Skip to main content

Role of Sphingolipids in Bacterial Infections

  • Living reference work entry
  • First Online:
Health Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids

Abstract

Lipids play a very important role in the infection of mammalian cells by different pathogens. Sphingolipids have been shown by numerous recent studies to possess a particularly essential role in infectious biology. Sphingolipids such as sphingomyelin, ceramide, and sphingosine organize cell membranes into distinct domains, called rafts that are enriched with sphingolipids and cholesterol. The generation of ceramide within the cell membrane results in the formation of large ceramide-enriched membrane platforms that serve the temporal and spatial organization of the cellular signaling machinery. Ceramide-enriched membrane platforms have critical functions for bacterial and viral infections. In addition, ceramide and sphingosine regulate the functions of enzymes, receptors, and organelles such as lysosomes, and therefore contribute to the control of the cellular response to pathogens. Finally, at least sphingosine has a direct antibacterial effect against many pathogens. Here, we present the diverse functions of sphingolipids in infectious biology and discuss mechanisms of their actions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Arikawa J, Ishibashi M, Kawashima M, Takagi Y, Ichikawa Y, Imokawa G (2002) Decreased levels of sphingosine, a natural antimicrobial agent, may be associated with vulnerability of the stratum corneum from patients with atopic dermatitis to colonization by Staphylococcus aureus. J Invest Dermatol 119:433–439

    Article  CAS  PubMed  Google Scholar 

  • Becker KA, Riethmüller J, Lüth A, Döring G, Kleuser B, Gulbins E (2010) Acid sphingomyelinase inhibitors normalize pulmonary ceramide and inflammation in cystic fibrosis. Am J Respir Cell Mol Biol 42:716–724

    Article  CAS  PubMed  Google Scholar 

  • Becker KA, Henry B, Ziobro R, Tümmler B, Gulbins E, Grassmé H (2012) Role of CD95 in pulmonary inflammation and infection in cystic fibrosis. J Mol Med (Berl) 90:1011–1023

    Article  CAS  Google Scholar 

  • Becker KA, Fahsel B, Kemper H, Mayeres J, Li C, Wilker B, Keitsch S, Soddemann M, Sehl C, Kohnen M, Edwards MJ, Grassmé H, Caldwell CC, Seitz A, Fraunholz M, Gulbins E (2017a) Staphylococcus aureus alpha-toxin disrupts endothelial-cell tight junctions via acid sphingomyelinase and ceramide. Infect Immun 86. pii: e00606-17

    Google Scholar 

  • Becker KA, Li X, Seitz A, Steinmann J, Koch A, Schuchman E, Kamler M, Edwards MJ, Caldwell CC, Gulbins E (2017b) Neutrophils kill reactive oxygen species-resistant Pseudomonas aeruginosa by sphingosine. Cell Physiol Biochem 43:1603–1616

    Article  CAS  PubMed  Google Scholar 

  • Bibel DJ, Aly R, Shinefield HR (1992) Antimicrobial activity of sphingosines. J Invest Dermatol 98:269–273

    Article  CAS  PubMed  Google Scholar 

  • Bodas M, Min T, Mazur S, Vij N (2011) Critical modifier role of membrane-cystic fibrosis transmembrane conductance regulator-dependent ceramide signaling in lung injury and emphysema. J Immunol 186:602–613

    Article  CAS  PubMed  Google Scholar 

  • Brodlie M, McKean MC, Johnson GE, Gray J, Fisher AJ, Corris PA, Lordan JL, Ward C (2010) Ceramide is increased in the lower airway epithelium of people with advanced cystic fibrosis lung disease. Am J Respir Crit Care Med 182:369–375

    Article  CAS  PubMed  Google Scholar 

  • Brown DA, London E (1998) Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14:111–136

    Article  CAS  PubMed  Google Scholar 

  • Caretti A, Bragonzi A, Facchini M, De Fino I, Riva C, Gasco P, Musicanti C, Casas J, Fabriàs G, Ghidoni R, Signorelli P (2014) Anti-inflammatory action of lipid nanocarrier-delivered myriocin: therapeutic potential in cystic fibrosis. Biochim Biophys Acta 1840:586–594

    Article  CAS  PubMed  Google Scholar 

  • Caretti A, Vasso M, Bonezzi FT, Gallina A, Trinchera M, Rossi A, Adami R, Casas J, Falleni M, Tosi D, Bragonzi A, Ghidoni R, Gelfi C, Signorelli P (2017) Myriocin treatment of CF lung infection and inflammation: complex analyses for enigmatic lipids. Naunyn Schmiedeberg’s Arch Pharmacol 390:775–790

    Article  CAS  Google Scholar 

  • CF foundation, patient registry annual report. (Bethesda, Maryland, U.S.A, 2010). http://www.cff.org/livingwithcf/carecenternetwork/patientregistry/

  • Dobrowsky RT, Hannun YA (1993) Ceramide-activated protein phosphatase: partial purification and relationship to protein phosphatase 2A. Adv Lipid Res 25:91–104

    CAS  PubMed  Google Scholar 

  • Elborn JS (2016) Cystic fibrosis. Lancet 5:681–683

    Google Scholar 

  • Esen M, Schreiner B, Jendrossek V, Lang F, Fassbender K, Grassmé H, Gulbins E (2001) Mechanisms of Staphylococcus aureus induced apoptosis of human endothelial cells. Apoptosis 6:431–439

    Article  CAS  PubMed  Google Scholar 

  • Fischer CL, Walters KS, Drake DR, Blanchette DR, Dawson DV, Brogden KA, Wertz PW (2013) Sphingoid bases are taken up by Escherichia coli and Staphylococcus aureus and induce ultrastructural damage. Skin Pharmacol Physiol 26:36–44

    Article  CAS  PubMed  Google Scholar 

  • Gluschko A, Herb M, Wiegmann K, Krut O, Neiss WF, Utermöhlen O, Krönke M, Schramm M (2018) The β2 Integrin Mac-1 induces protective LC3-associated phagocytosis of Listeria monocytogenes. Cell Host Microbe 23:324–337

    Article  CAS  PubMed  Google Scholar 

  • Grassmé H, Gulbins E, Brenner B, Ferlinz K, Sandhoff K, Harzer K, Lang F, Meyer TF (1997) Acidic sphingomyelinase mediates entry of N. gonorrhoeae into nonphagocytic cells. Cell 91:605–615

    Article  PubMed  Google Scholar 

  • Grassmé H, Kirschnek S, Riethmueller J, Riehle A, von Kürthy G, Lang F, Weller M, Gulbins E (2000) Host defense to Pseudomonas aeruginosa requires CD95/CD95 ligand interaction on epithelial cells. Science 290:527–530

    Article  PubMed  Google Scholar 

  • Grassmé H, Jekle A, Riehle A, Schwarz H, Berger J, Sandhoff K (2001) CD95 signaling via ceramide-rich membrane rafts. J Biol Chem 276:20589–20596

    Article  PubMed  Google Scholar 

  • Grassmé H, Jendrossek V, Riehle A, von Kurthy G, Berger J, Schwarz H, Weller M, Kolesnick R, Gulbins E (2003) Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts. Nat Med 9:322–330

    Article  PubMed  Google Scholar 

  • Grassmé H, Henry B, Ziobro R, Becker KA, Riethmüller J, Gardner A, Seitz AP, Steinmann J, Lang S, Ward C, Schuchman EH, Caldwell CC, Kamler M, Edwards MJ, Brodlie M, Gulbins E (2017) β1-Integrin accumulates in cystic fibrosis luminal airway epithelial membranes and decreases sphingosine, promoting bacterial infections. Cell Host Microbe 21:707–718

    Article  PubMed  PubMed Central  Google Scholar 

  • Gulbins E, Szabo I, Baltzer K, Lang F (1997) Ceramide-induced inhibition of T lymphocyte voltage-gated potassium channel is mediated by tyrosine kinases. Proc Natl Acad Sci U S A 94:7661–7666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9:139–150

    Article  CAS  PubMed  Google Scholar 

  • Hauck CR, Grassmé H, Bock J, Jendrossek V, Ferlinz K, Meyer TF, Gulbins E (2000) Acid sphingomyelinase is involved in CEACAM receptor-mediated phagocytosis of Neisseria gonorrhoeae. FEBS Lett 478:260–266

    Article  CAS  PubMed  Google Scholar 

  • Heinrich M, Wickel M, Schneider-Brachert W, Sandberg C, Gahr J, Schwandner R (1999) Cathepsin D targeted by acid sphingomyelinase-derived ceramide. EMBO J 18:5252–5263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henry BD, Neill DR, Becker KA, Gore S, Bricio-Moreno L, Ziobro R, Edwards MJ, Mühlemann K, Steinmann J, Kleuser B, Japtok L, Luginbühl M, Wolfmeier SA, Gulbins E, Kadioglu A, Draeger A, Babiychuk EB (2015) Biomimetic, toxin-sequestrating therapy for the treatment of severe invasive bacterial infections. Nat Biotechnol 33:81–88

    Article  CAS  PubMed  Google Scholar 

  • Huwiler A, Johansen B, Skarstad A, Pfeilschifter J (2001) Ceramide binds to the CaLB domain of cytosolic phospholipase A2 and facilitates its membrane docking and arachidonic acid release. FASEB J 15:7–9

    Article  CAS  PubMed  Google Scholar 

  • Ishibashi Y, Nakasone T, Kiyohara M, Horibata Y, Sakaguchi K, Hijikata A, Ichinose S, Omori A, Yasui Y, Ishida H, Kiso M, Okino N, Ito M (2007) A novel endoglycocera-midase hydrolyzes oligogalactosylceramides to produce galactooligosaccharides and ceramides. J Biol Chem 282:11386–11396

    Article  CAS  PubMed  Google Scholar 

  • Itokazu Y, Pagano RE, Schroeder AS, O'Grady SM, Limper AH, Marks DL (2014) Reduced GM1 ganglioside in CFTR-deficient human airway cells results in decreased β1-integrin signaling and delayed wound repair. Am J Physiol Cell Physiol 306:C819–C830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kannan S, Audet A, Huang H, Chen LJ, Wu M (2008) Cholesterol-rich membrane rafts and Lyn are involved in phagocytosis during Pseudomonas aeruginosa infection. Infect Immun 180:2396–2408

    CAS  Google Scholar 

  • Keitsch S, Riethmüller J, Soddemann M, Sehl C, Wilker B, Edwards MJ, Caldwell CC, Fraunholz M, Gulbins E, Becker KA (2018) Pulmonary infection of cystic fibrosis mice with Staphylococcus aureus requires expression of α-toxin. Biol Chem 399:1203. https://doi.org/10.1515/hsz-2018-0161. pii: /j/bchm.ahead-of-print/hsz-2018-0161/hsz-2018-0161.xml

    Article  CAS  PubMed  Google Scholar 

  • Kolesnick RN, Goni FM, Alonso A (2000) Compartmentalization of ceramide signaling: physical foundations and biological effects. J Cell Physiol 184:285–300

    Article  CAS  PubMed  Google Scholar 

  • Kovacic B, Sehl C, Wilker B, Kamler M, Gulbins E, Becker KA (2017) Glucosylceramide critically contributes to the host defense of cystic fibrosis lungs. Cell Physiol Biochem 41:1208–1218

    Article  CAS  PubMed  Google Scholar 

  • Kowalski MP, Pier GB (2004) Localization of cystic fibrosis transmembrane conductance regulator to lipid rafts of epithelial cells is required for Pseudomonas aeruginosa-induced cellular activation. J Immunol 172:418–425

    Article  CAS  PubMed  Google Scholar 

  • Kowalski MP, Dubouix-Bourandy A, Bajmoczi M, Golan DE, Zaidi T, Coutinho-Sledge YS, Gygi MP, Gygi SP, Wiemer EAC, Pier GB (2007) Host resistance to lung infection mediated by major vault protein in epithelial cells. Science 317:130–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lepple-Wienhues A, Belka C, Laun T, Jekle A, Walter B, Wieland U (1999) Stimulation of CD95 (Fas) blocks T lymphocyte calcium channels through sphingomyelinase and sphingolipids. Proc Natl Acad Sci U S A 96:13795–13800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Peng H, Japtok L, Seitz A, Riehle A, Wilker B, Soddemann M, Kleuser B, Edwards M, Lammas D, Zhang Y, Gulbins E, Grassmé H (2016) Inhibition of neutral sphingomyelinase protects mice against systemic tuberculosis. Front Biosci 8:311–325

    Article  Google Scholar 

  • Li C, Wu Y, Orian-Rousseau V, Zhang Y, Gulbins E, Grassme H (2017) Regulation of Staphylococcus aureus infection of macrophages by CD44, reactive oxygen species and acid sphingomyelinase. Antioxid Redox Signal. https://doi.org/10.1089/ars.2017.6994

  • Ma J, Gulbins E, Edwards MJ, Caldwell CC, Fraunholz M, Becker KA (2017) Staphylococcus aureus α-Toxin induces inflammatory cytokines via lysosomal acid sphingomyelinase and ceramides. Cell Physiol Biochem 43:2170–2184

    Article  CAS  PubMed  Google Scholar 

  • Muller G, Ayoub M, Storz P, Rennecke J, Fabbro D, Pfizenmaier K (1995) PKC zeta is a molecular switch in signal transduction of TNF-alpha, bifunctionally regulated by ceramide and arachidonic acid. EMBO J 14:1961–1969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nurminen TA, Holopainen JM, Zhao H, Kinnunen PK (2002) Observation of topical catalysis by sphingomyelinase coupled to microspheres. J Am Chem Soc 124:12129–12134

    Article  CAS  PubMed  Google Scholar 

  • Okino N, He X, Gatt S, Sandhoff K, Ito M, Schuchman EH (2003) The reverse activity of human acid ceramidase. J Biol Chem 278:29948–29953

    Article  CAS  PubMed  Google Scholar 

  • Peng H, Li C, Kadow S, Henry BD, Steinmann J, Becker KA, Riehle A, Beckmann N, Wilker B, Li PL, Pritts T, Edwards MJ, Zhang Y, Gulbins E, Grassmé H (2015) Acid sphingomyelinase inhibition protects mice from lung edema and lethal Staphylococcus aureus sepsis. J Mol Med (Berl) 93:675–689

    Article  CAS  Google Scholar 

  • Pewzner-Jung Y, Tavakoli Tabazavareh S, Grassmé H, Becker KA, Japtok L, Steinmann J, Joseph T, Lang S, Tuemmler B, Schuchman EH, Lentsch AB, Kleuser B, Edwards MJ, Futerman AH, Gulbins E (2014) Sphingoid long chain bases prevent lung infection by Pseudomonas aeruginosa. EMBO Mol Med 6:1205–1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pier GB, Grout M, Zaidi TS, Olsen JC, Johnson LG, Yankaskas JR, Goldberg JB (1996) Role of mutant CFTR in hypersusceptibility of cystic fibrosis patients to lung infections. Science 271:64–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quinn RA, Lim YW, Mak TD, Whiteson K, Furlan M, Conrad D, Rohwer F, Dorrestein P (2016) Metabolomics of pulmonary exacerbations reveals the personalized nature of cystic fibrosis disease. PeerJ 4:e2174

    Article  PubMed  PubMed Central  Google Scholar 

  • Ratjen F, Döring G (2003) Cystic fibrosis. Lancet 361:681–689

    Article  CAS  PubMed  Google Scholar 

  • Rice TC, Pugh AM, Seitz AP, Gulbins E, Nomellini V, Caldwell CC (2017) Sphingosine rescues aged mice from pulmonary pseudomonas infection. J Surg Res 219:354–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roca FJ, Ramakrishnan L (2013) TNF dually mediates resistance and susceptibility to Mycobacteria via mitochondrial reactive oxygen species. Cell 153:1–14

    Article  Google Scholar 

  • Saiman L, Prince A (1993) Pseudomonas aeruginosa pili bind to asialoGM1, which is increased on the surface of cystic fibrosis epithelial cells. J Clin Invest 92:1875–1880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schramm M, Herz J, Haas A, Krönke M, Utermöhlen O (2008) Acid spingomyelinase is required for efficient phago-lysosomal fusion. Cell Microbiol 10:1839–1853

    Article  CAS  PubMed  Google Scholar 

  • Simonis A, Hebling S, Gulbins E, Schneider-Schaulies S, Schubert-Unkmeir A (2014) Differential activation of acid sphingomyelinase and ceramide release determines invasiveness of Neisseria meningitidis into brain endothelial cells. PLoS Pathog 10:e1004160

    Article  PubMed  PubMed Central  Google Scholar 

  • Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  CAS  PubMed  Google Scholar 

  • Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    Article  CAS  PubMed  Google Scholar 

  • Szabo I, Gulbins E, Apfel H, Zhang X, Barth P, Busch AE (1996) Tyrosine phosphorylation-dependent suppression of a voltage-gated K+ channel in T lymphocytes upon Fas stimulation. J Biol Chem 271:20465–20469

    Article  CAS  PubMed  Google Scholar 

  • Tavakoli Tabazavareh S, Seitz A, Jernigan P, Sehl C, Keitsch S, Lang S, Kahl BC, Edwards M, Grassmé H, Gulbins E, Becker KA (2016) Lack of sphingosine causes susceptibility to pulmonary Staphylococcus aureus infections in cystic fibrosis. Cell Physiol Biochem 38:2094–2102

    Article  CAS  PubMed  Google Scholar 

  • Teichgräber V, Ulrich M, Endlich N, Riethmüller J, Wilker B, De Oliveira-Munding CC, van Heeckeren AM, Barr ML, von Kürthy G, Schmid KW, Weller M, Tümmler B, Lang F, Grassmé H, Döring G, Gulbins E (2008) Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis. Nat Med 14:382–391

    Article  PubMed  Google Scholar 

  • Ulrich M, Worlitzsch D, Viglio S, Siegmann N, Iadarola P, Shute JK, Geiser M, Pier GB, Friedel G, Barr ML, Schuster A, Meyer KC, Ratjen F, Bjarnsholt T, Gulbins E, Döring G (2010) Alveolar inflammation in cystic fibrosis. J Cyst Fibros 9:217–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Utermöhlen O, Karow U, Lohler J, Krönke M (2003) Severe impairment in early host defense against Listeria monocytogenes in mice deficient in acid sphingomyelinase. J Immunol 170:2621–2628

    Article  PubMed  Google Scholar 

  • Xu X, Bittman R, Duportail G, Heissler D, Vilcheze C, London E (2001) Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/sterol domains (rafts). Comparison of cholesterol to plant, fungal, and disease-associated sterols and comparison of sphingomyelin, cerebrosides, and ceramide. J Biol Chem 276:33540–33546

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto N, Yamamoto N, Petroll MW, Cavanagh HD, Jester JV (2005) Internalization of Pseudomonas aeruginosa is mediated by lipid rafts in contact lens-wearing rabbit and cultured human corneal epithelial cells. Invest Ophthalmol Vis Sci 46:1348–1355

    Article  PubMed  Google Scholar 

  • Yao B, Zhang Y, Delikat S, Mathias S, Basu S, Kolesnick R (1995) Phosphorylation of Raf by ceramide-activated protein kinase. Nature 378:307–310

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Li X, Carpinteiro A, Gulbins E (2008) Acid sphingomyelinase amplifies redox signaling in Pseudomonas aeruginosa-induced macrophage apoptosis. J Immunol 181:4247–4254

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Li X, Grassmé H, Döring G, Gulbins E (2009) Alterations in ceramide concentration and pH determine the release of reactive oxygen species by Cftr-deficient macrophages on infection. J Immunol 184:5104–5111

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erich Gulbins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Becker, K.A. et al. (2019). Role of Sphingolipids in Bacterial Infections. In: Goldfine, H. (eds) Health Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-72473-7_4-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72473-7_4-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72473-7

  • Online ISBN: 978-3-319-72473-7

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics