doi.org/10.1016/j.msec.2013.03.008

    Article  CAS  Google Scholar 

  58. Huang L, Li C, Yuan W, Shi G (2013) Strong composite films with layered structures prepared by casting silk fibroin-graphene oxide hydrogels. Nanoscale 5(9):3780–3786. https://doi.org/10.1039/c3nr00196b

    Article  CAS  PubMed  Google Scholar 

  59. Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9(1):30–35. https://doi.org/10.1021/nl801827v

    Article  CAS  PubMed  Google Scholar 

  60. Ma X, Li Y, Wang W, Ji Q, Xia Y (2013) Temperature-sensitive poly(N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels by in situ polymerization with improved swelling capability and mechanical behavior. Eur Polym J 49(2):389–396. https://doi.org/10.1016/j.eurpolymj.2012.10.034

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marieta Costache .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Galateanu, B. et al. (2019). Silk-Based Hydrogels for Biomedical Applications. In: Mondal, M. (eds) Cellulose-Based Superabsorbent Hydrogels. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-77830-3_59

Download citation

Publish with us

Policies and ethics