Skip to main content

Effects of Cyanobacterial Secondary Metabolites on Phytoplankton Community Succession

  • Living reference work entry
  • First Online:

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Allelopathic effects are one of the factors potentially influencing the succession of phytoplankton communities; however, their influence has often been neglected. This is especially true for cyanobacteria that often outcompete other phytoplankton species and form blooms causing severe problems. Allelopathic effects of cyanobacteria can play an important role for phytoplankton succession. In this chapter, we introduce the different ways how aquatic organisms are influenced by cyanobacterial allelochemicals; the mechanisms of their interaction from the aspects of chemical intermediates, target reaction, and target signals; and interfering factors and the ecological consequences of this process.

Cyanobacteria produce and excrete a variety of allelopathic compounds that affect other Cyanophyta, eukaryotic algae, bacteria, zooplankton, higher plants, and fish and mammalian cells. These effects are regulated by various abiotic and biotic conditions, such as nutrient availability, temperature, and light intensity but also cell density and growth phase of the source cyanobacterial community. The bioactive metabolites include cyclic peptides, alkaloids, terpenoids, and others which can have a variety of inhibitory effects on the different target organisms. Ecological consequences such as declines in biodiversity and accumulation of toxins in the food chain have been shown. However, most of these compounds have not yet been fully tested regarding their full range of effects on natural phytoplankton communities. A detailed elucidation of the influence of cyanobacterial allelochemicals is of key importance for understanding and managing the succession of natural phytoplankton communities.

This is a preview of subscription content, log in via an institution.

References

  1. Sommer U, Adrian R, De Senerpont Domis L, Elser JJ, Gaedke U, Ibelings B, Jeppesen E, Lürling M, Molinero JC, Mooij WM, van Donk E, Winder M (2012) Beyond the plankton ecology group (PEG) model: mechanisms driving plankton succession. Annu Rev Ecol Evol Syst 43:429–448

    Article  Google Scholar 

  2. Keating KI (1977) Allelopathic influence on blue-green bloom sequence in a eutrophic lake. Science 196:885–887

    Article  CAS  PubMed  Google Scholar 

  3. Keating KI (1978) Blue-green algal inhibition of diatom growth transition from mesotrophic to eutrophic community structure. Science 199:971–973

    Article  CAS  PubMed  Google Scholar 

  4. Molisch H (1938) Der Einfluss einer Pflanze auf die Andere, Allelopathie. Nature 141:493

    Article  Google Scholar 

  5. Rice EL (1984) Allelopathy, 2nd edn. Academic, San Diego

    Google Scholar 

  6. Whittaker RH, Feeny PP (1971) Allelochemics: chemical interactions between species. Science 171:757–770

    Article  CAS  PubMed  Google Scholar 

  7. Anaya AL (1999) Allelopathy as a tool in the management of biotic resources in agroecosystems. Crit Rev Plant Sci 18:697–739

    Article  CAS  Google Scholar 

  8. Bagnères A-G, Hossaert-Mckey M (2016) Chemical ecology. Wiley-ISTE, Hoboken/London

    Book  Google Scholar 

  9. Gross EM (2003) Allelopathy of aquatic autotrophs. Crit Rev Plant Sci 22:313–339

    Article  Google Scholar 

  10. Harke MJ, Steffen MM, Gobler CJ, Otten TG, Wilhelm SW, Wood SA, Paerl HW (2016) A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae 54:4–20

    Article  PubMed  Google Scholar 

  11. Chorus I (2001) Cyanotoxins: occurrence, causes, consequences. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  12. Jochimsen EM, Carmichael WW, An JS, Cardo DM, Cookson ST, Holmes CE, Antunes MB, Da DMF, Lyra TM, Barreto VS (1998) Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil. N Engl J Med 338:873–880

    Article  CAS  PubMed  Google Scholar 

  13. Paerl HW, Fulton RS, Moisander PH, Dyble J (2001) Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Sci World J 1:76

    Article  CAS  Google Scholar 

  14. O’Neil JM, Davis TW, Burford MA, Gobler CJ (2012) The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14:313–334

    Article  CAS  Google Scholar 

  15. Aubriot L, Bonilla S (2018) Regulation of phosphate uptake reveals cyanobacterial bloom resilience to shifting N:P ratios. Freshw Biol 63:318–329

    Article  CAS  Google Scholar 

  16. Berry JP, Gantar M, Perez MH, Berry G, Noriega FG (2008) Cyanobacterial toxins as allelochemicals with potential applications as algaecides, herbicides and insecticides. Mar Drugs 6:117–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shimizu Y (1996) Microalgal metabolites: a new perspective. Annu Rev Microbiol 50:431–465

    Article  CAS  PubMed  Google Scholar 

  18. Żak A, Kosakowska A (2016) Cyanobacterial and microalgal bioactive compounds – the role of secondary metabolites in allelopathic interactions. Oceanol Hydrobiol Stud 45:131

    Article  CAS  Google Scholar 

  19. Tidgewell K, Clark BR, Gerwick WH (2010) 2.06 – The natural products chemistry of cyanobacteria. In: Liu H-W, Mander L (eds) Comprehensive natural products II. Elsevier, Oxford

    Google Scholar 

  20. Gantar M, Berry JP, Thomas S, Wang M, Perez R, Rein KS (2008) Allelopathic activity among Cyanobacteria and microalgae isolated from Florida freshwater habitats. FEMS Microbiol Ecol 64:55–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Suikkanen S, Fistarol G, Granéli E (2005) Effect of cyanobacterial allelochemicals on a natural plankton community. Mar Ecol Prog Ser 287:1–9

    Article  Google Scholar 

  22. Figueredo CC, Giani A, Bird DF (2007) Does allelopathy contribute to cylindrospermopsis raciborskii (cyanobacteria) bloom occurrence and geographic expansion? J Phycol 43:256–265

    Article  Google Scholar 

  23. Leão PN, Vasconcelos MTSD, Vasconcelos VM (2009) Allelopathy in freshwater cyanobacteria. Crit Rev Microbiol 35:271–282

    Article  PubMed  CAS  Google Scholar 

  24. do Bittencourt-Oliveira MC, Chia MA, de Oliveira HSB, Cordeiro Araújo MK, Molica RJR, Dias CTS (2014) Allelopathic interactions between microcystin-producing and non-microcystin-producing cyanobacteria and green microalgae: implications for microcystins production. J Appl Phycol 27:275–284

    Article  CAS  Google Scholar 

  25. Sumper M, Brunner E (2006) Learning from diatoms: nature’s tools for the production of nanostructured silica. Adv Funct Mater 16:17–26

    Article  CAS  Google Scholar 

  26. Armbrust EV (2009) The life of diatoms in the world’s oceans. Nature 459:185–185

    Article  CAS  PubMed  Google Scholar 

  27. Schagerl M, Unterrieder I, Angeler DG (2002) Allelopathy among Cyanoprokaryota and other algae originating from Lake Neusiedlersee (Austria). Int Rev Hydrobiol 87:365–374

    Article  Google Scholar 

  28. Wang LC, Zi JM, Xu RB, Hilt S, Hou XL, Chang XX (2017) Allelopathic effects of Microcystis aeruginosa on green algae and a diatom: evidence from exudates addition and co-culturing. Harmful Algae 61:56–62

    Article  Google Scholar 

  29. Suikkanen S, Fistarol GO, Granéli E (2004) Allelopathic effects of the Baltic cyanobacteria Nodularia spumdigena, Aphanizomenon flos-aquae and Anabaena lemmermannii on algal monocultures. J Exp Mar Biol Ecol 308:85–101

    Article  Google Scholar 

  30. Suikkanen S, Engström-Öst J, Jokela J, Sivonen K, Viitasalo M (2006) Allelopathy of Baltic Sea cyanobacteria: no evidence for the role of nodularin. J Plankton Res 28:543–550

    Article  CAS  Google Scholar 

  31. B-Béres V, Grigorszky I, Vasas G, Borics G, Várbíró G, Nagy SA, Borbély G, Bácsi I (2012) The effects of Microcystis aeruginosa (cyanobacterium) on Cryptomonas ovata (Cryptophyta) in laboratory cultures: why these organisms do not coexist in steady-state assemblages? Hydrobiologia 691:97–107

    Article  CAS  Google Scholar 

  32. Flores E, Wolk CP (1986) Production, by filamentous, nitrogen-fixing cyanobacteria, of a bacteriocin and of other antibiotics that kill related strains. Arch Microbiol 145:215–219

    Article  CAS  PubMed  Google Scholar 

  33. Bártová K, Hilscherová K, Babica P, Maršálek B (2011) Extract of Microcystis water bloom affects cellular differentiation in filamentous cyanobacterium Trichormus variabilis (Nostocales, Cyanobacteria). J Appl Phycol 23:967–973

    Article  Google Scholar 

  34. Von Elert E, Jüttner F (1996) Factors influencing the allelopathic activity of the planktonic cyanobacterium Trichormus doliolum. Phycologia 35:68–73

    Article  Google Scholar 

  35. Dodds WK, Gudder DA, Mollenhauer D (1995) The ecology of nostoc. J Phycol 31:2–18

    Article  CAS  Google Scholar 

  36. Leao PN, Pereira AR, Liu WT, Ng J, Pevzner PA, Dorrestein PC, Konig GM, Vasconcelos VM, Gerwick WH (2010) Synergistic allelochemicals from a freshwater cyanobacterium. Proc Natl Acad Sci U S A 107:11183–11188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bishop CT, Anet EF, Gorham PR (1959) Isolation and identification of the fast-death factor in Microcystis aeruginosa NRC-1. Can J Biochem Physiol 37:453–453

    Article  CAS  PubMed  Google Scholar 

  38. WHO (2003) Cyanobacterial toxins: Microcystin-LR in drinking-water. In: World Health Organization (ed) Background document for preparation of WHO Guidelines for drinking-water quality. World Health Organization, Geneva

    Google Scholar 

  39. Bratbak G, Thingstad T (1985) Phytoplankton-bacteria interactions: an apparent paradox? Analysis of a model system with both competition and commensalism. Mar Ecol Prog Ser 25:23–30

    Article  Google Scholar 

  40. Fish SA, Codd GA (1994) Bioactive compound production by thermophilic and thermotolerant cyanobacteria (blue-green algae). World J Microbiol Biotechnol 10:338–341

    Article  CAS  PubMed  Google Scholar 

  41. Berry JP, Gantar M, Gawley RE, Wang M, Rein KS (2004) Pharmacology and toxicology of pahayokolide A, a bioactive metabolite from a freshwater species of Lyngbya isolated from the Florida Everglades. Comp Biochem Physiol Part C: Toxicol Pharmacol 139:231–238

    Google Scholar 

  42. Volk R-B, Furkert FH (2006) Antialgal, antibacterial and antifungal activity of two metabolites produced and excreted by cyanobacteria during growth. Microbiol Res 161:180–186

    Article  CAS  PubMed  Google Scholar 

  43. Dias F, Antunes JT, Ribeiro T, Azevedo J, Vasconcelos V, Leão PN (2017) Cyanobacterial allelochemicals but not cyanobacterial cells markedly reduce microbial community diversity. Front Microbiol 8:1495

    Article  PubMed  PubMed Central  Google Scholar 

  44. Scheffer M, Hosper SH, Meijer ML, Moss B, Jeppesen E (1993) Alternative equilibria in shallow lakes. Trends Ecol Evol 8:275–279

    Article  CAS  PubMed  Google Scholar 

  45. Hilt S, Gross EM (2008) Can allelopathically active submerged macrophytes stabilise clear-water states in shallow lakes? Basic Appl Ecol 9:422–432

    Article  Google Scholar 

  46. Hilt S (2015) Regime shifts between macrophytes and phytoplankton–concepts beyond shallow lakes, unravelling stabilizing mechanisms and practical consequences. Limnetica 34:467–480

    Google Scholar 

  47. Mohamed ZA (2017) Macrophytes-cyanobacteria allelopathic interactions and their implications for water resources management – a review. Limnologica 63:122–132

    Article  CAS  Google Scholar 

  48. Zheng GL, Xu RB, Chang XX, Hilt S, Wu C (2013) Cyanobacteria can allelopathically inhibit submerged macrophytes: effects of Microcystis aeruginosa extracts and exudates on Potamogeton malaianus. Aquat Bot 109:1–7

    Article  CAS  Google Scholar 

  49. Xu RB, Wu F, Hilt S, Wu C, Wang XL, Chang XX (2015) Recovery limitation of endangered Ottelia acuminata by allelopathic interaction with cyanobacteria. Aquat Ecol 49:333–342

    Article  CAS  Google Scholar 

  50. Chislock MF, Sarnelle O, Jernigan LM, Wilson AE (2013) Do high concentrations of microcystin prevent Daphnia control of phytoplankton? Water Res 47:1961–1970

    Article  CAS  PubMed  Google Scholar 

  51. Leitão E, Ger KA, Panosso R (2018) Selective grazing by a tropical copepod (Notodiaptomus iheringi) facilitates Microcystis dominance. Front Microbiol 9:301

    Article  PubMed  PubMed Central  Google Scholar 

  52. Scotti T, Mimura M, Wakano JY (2015) Avoiding toxic prey may promote harmful algal blooms. Ecol Complex 21:157–165

    Article  Google Scholar 

  53. Jungmann D (1995) Isolation, purification, and characterization of new Daphnia-toxic compound from axenic Microcystis flos-aquae strain PCC7806. J Chem Ecol 21:1665–1676

    Article  CAS  PubMed  Google Scholar 

  54. Rohrlack T, Christoffersen K, Hansen PE, Zhang W, Czarnecki O, Henning M, Fastner J, Erhard M, Neilan BA, Kaebernick M (2003) Isolation, characterization, and quantitative analysis of microviridin J, a new Microcystis metabolite toxic to Daphnia. J Chem Ecol 29:1757–1770

    Article  CAS  PubMed  Google Scholar 

  55. Wiegand C, Peuthert A, Pflugmacher S, Carmeli S (2002) Effects of microcin SF608 and microcystin-LR, two cyanotobacterial compounds produced by Microcystis sp., on aquatic organisms. Environ Toxicol 17:400–406

    Article  CAS  PubMed  Google Scholar 

  56. Gustafsson S, Hansson L-A (2004) Development of tolerance against toxic cyanobacteria in Daphnia. Aquat Ecol 38:37–44

    Article  Google Scholar 

  57. Smutná M, Priebojová J, Večerková J, Hilscherová K (2017) Retinoid-like compounds produced by phytoplankton affect embryonic development of Xenopus laevis. Ecotoxicol Environ Saf 138:32–38

    Article  PubMed  CAS  Google Scholar 

  58. Zi J, Pan X, MacIsaac HJ, Yang J, Xu R, Chen S, Chang X (2018) Cyanobacteria blooms induce embryonic heart failure in an endangered fish species. Aquat Toxicol 194:78–85

    Article  CAS  PubMed  Google Scholar 

  59. El-Sheekh MM, Dawah AM, Abd El-Rahman AM, El-Adel HM, Abd El-Hay RA (2008) Antimicrobial activity of the cyanobacteria Anabaena wisconsinense and Oscillatoria curviceps against pathogens of fish in aquaculture. Ann Microbiol 58:527–534

    Article  Google Scholar 

  60. Jonas A, Buranova V, Scholz S, Fetter E, Novakova K, Kohoutek J, Hilscherova K (2014) Retinoid-like activity and teratogenic effects of cyanobacterial exudates. Aquat Toxicol 155:283–290

    Article  CAS  PubMed  Google Scholar 

  61. Jonas A, Scholz S, Fetter E, Sychrova E, Novakova K, Ortmann J, Benisek M, Adamovsky O, Giesy JP, Hilscherova K (2015) Endocrine, teratogenic and neurotoxic effects of cyanobacteria detected by cellular in vitro and zebrafish embryos assays. Chemosphere 120:321–327

    Article  CAS  PubMed  Google Scholar 

  62. Zagatto PA, Buratini S, Aragão MA, Ferrão-Filho AS (2012) Neurotoxicity of two Cylindrospermopsis raciborskii (cyanobacteria) strains to mice, Daphnia, and fish. Environ Toxicol Chem 31:857–862

    Article  CAS  PubMed  Google Scholar 

  63. Otten TG, Paerl HW (2015) Health effects of toxic cyanobacteria in U.S. drinking and recreational waters: our current understanding and proposed direction. Curr Environ Health Rep 2:75–84

    Article  CAS  PubMed  Google Scholar 

  64. Carmichael WW (1992) Cyanobacteria secondary metabolites – the cyanotoxins. J Appl Bacteriol 72:445–459

    Article  CAS  PubMed  Google Scholar 

  65. Pearson L, Mihali T, Moffitt M, Kellmann R, Neilan B (2010) On the chemistry, toxicology and genetics of the cyanobacterial toxins, microcystin, nodularin, saxitoxin and cylindrospermopsin. Mar Drugs 8:1650–1680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Babica P, Bláha L, Maršálek B (2006) Exploring the natural role of microcystins – a review of effects on photoautotrophic organisms. J Phycol 42:9–20

    Article  Google Scholar 

  67. Leflaive JP, Ten-Hage L (2007) Algal and cyanobacterial secondary metabolites in freshwaters: a comparison of allelopathic compounds and toxins. Freshw Biol 52:199–214

    Article  CAS  Google Scholar 

  68. Li Y, Li D (2012) Competition between toxic Microcystis aeruginosa and nontoxic Microcystis wesenbergii with Anabaena PCC7120. J Appl Phycol 24:69–78

