Skip to main content

Metrology for Metal Nanoparticles

  • Reference work entry
  • First Online:
Handbook of Ecomaterials

Abstract

Applications and implications of manufactured or engineered metal nanoparticles (MNP) are also, in most cases, dependent on concentration. Thus, determining accurately the amount of MNP is relevant in different fields beyond analytical chemistry and requires a good knowledge on how to report the concentration and which are the analytical methodologies suitable to quantify these analytes. This chapter intends to give the main concepts and analytical strategies developed up to date for MNP, in a manner easily accessible for readers from different areas of expertise. It covers useful methodologies for determining MNP in synthesis outcomes as well as at environmental trace levels, including their limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 979.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bureau International des Poids et Mesures What is metrology? http://www.bipm.org. Accessed 03 July 2017

  2. McNaught AD, Wilkinson A (1997) IUPAC. Compendium of chemical terminology, (the “gold book”), 2nd edn. Blackwell Scientific Publications, Oxford

    Google Scholar 

  3. Laborda F, Bolea E, Cepriá G, Gómez M, Jiménez M, Pérez-Arantegui J, Castillo J (2016) Detection, characterization and quantification of inorganic engineered nanomaterials: a review of techniques and methodological approaches for the analysis of complex samples. Anal Chim Acta 904:10–32. https://doi.org/10.1016/j.aca.2015.11.008

    Article  Google Scholar 

  4. Xing B, Vecitis CD, Senesi N (2016) Engineered nanoparticles and the environment. Biophysicochemical processes and toxicity. Wiley, New Jersey

    Book  Google Scholar 

  5. Buzea C, Pacheco I, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2:MR17–MR71. https://doi.org/10.1116/1.2815690

    Article  Google Scholar 

  6. López-Serrano A, Olivas R, Landaluze J, Cámara C (2015) Nanoparticles: a global vision. Characterization, separation, and quantification methods. Potential environmental and health impact. Anal Methods 6:38–56

    Article  Google Scholar 

  7. Cooke M (2009) Emerging contaminants-nanomaterials (EPA 505-F-09-011)

    Google Scholar 

  8. Kühnel D, Nickel C (2014) The OECD expert meeting on ecotoxicology and environmental fate – towards the development of improved OECD guidelines for the testing of nanomaterials. Sci Total Environ 472:347–353. https://doi.org/10.1016/j.scitotenv.2013.11.055

    Article  Google Scholar 

  9. Grassian V, Haes A, Mudunkotuwa I, Demokritou P, Kane A, Murphy C, Hutchison J, Isaacs J, Jun Y, Karn B, Khondaker S, Larsen S, Lau B, Pettibone J, Sadik O, Saleh N, Teague C (2016) NanoEHS – defining fundamental science needs: no easy feat when the simple itself is complex. Env Sci Nano 27. https://doi.org/10.1039/C5EN00112A

    Google Scholar 

  10. Zänker H, Schierz A (2012) Engineered nanoparticles and their identification among natural nanoparticles. Annu Rev Anal Chem 5:107–132. https://doi.org/10.1146/annurev-anchem-062011-143130

    Article  Google Scholar 

  11. Ahumada M, Lissi E, Montagut AM, Valenzuela-Henríquez F, Pacioni NL, Alarcón EI (2017) Association models for binding of molecules to nanostructures. Analyst 142:2067–2089

    Article  Google Scholar 

  12. Baalousha M, Lead JR (2015) Characterization of nanomaterials in complex environmental and biological media. Elsevier, Netherlands

    Google Scholar 

  13. Thomas R (2004) Robert practical guide to ICP-MS. Marcel Dekker, New York

    Google Scholar 

  14. Laborda F, Bolea E, Jiménez-Lamana J (2014) Single particle inductively coupled plasma mass spectrometry: a powerful tool for nanoanalysis. Anal Chem 86:2270–2278. https://doi.org/10.1021/ac402980q

    Article  Google Scholar 

  15. Huynh K, Siska E, Heithmar E, Tadjiki S, Pergantis S (2016) Detection and quantification of silver nanoparticles at environmentally relevant concentrations using asymmetric flow field–flow fractionation online with single particle inductively coupled plasma mass spectrometry. Anal Chem 88:4909–4916. https://doi.org/10.1021/acs.analchem.6b00764

    Article  Google Scholar 

  16. Borges D, Holcombe J (2017) Graphite furnace atomic absorption spectrometry. In: Encyclopedia of analytical chemistry. Meyers R. Ed. Wiley, Chichester, pp 1–20. https://doi.org/10.1002/9780470027318.a5108.pub3

  17. Gallego-Urrea J, Tuoriniemi J, Hassellöv M (2011) Applications of particle-tracking analysis to the determination of size distributions and concentrations of nanoparticles in environmental, biological and food samples. TrAC Trends Anal Chem 30:473–483. https://doi.org/10.1016/j.trac.2011.01.005

    Article  Google Scholar 

  18. Anabitarte F, Cobo A, Lopez-Higuera J (2012) Laser-induced breakdown spectroscopy: fundamentals, applications, and challenges. ISRN Spectrosc 2012:1–12. https://doi.org/10.5402/2012/285240

    Article  Google Scholar 

  19. Thang N, Knopp R, Geckeis H, Kim J, Beck H (1999) Detection of nanocolloids with flow-field flow fractionation and laser-induced breakdown detection. Anal Chem 72:1–5

    Article  Google Scholar 

  20. Cayuela A, Soriano M, Carrión M, Valcárcel M (2014) Functionalized carbon dots as sensors for gold nanoparticles in spiked samples: formation of nanohybrids. Anal Chim Acta 820:133–138. https://doi.org/10.1016/j.aca.2014.02.010

    Article  Google Scholar 

  21. Cayuela A, Soriano M, Valcárcel M (2015) Reusable sensor based on functionalized carbon dots for the detection of silver nanoparticles in cosmetics via inner filter effect. Anal Chim Acta 872:70–76. https://doi.org/10.1016/j.aca.2015.02.052

    Article  Google Scholar 

  22. Pacioni NL, Veglia AV (2016) Analytical strategy to detect metal nanoparticles in mixtures without previous separation. Sens Actuators B Chem 228:557–564. https://doi.org/10.1016/j.snb.2016.01.064

    Article  Google Scholar 

  23. Mahmoudi M, Lohse S, Murphy C, Suslick K (2016) Identification of nanoparticles with a colorimetric sensor array. ACS Sens 1:17–21. https://doi.org/10.1021/acssensors.5b00014

    Article  Google Scholar 

  24. Weinberg H, Galyean A, Leopold M (2011) Evaluating engineered nanoparticles in natural waters. TrAC Trends Anal Chem 30:72–83. https://doi.org/10.1016/j.trac.2010.09.006

    Article  Google Scholar 

  25. Chao J, Liu J, Yu S, Feng Y, Tan Z, Liu R, Yin Y (2011) Speciation analysis of silver nanoparticles and silver ions in antibacterial products and environmental waters via cloud point extraction-based separation. Anal Chem 83:6875–6882. https://doi.org/10.1021/ac201086a

    Article  Google Scholar 

  26. Liu J, Yu S, Yin Y, Chao J (2012) Methods for separation, identification, characterization and quantification of silver nanoparticles. TrAC Trends Anal Chem 33:95–106. https://doi.org/10.1016/j.trac.2011.10.010

    Article  Google Scholar 

  27. Kammer F, Legros S, Hofmann T, Larsen E, Loeschner K (2011) Separation and characterization of nanoparticles in complex food and environmental samples by field-flow fractionation. TrAC Trends Anal Chem 30:425–436. https://doi.org/10.1016/j.trac.2010.11.012

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia L. Pacioni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pacioni, N.L. (2019). Metrology for Metal Nanoparticles. In: Martínez, L., Kharissova, O., Kharisov, B. (eds) Handbook of Ecomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-68255-6_165

Download citation

Publish with us

Policies and ethics