Skip to main content

Thermoelectric Power Generation from Waste Heat

  • Reference work entry
  • First Online:

Abstract

Thermoelectric materials convert heat energy into electric energy directly by Seebeck effect. Electric power can be generated using thermoelectric materials under a temperature difference without moving parts. Thermoelectric power generation has been paid much attention to as a promising method to recover waste heat distributed widely in our society, since approximately only one-third of primary input energy into our society is used effectively, while the remaining two-third is just released mostly as waste heat to the ambient. Thermoelectric materials could be regarded as ecomaterials to promote effective use of heat energy in the energetic system. The fundamentals and ecological aspects of thermoelectric energy conversion are reviewed in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   979.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rawe DM (ed) (1995) CRC Handbook of Thermoelectrics. CRC Press, Boca Raton. http://www.enecho.meti.go.jp/en/. Accessed 21 Oct 2017

  2. Shinohara Y (2015) The state of the art of thermoelectric devices in Japan. Mater Today 2:877–885

    Article  Google Scholar 

  3. Uemura K, Nishida IA (1988) Thermoelectric semiconductors and their applications. Nikkan Kogyo Shinbun, Tokyo (In Japanese)

    Google Scholar 

  4. Shinohara Y (2016) The state of the art of thermoelectric materials and their automotive applications. Energy Dev 3:39–42 (In Japanese)

    Google Scholar 

  5. Bouyrie Y, Ohta M, Suekuni K, Kikuchi Y, Jood P, Yamamotoa A, Takabatake T (2017) Enhancement in the thermoelectric performanceof colusites Cu26A2E6S32 (A = Nb, Ta; E = Sn, Ge) using E-site non-stoichiometry. J Mater Chem C 5:4174–4184. https://doi.org/10.1039/c7tc00762k

    Article  Google Scholar 

  6. Mikami M, Inukai M, Miyazaki H, Nishino Y (2015) Effect of off-stoichiometry on the thermoelectric properties of Heusler-type Fe2VAl sintered alloys. J Electron Mater 45:1284–1289

    Article  Google Scholar 

  7. Zhao LD, Lo SH, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid VP, Kanatzidis MG (2014) Ultralow thermal conductivity and highthermoelectric figure of merit in SnSe crystals. Nature 508:373–377. https://doi.org/10.1038/nature13184

    Article  Google Scholar 

  8. Isoda Y, Tada S, Nagai T, Fujiu H, Shinohara Y (2010) Thermoelectric properties of p-type Mg2Si0.25Sn0.75 with Li and Ag double-doping. J Elec Mater 39:1531–1535

    Article  Google Scholar 

  9. Gao P, Berkun I, Schemidt RD, Luzenski MF, Lu X, Sarac PB, Case ED, Hogan TP (2013) Transport and mechanical properties of high-ZTMg2.08Si0.4-xSn0.6Sbx thermoelectric materials. J Electron Mater 43:1790–1803. https://doi.org/10.1007/s11664-013-2865-8

    Article  Google Scholar 

  10. Jood P, Ohta M, Kunii M, Hu X, Nishiate H, Yamamoto A, Kanatzidis MG (2015) Enhanced average thermoelectric figure of merit of n-type PbTe1-xIx–MgTe. J Mater Chem C 3:10401–10408. https://doi.org/10.1039/c5tc01652e

    Article  Google Scholar 

  11. Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus MS, Chen G, Ren Z (2008) High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320:634–638

    Article  Google Scholar 

  12. Horio Y, Hayashi T, Sekine JM, Kamimura N, Tachibana T, Tomita N (2005) Performance and application of thermoelectric modules for consumer use fabricated with (Bi,Sb)(2)(Te,Se)(3) using a rapid solidification technique. In: Proceedings of the 24th international conference on thermoelectrics, pp 362–364

    Google Scholar 

  13. NIMS Report (2014) Thermoelectrics. National Institute for Materials Science, Tsukuba (in Japanese). http://www.kelk.co.jp/english/index.html. Accessed 27 Oct 2017

  14. http://www.micropelt.com/en.html. Accessed 27 Oct 2017

  15. Kajikawa T, Ohta T, Nishida IA, Matsuura K, Natsubara K (eds) (1995) Overview of thermoelectric conversion systems. Realize, Tokyo

    Google Scholar 

  16. http://www.meti.go.jp/committee/summary/0001620/031_05_00.pdf. Accessed 15 Sept 2018

  17. Horie S (1995) Thermoelectric energy conversion systems. REALIZE Science & Engineering, Tokyo, pp 112–115

    Google Scholar 

  18. Watanabe S (2004) In: Kajikawa T, Sano S, Morimoto J (eds) The new edition of thermoelectric energy conversion systems. REALIZE Science & Engineering, Tokyo, pp 299–304

    Google Scholar 

  19. http://www.meti.go.jp/policy/tech_promotion/kenkyuu/saishin/52.pdf. Accessed 8 Oct 2014

  20. http://solarsystem.nasa.gov/index.cfm. Accessed 15 Sept 2018

  21. http://www.globalte.com/products/GlobalTEGs. Accessed 8 Oct 2014

  22. http://tes-ne.com/English/. Accessed 8 Oct 2014

  23. Horio Y (2015) PPT file in thermoelectric seminar, Tsukuba

    Google Scholar 

  24. Watanabe S (2015) PPT file in thermoelectric seminar, Tsukuba

    Google Scholar 

  25. http://www.kelk.co.jp/useful/netsuden2.html. Accessed 15 Sept 2018

  26. http://www.kelk.co.jp/news/120419.html. Accessed 15 Sept 2018

  27. http://www.micropelt.com/index.php. Accessed 8 Oct 2014

  28. http://www.bioliteenergy.jp/menu44/contents606. Accessed 15 Sept 2018

  29. http://www.iwatani.co.jp/jpn/newsrelease/detail_1240.html. Accessed 15 Sept 2018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshikazu Shinohara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Shinohara, Y., Umezawa, O. (2019). Thermoelectric Power Generation from Waste Heat. In: Martínez, L., Kharissova, O., Kharisov, B. (eds) Handbook of Ecomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-68255-6_14

Download citation

Publish with us

Policies and ethics