    Article  CAS  Google Scholar 

  69. Mazmouz R, Chapuis-Hugon F, Pichon V, Méjean A, Ploux O (2011) The last step of the biosynthesis of the cyanotoxins cylindrospermopsin and 7-epi-cylindrospermopsin is catalysed by CyrI, a 2-Oxoglutarate-dependent iron oxygenase. Chembiochem 12:858–862

    Article  CAS  PubMed  Google Scholar 

  70. Burford MA, Beardall J, Willis A, Orr PT, Magalhaes VF, Rangel LM, Azevedo SMFOE, Neilan BA (2016) Understanding the winning strategies used by the bloom-forming cyanobacterium Cylindrospermopsis raciborskii. Harmful Algae 54:44–53

    Article  PubMed  Google Scholar 

  71. Preussel K, Wessel G, Fastner J, Chorus I (2009) Response of cylindrospermopsin production and release in Aphanizomenon flos-aquae (Cyanobacteria) to varying light and temperature conditions. Harmful Algae 8:645–650

    Article  CAS  Google Scholar 

  72. Rzymski P, Poniedziałek B, Kokociński M, Jurczak T, Lipski D, Wiktorowicz K (2014) Interspecific allelopathy in cyanobacteria: Cylindrospermopsin and Cylindrospermopsis raciborskii effect on the growth and metabolism of Microcystis aeruginosa. Harmful Algae 35:1–8

    Article  CAS  Google Scholar 

  73. Sant’Anna CL, de Carvalho LR, Fiore MF, Silva-Stenico ME, Lorenzi AS, Rios FR, Konno K, Garcia C, Lagos N (2011) Highly toxic Microcystis aeruginosa strain, isolated from São Paulo – Brazil, produce hepatotoxins and paralytic shellfish poison neurotoxins. Neurotox Res 19:389–402

    Article  PubMed  CAS  Google Scholar 

  74. Legrand C, Rengefkors K, Fistarol G, Granéli E (2003) Allelopathy in phytoplankton – biochemical, ecological and evolutionary aspects. Phycologia 42:406–419

    Article  Google Scholar 

  75. Matsuura HN, Fett-Neto AG (2017) Plant alkaloids: main features, toxicity, and mechanisms of action. In: Carlini CR, Ligabue-Braun R (eds) Plant toxins. Springer Netherlands, Dordrecht

    Google Scholar 

  76. Wink M, Twardowski T (1992) Allelochemical properties of alkaloids. Effects on plants, bacteria and protein biosynthesis. In: Rizvi SJH, Rizvi V (eds) Allelopathy: basic and applied aspects. Springer Netherlands, Dordrecht

    Google Scholar 

  77. Pattanaik B, Lindberg P (2015) Terpenoids and their biosynthesis in cyanobacteria. Life 5:269–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shao J, Peng L, Luo S, Yu G, Gu J-d, Lin S, Li R (2013) First report on the allelopathic effect of Tychonema bourrellyi (Cyanobacteria) against Microcystis aeruginosa (Cyanobacteria). J Appl Phycol 25:1567–1573

    Article  Google Scholar 

  79. Volk R-B (2005) Screening of microalgal culture media for the presence of algicidal compounds and isolation and identification of two bioactive metabolites, excreted by the cyanobacteria Nostoc insulare and Nodularia harveyana. J Appl Phycol 17:339–347

    Article  CAS  Google Scholar 

  80. Gromov BV, Vepritskiy AA, Titova NN, Mamkayeva KA, Alexandrova OV (1991) Production of the antibiotic cyanobacterin LU-1 by Nostoc linckia CALU 892 (cyanobacterium). J Appl Phycol 3:55–59

    Article  CAS  Google Scholar 

  81. Song H, Lavoie M, Fan XJ, Tan HN, Liu GF, Xu PF, Fu ZW, Paerl HW, Qian HF (2017) Allelopathic interactions of linoleic acid and nitric oxide increase the competitive ability of Microcystis aeruginosa. ISME J 11:1865–1876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jaja-Chimedza A, Gantar M, Mayer GD, Gibbs PDL, Berry JP (2012) Effects of cyanobacterial lipopolysaccharides from microcystis on glutathione-based detoxification pathways in the zebrafish (Danio rerio) embryo. Toxins 4:390–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jaja-Chimedza A, Saez C, Sanchez K, Gantar M, Berry JP (2015) Identification of teratogenic polymethoxy-1-alkenes from Cylindrospermopsis raciborskii, and taxonomically diverse freshwater cyanobacteria and green algae. Harmful Algae 49:156–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gross EM, Wolk CP, Jüttner F (1991) Fischerellin, a new allelochemical from the freshwater cyanobacterium Fischerella muscicola. J Phycol 27:686–692

    Article  CAS  Google Scholar 

  85. Ishida K, Murakami M (2000) Kasumigamide, an antialgal peptide from the cyanobacterium Microcystis aeruginosa. J Org Chem 65:5898–5900

    Article  CAS  PubMed  Google Scholar 

  86. An T, Kumar TKS, Wang M, Liu L, Lay JO Jr, Liyanage R, Berry J, Gantar M, Marks V, Gawley RE, Rein KS (2007) Structures of pahayokolides A and B, cyclic peptides from a Lyngbya sp. J Nat Prod 70:730–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Vestola J, Shishido TK, Jokela J, Fewer DP, Aitio O, Permi P, Wahlsten M, Wang H, Rouhiainen L, Sivonen K (2014) Hassallidins, antifungal glycolipopeptides, are widespread among cyanobacteria and are the end-product of a nonribosomal pathway. Proc Natl Acad Sci 111:E1909–E1917

    Article  CAS  PubMed  Google Scholar 

  88. Adiv S, Ahronov-Nadborny R, Carmeli S (2012) New aeruginazoles, a group of thiazole-containing cyclic peptides from Microcystis aeruginosa blooms. Tetrahedron 68:1376–1383

    Article  CAS  Google Scholar 

  89. Leikoski N, Fewer DP, Jokela J, Alakoski P, Wahlsten M, Sivonen K (2012) Analysis of an inactive cyanobactin biosynthetic gene cluster leads to discovery of new natural products from strains of the genus Microcystis. PLoS One 7:e43002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Banker R, Carmeli S (1999) Inhibitors of serine proteases from a waterbloom of the cyanobacterium Microcystis sp. Tetrahedron 55:10835–10844

    Article  CAS  Google Scholar 

  91. Jüttner F, Todorova AK, Walch N, von Philipsborn W (2001) Nostocyclamide M: a cyanobacterial cyclic peptide with allelopathic activity from Nostoc 31. Phytochemistry 57:613–619

    Article  PubMed  Google Scholar 

  92. Portmann C, Blom JF, Gademann K, Jüttner F (2008) Aerucyclamides A and B: isolation and synthesis of toxic ribosomal heterocyclic peptides from the cyanobacterium Microcystis aeruginosa PCC 7806. J Nat Prod 71:1193–1196

    Article  CAS  PubMed  Google Scholar 

  93. Pérez Gutiérrez RM, Martínez Flores A, Vargas Solís R, Carmona Jimenez J (2008) Two new antibacterial norabietane diterpenoids from cyanobacteria, Microcoleous lacustris. J Nat Med 62:328–331

    Article  PubMed  CAS  Google Scholar 

  94. Höckelmann C, Becher PG, von Reuss SH, Jüttner F (2009) Sesquiterpenes of the geosmin-producing cyanobacterium Calothrix PCC 7507 and their toxicity to invertebrates. Zeitschrift fur Naturforschung. C. J Biosci 64:49–55

    Google Scholar 

  95. Zhang K, Lin TF, Zhang T, Li C, Gao N (2013) Characterization of typical taste and odor compounds formed by Microcystis aeruginosa. J Environ Sci 25:1539–1548

    Article  CAS  Google Scholar 

  96. Walsh K, Jones GJ, Dunstan RH (1998) Effect of high irradiance and iron on volatile odour compounds in the cyanobacterium Microcystis aeruginosa. Phytochemistry 49:1227–1239

    Article  CAS  PubMed  Google Scholar 

  97. Beresovsky D, Hadas O, Livne A, Sukenik A, Kaplan A, Carmeli S (2006) Toxins and biologically active secondary metabolites of Microcystis sp. isolated from Lake Kinneret. Isr J Chem 46:79–87

    Article  CAS  Google Scholar 

  98. Jaja-Chimedza A, Sanchez K, Gantar M, Gibbs P, Schmale M, Berry JP (2017) Carotenoid glycosides from cyanobacteria are teratogenic in the zebrafish (Danio rerio) embryo model. Chemosphere 174:478–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Micallef ML, Sharma D, Bunn BM, Gerwick L, Viswanathan R, Moffitt MC (2014) Comparative analysis of hapalindole, ambiguine and welwitindolinone gene clusters and reconstitution of indole-isonitrile biosynthesis from cyanobacteria. BMC Microbiol 14:213–213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Volk R-B, Mundt S (2007) Cytotoxic and non-cytotoxic exometabolites of the cyanobacterium Nostoc insulare. J Appl Phycol 19:55–62

    Article  CAS  Google Scholar 

  101. Volk R-B (2007) Studies on culture age versus exometabolite production in batch cultures of the cyanobacterium Nostoc insulare. J Appl Phycol 19:491–495

    Article  CAS  Google Scholar 

  102. Hirata K, Yoshitomi S, Dwi S, Iwabe O, Mahakhant A, Polchai J, Miyamoto K (2003) Bioactivities of nostocine a produced by a freshwater cyanobacterium Nostoc spongiaeforme TISTR 8169. J Biosci Bioeng 95:512–517

    Article  CAS  PubMed  Google Scholar 

  103. Doan NT, Rickards RW, Rothschild JM, Smith GD, Doan NT, Rickards RW, Rothschild JM, Smith GD (2000) Allelopathic actions of the alkaloid 12-epi-hapalindole E isonitrile and calothrixin A from cyanobacteria of the genera Fischerella and Calothrix. J Appl Phycol 12:409–416

    Article  CAS  Google Scholar 

  104. Rickards RW, Rothschild JM, Willis AC, de Chazal NM, Kirk J, Kirk K, Saliba KJ, Smith GD (1999) Calothrixins A and B, novel pentacyclic metabolites from Calothrix cyanobacteria with potent activity against malaria parasites and human cancer cells. Tetrahedron 55:13513–13520

    Article  CAS  Google Scholar 

  105. Etchegaray A, Rabello E, Dieckmann R, Moon DH, Fiore MF, von Döhren H, Tsai SM, Neilan BA (2004) Algicide production by the filamentous cyanobacterium Fischerella sp. CENA 19. J Appl Phycol 16:237–243

    Article  CAS  Google Scholar 

  106. Walton K, Gantar M, Gibbs PDL, Schmale MC, Berry JP (2014) Indole alkaloids from Fischerella inhibit vertebrate development in the zebrafish (Danio rerio) embryo model. Toxins 6:3568–3581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Abarzua S, Jakubowski S, Eckert S, Fuchs P (1999) Biotechnological investigation for the prevention of marine biofouling II. Blue-green algae as potential producers of biogenic agents for the growth inhibition of microfouling organisms. Bot Mar 42:459–465

    Article  CAS  Google Scholar 

  108. Gleason FK, Paulson JL (1984) Site of action of the natural algicide, cyanobacterin, in the blue-green alga, Synechococcus sp. Arch Microbiol 138:273–277

    Article  CAS  Google Scholar 

  109. Mason CP, Edwards KR, Carlson RE, Pignatello J, Gleason FK, Wood JM (1982) Isolation of chlorine-containing antibiotic from the freshwater cyanobacterium Scytonema hofmanni. Science (New York) 215:400–402

    Article  CAS  Google Scholar 

  110. Jaja-Chimedza A, Gantar M, Gibbs PDL, Schmale MC, Berry JP (2012) Polymethoxy-1-alkenes from Aphanizomenon ovalisporum inhibit vertebrate development in the zebrafish (Danio rerio) embryo model. Mar Drugs 10:2322–2336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sukenik A, Eshkol R, Livne A, Hadas O, Rom M, Tchernov D, Vardi A, Kaplan A (2002) Inhibition of growth and photosynthesis of the dinoflagellate Peridinium gatunense by Microcystis sp. (cyanobacteria): a novel allelopathic mechanism. Limnol Oceanogr 47:1656–1663

    Article  Google Scholar 

  112. Pflugmacher S, Aulhorn M, Grimm B (2007) Influence of a cyanobacterial crude extract containing microcystin-LR on the physiology and antioxidative defence systems of different spinach variants. New Phytol 175:482–489

    Article  CAS  PubMed  Google Scholar 

  113. Ma Z, Fang T, Thring RW, Li Y, Yu H, Zhou Q, Zhao M (2015) Toxic and non-toxic strains of Microcystis aeruginosa induce temperature dependent allelopathy toward growth and photosynthesis of Chlorella vulgaris. Harmful Algae 48:21–29

    Article  CAS  PubMed  Google Scholar 

  114. Zhang TT, Liu L, Yang XH, Zhang SJ, Xia WT, Li C (2014) Allelopathic control of freshwater phytoplankton by the submerged macrophyte Najas minor All. Acta Ecol Sin 34:351–355

    Article  Google Scholar 

  115. Xu RB, Hilt S, Pei Y, Yin LJ, Wang XL, Chang XX (2016) Growth phase-dependent allelopathic effects of cyanobacterial exudates on Potamogeton crispus L. seedlings. Hydrobiologia 767:137–149

    Article  CAS  Google Scholar 

  116. Vanormelingen P, Vyverman W, De Bock D, Van der Gucht K, Meester LD (2009) Local genetic adaptation to grazing pressure of the green alga Desmodesmus armatus in a strongly connected pond system. Limnol Oceanogr 54:503–511

    Article  Google Scholar 

  117. Eigemann F, Vanormelingen P, Hilt S (2013) Sensitivity of the green alga Pediastrum duplex Meyen to allelochemicals is strain-specific and not related to co-occurrence with allelopathic macrophytes. PLoS One 8:e78463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Chang XX, Eigemann F, Hilt S (2012) Do macrophytes support harmful cyanobacteria? Interactions with a green alga reverse the inhibiting effects of macrophyte allelochemicals on Microcystis aeruginosa. Harmful Algae 19:76–84

    Article  CAS  Google Scholar 

  119. Chia MA, Cordeiro-Araújo MK, Lorenzi AS, do Carmo Bittencourt-Oliveira M (2017) Cylindrospermopsin induced changes in growth, toxin production and antioxidant response of Acutodesmus acuminatus and Microcystis aeruginosa under differing light and nitrogen conditions. Ecotoxicol Environ Saf 142:189–199

    Article  CAS  PubMed  Google Scholar 

  120. Pei Y, Liu L, Hilt S, Xu R, Wang B, Li C, Chang X (2018) Root exudated algicide of Eichhornia crassipes enhances allelopathic effects of cyanobacteria Microcystis aeruginosa on green algae. Hydrobiologia 823:67–77

    Article  Google Scholar 

  121. Lürling M, Eshetu F, Faassen EJ, Kosten S, Huszar VLM (2013) Comparison of cyanobacterial and green algal growth rates at different temperatures. Freshw Biol 58:552–559

    Google Scholar 

  122. Chen Y, Qin B, Teubner K, Dokulil MT (2003) Long-term dynamics of phytoplankton assemblages: Microcystis-domination in Lake Taihu, a large shallow lake in China. J Plankton Res 25:445–453

    Article  Google Scholar 

  123. Imai H, Chang KH, Kusaba M, Nakano S (2009) Temperature-dependent dominance of Microcystis (Cyanophyceae) species: M. aeruginosa and M. wesenbergii. J Plankton Res 31:171–178

    Article  Google Scholar 

  124. Lei L, Li C, Peng L, Han BP (2015) Competition between toxic and non-toxic Microcystis aeruginosa and its ecological implication. Ecotoxicology 24:1411–1418

    Article  CAS  PubMed  Google Scholar 

  125. Antunes JT, Leao PN, Vasconcelos VM (2012) Influence of biotic and abiotic factors on the allelopathic activity of the cyanobacterium Cylindrospermopsis raciborskii strain LEGE 99043. Microb Ecol 64:584–592

    Article  CAS  PubMed  Google Scholar 

  126. Nobel W, Matthijs HCP, Elert E, Mur LR (1998) Comparison of the light-limited growth of the nitrogen-fixing cyanobacteria Anabaena and Aphanizomenon. New Phytol 138:579–587

    Article  Google Scholar 

  127. Ray S, Bagchi SN (2001) Nutrients and pH regulate algicide accumulation in cultures of the cyanobacterium Oscillatoria laetevirens. New Phytol 149:455–460

    Article  CAS  Google Scholar 

  128. Shimoda Y, Arhonditsis GB (2016) Phytoplankton functional type modelling: running before we can walk? A critical evaluation of the current state of knowledge. Ecol Model 320:29–43

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 31260138) and the Major Research and Development Project of Yunnan Province (2018BC002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuexiu Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pei, Y., Xu, R., Hilt, S., Chang, X. (2019). Effects of Cyanobacterial Secondary Metabolites on Phytoplankton Community Succession. In: Merillon, JM., Ramawat, K. (eds) Co-Evolution of Secondary Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-76887-8_12-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76887-8_12-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76887-8

  • Online ISBN: 978-3-319-76887-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics