Skip to main content

Electronic Industry

  • Reference work entry
  • First Online:

Abstract

The electronic industry employs millions of people worldwide. The size of workforce and the use of hazardous chemicals may lead one to suppose that the number of occupational dermatological cases should be large.

The industry is constantly changing as a result of evolving scientific knowledge and increasing demand. The manufacture of goods is evermore automated. There is heightened productivity. Cheap labor costs elsewhere means that the UK workforce is now more involved with product design and innovation.

A semiconductor is a material that has an electrical conductivity between that of a conductor and an insulator. Devices made from these materials form the vital components of almost all electronic products. Historically silicon has been the most widely used, though gallium arsenide and various other materials are assuming increasing importance.

The basic steps involved in chip manufacture are chip design, crystal purification and growth, wafer preparation, epitaxy and oxidation, photolithography, doping and type conversion, metallization, and interconnection formation. Device assembly involves chip separation, die attach bonding, wire bonding, encapsulation, housing, marking, and testing.

New materials are developed and used before reliable toxicological data is produced. Secrecy within the industry makes it impossible to produce exhaustive lists of the chemicals used. To investigate a case of occupational-related dermatosis, patients must be managed individually, taking into account at which stage in chip manufacturing they work and what chemicals they use.

There is little information available on precisely how common occupationally related skin disorders in this industry are. Both ICD and ACD appear to be important, and the major hazards are solvents, metals, soldering flux, epoxy and acrylate resins, oils and coolants, fiberglass, and rubber chemicals.

Despite the size and hazards of the electronic industry, it is considered to be relatively safe with regard to cutaneous risk. The incidence of occupational skin disease among its workers is much lower than in other manufacturing industries. This may be due to processes taking place in closed systems with a high degree of automation. Worker exposure to the chemicals involved is minimal; but cleaning, repair, and maintenance staff are at special risk. However, the lower incidence may be accounted for by the industry being “top heavy,” the underreporting of skin disease, and debate over which processes fall into the “electronic industry.”

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   919.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aalto-Korte K, Suuronen K, Kuuliala O, Henriks-Eckerman M-L, Jolanki R (2012) Occupational contact allergy to monomeric isocyanates. Contact Dermatitis 67:78–88. https://doi.org/10.1111/j.1600-0536.2011.02049.x

    Article  CAS  PubMed  Google Scholar 

  • Adams RM (1986) Dermatitis in the microelectronics industry. LaDou J State of the art reviews: occupational medicine. Hanley and Belfus, Philadelphia, 155–165

    Google Scholar 

  • Adams RM (1990) The semiconductor industry. In: Adams RM (ed) Occupational skin disease, 2nd edn. Saunders, Philadelphia, pp 408–425

    Google Scholar 

  • Ali SA (1997) Occupational dermatitis in the manufacture of colour television tubes. Am J Contact Dermat 8(4):222–224

    Article  CAS  PubMed  Google Scholar 

  • Amato I (1997) The semiconducting menagerie. Sci Am (Special Issue: The solid state century) 8(1):82–83

    Google Scholar 

  • Barrett CR (1997) From sand to silicon: manufacturing an integrated circuit. Sci Am (Special issue: The solid state century) 8(1):56–61

    Google Scholar 

  • Bazin BH et al (1986) Allergy to diphenylamine from an industrial grease. Contact Dermatitis 15:51

    Article  Google Scholar 

  • Beasley RWR (1988) An OH guide to the semiconductor industry. Occup Health (Lond) 40(9):640–650

    CAS  Google Scholar 

  • Bennett DE et al (1988) Dermatitis from plastic tote boxes impregnated with an antistatic agent. J Occup Med 30:252–255

    CAS  PubMed  Google Scholar 

  • Bjorkner B (1981) Occupational cold urticaria from contact spray. Contact Dermatitis 7:338–339

    Article  CAS  PubMed  Google Scholar 

  • Calnan CD (1995) Cyanoacrylate dermatitis. Contact Dermatitis 5:165–167

    Article  Google Scholar 

  • Cohen R (1986) Radiofrequency and microwave radiation in the microelectronics industry. In: LaDou J (ed) State of the art reviews: occupational medicine. Hanley and Belfus, Philadelphia, pp 145–154

    Google Scholar 

  • Conde-Salazar L et al (1988) Occupational allergic contact dermatitis from anaerobic acrylic sealants. Contact Dermatitis 18:129–132

    Article  CAS  PubMed  Google Scholar 

  • Cone JE (1986) Health hazards of solvents in the microelectronics industry. LaDou J State of the art reviews: occupational medicine. Hanley and Belfus, Philadelphia, 69–88

    Google Scholar 

  • Courtney D (1983) Health and safety in soft soldering. Circ World 9:2–5

    Article  Google Scholar 

  • Crow D et al (1968) Amine flux sensitization dermatitis in electricity cable joiners. Brit J Dermatol 80:701–710

    Article  CAS  Google Scholar 

  • Ducatman AM et al (1991) Occupational physician staffing in large US corporations. J Occup Med 33(5):613–618

    CAS  PubMed  Google Scholar 

  • Edelman P (1986) Hydroflouric acid burns. In: LaDou J (ed) State of the art reviews: occupational medicine. Hanley and Belfus, Philadelphia, pp 89–104

    Google Scholar 

  • Employment and Labour Market (2017) Office of National Statistics [accessed online]. Available at: https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/employmentandemployeetypes/datasets/employmentbyoccupationemp04

  • Estlander T et al (1986) Dermatitis and urticaria from rubber and plastic gloves. Contact Dermatitis 14:20–25

    Article  CAS  PubMed  Google Scholar 

  • Fischer T et al (1987) Unhardened epoxy resin in tool handles. Contact Dermatitis 16:45

    Article  CAS  PubMed  Google Scholar 

  • Foussereau J, Muslmani M, Clvelier C, Herve-Bazin B (1986) Contact allergy to safety shoes. Contact Dermatitis 14:233–236

    Article  CAS  PubMed  Google Scholar 

  • Garabrant DH, Olin R (1986) Carcinogens and cancer risk in the microelectronics industry. LaDou J State of the art reviews: occupational medicine. Hanley and Belfus, Philadelphia, 119–134

    Google Scholar 

  • Geiser K (1986) Health hazards in the microelectronics industry. Int J Health Serv 16(1):105–120

    Article  CAS  PubMed  Google Scholar 

  • Goh CL (1985) Occupational dermatitis from soldering flux among workers in the electronics industry. Contact Dermatitis 13:85–90

    Article  CAS  PubMed  Google Scholar 

  • Goh CL (1994) Common industrial processes and occupational irritants and allergens – an update. Ann Acad Med Singap 23(5):690–698

    CAS  PubMed  Google Scholar 

  • Goh CL, Ng SK (1987) Airborne contact dermatitis to colophony. Contact Dermatitis 17:89–91

    Article  CAS  PubMed  Google Scholar 

  • Goh CL, Soh SD (1984) Occupational dermatitis in Singapore. Contact Dermatitis 11:288–293

    Article  CAS  PubMed  Google Scholar 

  • Guest R (1991) Clean room and itchy faces. J Soc Occup Med 41:37–40

    Article  CAS  PubMed  Google Scholar 

  • Harrison RJ (1986) Gallium arsenide. In: LaDou J (ed) State of the art reviews: occupational medicine. Hanley and Belfus, Philadelphia, pp 49–58

    Google Scholar 

  • Health and Safety Executive (2017) Work-related skin disease in Great Britain 2017 [accessed online]. Available at: http://www.hse.gov.uk/statistics/causdis/dermatitis/skin.pdf

  • Hsieh MY et al (2001) Morphology of glass fibers in electronics workers with fiberglass dermatitis – a scanning electron microscopy study. Int J Dermatol 40(4):258–261

    Article  CAS  PubMed  Google Scholar 

  • Jolanki R et al (1994) Concomitant sensitization to triglycidyl isocyanurate, diaminodiphenylmethane and 2-hydroxymethacrylate for silk screen printing coatings in the manufacture of circuit boards. Contact Dermatitis 30(1):12–15

    Article  CAS  PubMed  Google Scholar 

  • Kiec-Swierczynska M (1988) The role of metals in the development of allergy in workers in the electrotechnical industry. Przegl Dermatol 75(4):272–276

    CAS  PubMed  Google Scholar 

  • Koh D (1993) A study of occupational dermatoses in the electronics industry. J Occup Med Singapore 5:1–7

    Google Scholar 

  • Koh D (1995) An outbreak of occupational dermatosis in an electronics store. Contact Dermatitis 32(6):327–330

    Article  CAS  PubMed  Google Scholar 

  • Koh D (1997) Electronics industry. Clin Dermatol 15(4):579–586

    Article  CAS  PubMed  Google Scholar 

  • Koh D, Khoo NY (1994) Identification of a printed circuit board causing fibreglass skin irritation among electronics workers. Contact Dermatitis 30(1):46–47

    Article  CAS  PubMed  Google Scholar 

  • Koh D et al (1990) Dermatological hazards in the microelectronics industry. Contact Dermatitis 22:1–7

    Article  CAS  PubMed  Google Scholar 

  • Koh D et al (1992) Fibreglass dermatitis from printed circuit boards. Am J Inter Med 21(2):193–198

    Article  CAS  Google Scholar 

  • Koh D et al (1995) An occupational mark of screwdriver operators. Contact Dermatitis 32(1):46

    Article  CAS  PubMed  Google Scholar 

  • Koh D et al (2001) Occupational allergic contact dermatitis in Singapore. Sci Total Environ 270(1–3):97–101

    Article  CAS  Google Scholar 

  • Leow YH et al (1995) Allergic contact dermatitis from epoxy resin in Singapore. Contact Dermatitis 33:355–356

    Article  CAS  PubMed  Google Scholar 

  • Lewis DR (1986) Dopant materials used in the microelectronics industry. LaDou J State of the art reviews: occupational medicine. Hanley and Belfus, Philadelphia, 35–48

    Google Scholar 

  • Liden C (1984) Patch testing with soldering fluxes. Contact Dermatitis 10:119–120

    Article  CAS  PubMed  Google Scholar 

  • Mastromatteo E (1971) Cutting oils and squamous cell carcinoma. Part 1: incidence in a plant with a report of six cases. Br J Ind Med 12:240–243

    Google Scholar 

  • Mathias CGT, Adams RM (1984) Allergic contact dermatitis from rosin used as a soldering flux. J Am Acad Dermatol 10:454–456

    CAS  PubMed  Google Scholar 

  • Mathias CGT, Maibach HI (1984) Allergic contact dermatitis to anaerobic sealants. Arch Dermatol 120:1202–1205

    Article  CAS  PubMed  Google Scholar 

  • McBirney RS (1954) Trichoroethylene and dichloroethylene poisoning. Arch Ind Hygiene 10:130–133

    CAS  Google Scholar 

  • Meyer JD, Chen Y, Holt DL, Beck MH, Cherry NM (2000) Occupational Contact Dermatitis in the UK: A Surveillance Report from EPIDERM and OPRA. Occup Med 50(4):265–273

    Article  CAS  PubMed  Google Scholar 

  • Morgan DV, Board K (1985) An introduction to semiconductor microtechnology. Wiley, Chichester

    Google Scholar 

  • Nelemans PJ et al (1993) Melanoma and occupation: results of a case-control study in the Netherlands. Br J Ind Med 50(7):642–646

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nethercott JR et al (1982) Erythema multiforme exudativum linked to the manufacture of printed circuit boards. Contact Dermatitis 8:314–322

    Article  CAS  PubMed  Google Scholar 

  • Nishioka K et al (1988) Occupational contact allergy to triglycidyl isocyanurate (TGIC, Tepic). Contact Dermatitis 19:379–380

    Article  CAS  PubMed  Google Scholar 

  • Oldham WG (1977) The fabrication of microelectronic circuits. Sci Am 237(3):110–128

    Article  Google Scholar 

  • Patussi V et al (1986) Dermatitie da contatto alla Loctitie serie 200. Ital Derm Ven 121:117–119

    CAS  Google Scholar 

  • Phoon WH et al (1984) Stevens-Johnson syndrome associated with occupational exposure to trichloroethylene. Contact Dermatitis 10:270–276

    Article  CAS  PubMed  Google Scholar 

  • Ranchoff RE, Taylor JS (1985) Contact dermatitis to anaerobic sealants. J Am Acad Dermatol 13:1015–1020

    Article  CAS  PubMed  Google Scholar 

  • Rapson WS (1985) Skin contact with gold and gold alloys. Contact Dermatitis 13:56–65

    Article  CAS  PubMed  Google Scholar 

  • Redmond SF, Schappert KR (1987) Occupational dermatitis associated with garment. J Occup Med 29:243–244

    CAS  PubMed  Google Scholar 

  • Rischitelli G (2005) Dermatitis in a printed-circuit board manufacturing facility. Contact Dermatitis 52(2):78–81

    Article  CAS  PubMed  Google Scholar 

  • Rivers RJK, Rycroft RJG (1987) Occupational contact urticaria from colophony. Contact Dermatitis 17:181

    Article  CAS  PubMed  Google Scholar 

  • Robinson AL (1983) GaAs readied for high speed microcircuits. Science 219:275–277

    Article  CAS  PubMed  Google Scholar 

  • Rohm T (1990) The semiconductor industry. In: Adams RM (ed) Occupational skin disease, 2nd edn. W.B. Saunders, Philadelphia, pp 408–425

    Google Scholar 

  • Rohm T et al (1986) The chemical nature of the microelectronics industry. In: LaDou J (ed) State of the art reviews: occupational medicine. Hanley and Belfus, Philadelphia, pp 13–34

    Google Scholar 

  • Rubin W, Allen BM (1972) The chemistry and behaviour of fluxes. Trans Inst Met Finish 50:133–137

    Article  CAS  Google Scholar 

  • Rudolph L, Swan SA (1986) Reproductive hazards in the microelectronics industry. In: LaDou J (ed) State of the art reviews: occupational medicine. Hanley and Belfus, Philadelphia, pp 135–144

    Google Scholar 

  • Rycroft RJG, Smith WDL (1980) Low humidity occupational dermatoses. Contact Dermatitis 6:488–492

    Article  CAS  PubMed  Google Scholar 

  • Shiao JS et al (2004) Prevalence and risk factors of occupational hand dermatoses in electronics workers. Toxicol Ind Health 20(1–5):1–7

    Article  CAS  PubMed  Google Scholar 

  • Sonnex TS, Rycroft RJG (1986) Dermatitis from phenylsalicylate in safety spectacle frames. Contact Dermatitis 14:268–270

    Article  CAS  PubMed  Google Scholar 

  • Stevenson CJ, Morgan PR (1983) Investigation and prevention of chromate dermatitis in television manufacture. J Soc Occup Med 33:19–20

    Article  CAS  PubMed  Google Scholar 

  • Stewart RD et al (1974) Degreaser’s flush. Arch Environ Health 29:1–5

    Article  CAS  PubMed  Google Scholar 

  • Sun CC et al (1995) Occupational hand dermatitis in a tertiary referral dermatology clinic in Taipei. Contact Dermatitis 33:414–418

    CAS  PubMed  Google Scholar 

  • Tan HH et al (1997) Occupational skin disease in workers from the electronics industry in Singapore. Am J Contact Dermat 8(4):210–214

    CAS  PubMed  Google Scholar 

  • Teitelbaum DT (1986) Photoactive chemicals used in photoresist systems. LaDou J State of the art reviews: occupational medicine. Hanley and Belfus, Philadelphia, 59–68

    Google Scholar 

  • Tosti A et al (1986) Contact urticaria from poly propylene. Contact Dermatitis 15:51

    Article  Google Scholar 

  • Tosti A et al (1993) Occupational skin hazards from synthetic plastics. Toxicol Ind Health 9(3):493–502

    Article  CAS  PubMed  Google Scholar 

  • Tosti A et al (1998) Occupational airborne contact dermatitis to epoxy resin. Contact Dermatitis 19:220–222

    Article  Google Scholar 

  • U.S.A. Bureau of Labor (2016) Employment projections [accessed online]. Available at https://www.bls.gov/emp/ep_table_207.htm

  • U.S.A. Sales Data (2007) U.S. census bureau, 2007 economic census www.census.gov

  • Ungers LJ et al (1985) Release of arsenic from semiconductor wafers. Am Ind Hyg Assoc J 46:416–420

    Article  CAS  PubMed  Google Scholar 

  • US Department of Health and Human Services (1985) Hazard assessment of the electronic component manufacturing industry, DHHS(NIOSH) Publication No. Centers for Disease Contol, Cincinnati 85–100

    Google Scholar 

  • Vagero D, Olin R (1983) Incidence of cancer in the electronics industry: using the new Swedish cancer environment registry as a screening instrument. Brit J Med 40:188–192

    CAS  Google Scholar 

  • Wald PH, Jones JR (1987) Semiconductor manufacturing: an introduction to processes and hazards. Am J Ind Med 11:203–221

    Article  CAS  PubMed  Google Scholar 

  • Walder BK (1983) Do solvents cause scleroderma? Int J Dermatol 22:157–158

    Article  CAS  PubMed  Google Scholar 

  • Waterhouse JAH (1971) Cutting oils and cancer. Ann Occup Hyg 14:171–180

    Google Scholar 

  • Wheeler CE et al (1965) Dermatitis from hydrazine hydrobromide solder flux. Arch Dermatol 91:235–239

    Article  PubMed  Google Scholar 

  • Widstrom L (1983) Contact allergy to colophony in soldering flux. Contact Dermatitis 9:205–207

    Article  CAS  PubMed  Google Scholar 

  • Xu X et al (2009) Severe hypersensitivity dermatitis and liver dysfunction induced by occupational exposure to trichloroethylene. Ind Health 47(2):107–112

    Article  CAS  PubMed  Google Scholar 

  • Yamakage A, Ishikawa H (1982) Generalised morphoea-like scleroderma occurring in people exposed to organic solvents. Dermalogica 165:186–193

    Article  CAS  Google Scholar 

  • Yokota K et al (2000) Occupational dermatoses from one-component epoxy coatings containing a modified polyamine hardener. Ind Health 38(3):269–272

    Article  CAS  PubMed  Google Scholar 

  • Yokota K et al (2002) Occupational dermatitis from a one-component naphthalene type epoxy adhesive. Ind Health 40(1):63–65

    Article  CAS  PubMed  Google Scholar 

  • Yokota K et al (2004) Occupational dermatitis from soldering flux. Ind Health 42(3):383–384

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John S. C. English .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Roberts, E.J., Smith, V., English, J.S.C. (2020). Electronic Industry. In: John, S., Johansen, J., Rustemeyer, T., Elsner, P., Maibach, H. (eds) Kanerva’s Occupational Dermatology. Springer, Cham. https://doi.org/10.1007/978-3-319-68617-2_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68617-2_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68615-8

  • Online ISBN: 978-3-319-68617-2

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics