Skip to main content

Nanomaterials as Sensor for Hazardous Gas Detection

  • Reference work entry
  • First Online:
Handbook of Ecomaterials

Abstract

Gases that are harmful to humans in definite concentrations are termed as hazardous gases. These gases have adverse effect on living organisms and on the environment. Sometimes the presence of hazardous gas leads to fire accident, causes health problem, and even causes death. Monitoring of these gases has become a key issue. Although the presence of some of the hazardous gases can be detected by their foul odor, the presence of these gases in a confined area in a scientific way by using electronic devices and technologies helps us in avoiding accident and saves life. A gas detector device identifies the presence of a particular gas and may sound an alarm so that the concerned persons can take step against the leakages and get opportunity to leave the place if required. In the industrial age, the first gas detector was invented by Sir Humphry Davy (Davy’s lamp) in order to detect methane gas in the coal mines. Later on several devices have been developed by different workers to detect the various harmful gases. The present chapter provides information on different nanomaterial-based sensors for the detection of hazardous gases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 979.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kauffman DR, Star A (2008) Carbon nanotube gas and vapour sensors. Angew Chem Int Ed 47:6550–6570

    Article  Google Scholar 

  2. Li J, Lu Y, Ye Q, Cinke M, Han J, Meyyappan M (2003) Carbon nanotube sensors for gas and organic vapor detection. Nano Lett 3(7):929–933

    Article  Google Scholar 

  3. Savagatrup S, Schroeder V, He X, Lin S, He M, Yassine O, Salama KN, Zhang XX, Swager TM (2017) Bio-inspired carbon monoxide sensors with voltage-activated sensitivity. Angew Chem 129:1–6

    Article  Google Scholar 

  4. Chen A, Chatterjee S (2013) Nanomaterials based electrochemical sensors for biomedical applications. Chem Soc Rev 42:5425–5438

    Article  Google Scholar 

  5. Wetchakun K, Samerjai T, Tamaekong N, Liewhirana C, Siriwong C, Kruefu V, Wisitsoraat A, Tuantranont A, Phanichphant S (2011) Semiconducting metal oxides as sensors for environmentally hazardous gases. Sensors Actuators B 160:580–591

    Article  Google Scholar 

  6. Zeng W, Wang H, Li Z (2016) Nanomaterials for sensing applications. J Nanotechnol 2016:2083948. https://doi.org/10.1155/2016/2083948

    Article  Google Scholar 

  7. Lin Y, Watson KA, Fallbach MJ, Ghose S, Smith JG, Delozier DM, Cao W, Crooks RE, Connell JW (2009) Rapid, solventless, bulk preparation of metal nanoparticle-decorated carbon nanotubes. ACS Nano 3(4):871–884

    Article  Google Scholar 

  8. Modi A, Koratkar N, Lass E, Wei B, Ajayan PM (2003) Miniaturized gas ionization sensors using carbon nanotubes. Nature 424:171–174

    Article  Google Scholar 

  9. Leenaerts O, Partoens B, Peeters FM (2008) Adsorption of H2O, NH3, CO, NO2 and NO on graphene: a first-principles study. Phys Rev B 77(125416):1–6

    Google Scholar 

  10. Radzimska AK, Jesionowski T (2014) Zinc oxide-from synthesis to application: a review. Materials 7:2833–2881

    Article  Google Scholar 

  11. Du J, Zhao R, Chen S, Wang H, Li J, Zhu Z (2015) Self-assembly of gridlike zinc oxide lamellae for chemical-sensing applications. ACS Appl Mater Interfaces 7:5870–5878

    Article  Google Scholar 

  12. Kauffman DR, Star A (2007) Chemically induced potential barriers at the carbon nanotube-metal nanoparticle interface. Nano Lett 7(7):1863–1868

    Article  Google Scholar 

  13. Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Nanotube molecular wires as chemical sensors. Science 287:622–625

    Article  Google Scholar 

  14. Su S, Wu W, Gao J, Lu J, Fan C (2012) Nanomaterials-based sensors for applications in environmental monitoring. J Mater Chem 22:18101–18110

    Article  Google Scholar 

  15. Goldoni A, Larciprete R, Petaccia L, Lizzit S (2003) Single-wall carbon nanotube interaction with gases: sample contaminants and environmental monitoring. J Am Chem Soc 125:11329–11333

    Article  Google Scholar 

  16. Dua V, Surwade SP, Ammu S, Agnihotra SR, Jain S, Roberts KE, Park S, Ruoff RS, Manohar SK (2010) All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew Chem Int Ed 49:2154–2157

    Article  Google Scholar 

  17. Liang YX, Chen YJ, Wang TH (2004) Low-resistance gas sensors fabricated from multiwalled carbon nanotubes coated with a thin tin oxide layer. Appl Phys Lett 85(4):666–668

    Article  Google Scholar 

  18. Zhou Q, Cao M, Li W, Tang C, Zhu S (2015) Research on acetylene sensing properties and mechanism of SnO2 based chemical gas sensor decorated with Sm2O3. J Nanotechnol 2015:714072. https://doi.org/10.1155/2015/714072

    Article  Google Scholar 

  19. Chang SJ, Hsueh TJ, Chen CI, Huang BR (2008) Highly sensitive ZnO nanowire CO sensors with the adsorption of Au nanoparticles. Nanotechnology 19:175502

    Article  Google Scholar 

  20. Bahrami B, Khodadadi A, Kazemeini M, Mortazavi Y (2008) Enhanced CO sensitivity and selectivity of gold nanoparticles-doped SnO2 sensor in presence of propane and methane. Sensors Actuators B 133:352–356

    Article  Google Scholar 

  21. Zhang T, Liu L, Qi Q, Li S, Lu G (2009) Development of microstructure In/Pd-doped SnO2 sensor for low-level CO detection. Sensors Actuators B Chem 139:287–291

    Article  Google Scholar 

  22. Lim SK, Hwang SH, Chang D, Kim S (2010) Preparation of mesoporous In2O3 nanofibers by electrospinning and their application as a CO gas sensor. Sensors Actuators B 149:28–33

    Article  Google Scholar 

  23. Park JA, Moon J, Lee SJ, Kim SH, Zyung T, Chu HY (2010) Structure and CO gas sensing properties of electrospun TiO2 nanofibers. Mater Lett 64:255–257

    Article  Google Scholar 

  24. Liu SF, Lin S, Swager TM (2016) An organocobalt–carbon nanotube chemiresistive carbon monoxide detector. ACS Sens 1(4):354–357

    Article  Google Scholar 

  25. Sun Z, Yuan H, Liu Z, Han B, Zhang X (2005) A highly efficient chemical sensor material for H2S: α Fe2O3 nanotubes fabricated using carbon nanotube templates. Adv Mater 17:2993–2997

    Article  Google Scholar 

  26. Geng J, Thomas MDR, Shephard DS, Johnson BFG (2005) Suppressed electron hopping in a Au nanoparticle/H2S system: development towards a H2S nanosensor. Chem Commun 14:1895–1897

    Article  Google Scholar 

  27. Shirsat MD, Bangar MA, Deshusses MA, Myung NV, Mulchandani A (2009) Polyaniline nanowires-gold nanoparticles hybrid network based chemiresistive hydrogen sulfide sensor. Appl Phys Lett 94:083502

    Article  Google Scholar 

  28. Mubeen S, Zhang T, Chartuprayoon N, Rheem Y, Mulchandani A, Myung NV, Deshusses MA (2010) Sensitive detection of H2S using gold nanoparticle decorated single-walled carbon nanotubes. Anal Chem 82:250–257

    Article  Google Scholar 

  29. Qi P, Vermesh O, Grecu M, Javey A, Wang Q, Dai H, Peng S, Cho KJ (2003) Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection. Nano Lett 3(3):347–351

    Article  Google Scholar 

  30. Kawasaki H, Ueda T, Suda Y, Ohshima T (2004) Properties of metal doped tungsten oxide thin films for NOx gas sensors grown by PLD method combined with sputtering process. Sensors Actuators B 100:266–269

    Article  Google Scholar 

  31. Baratto C, Sberveglieri G, Onischuk A, Caruso B, Stasio SD (2004) Low temperature selective NO2 sensors by nanostructured fibres of ZnO. Sensors Actuators B 100:261–265

    Article  Google Scholar 

  32. Cho PS, Kim KW, Lee JH (2006) NO2 sensing characteristics of ZnO nanorods prepared by hydrothermal method. J Electroceram 17:975–978

    Article  Google Scholar 

  33. Jeong HY, Lee DS, Choi HK, Lee DH, Kim JE, Lee JY, Lee WJ, Kim SO, Choi SY (2010) Flexible room-temperature NO2 gas sensors based on carbon nanotubes/reduced graphene hybrid films. Appl Phys Lett 96:213105

    Article  Google Scholar 

  34. Canevali C, Mari CM, Mattoni M, Morazzoni F, Ruffo R, Scotti R, Russo U, Nodari L (2004) Mechanism of sensing NO in argon by nanocrystalline SnO2: electron paramagnetic resonance, Mossbauer and electrical study. Sensors Actuators B 100:228–235

    Article  Google Scholar 

  35. Maklin J, Mustonen T, Kordas K, Saukko S, Toth G, Vahakangas J (2007) Nitric oxide gas sensors with functionalized carbon nanotubes. Phys Status Solidi B 244(11):4298–4302

    Article  Google Scholar 

  36. Kuzmych O, Allen BL, Star A (2007) Carbon nanotube sensors for exhaled breath components. Nanotechnology 18:375502

    Article  Google Scholar 

  37. Li W, Geng X, Guo Y, Rong J, Gong Y, Wu L, Zhang X, Li P, Xu J, Cheng G, Sun M, Liu L (2011) Reduced graphene oxide electrically contacted graphene sensor for highly sensitive nitric oxide detection. ACS Nano 5(9):6955–6961

    Article  Google Scholar 

  38. Zhou Q, Xie B, Jin L, Chen W, Li J (2016) Hydrothermal synthesis and responsive characteristics of hierarchical zinc oxide nanoflowers to sulfur dioxide. J Nanotechnol 2016:6742104. https://doi.org/10.1155/2016/6742104

    Article  Google Scholar 

  39. Hung NL, Ahn E, Park S, Jung H, Kim H, Hong SK, Kim D, Hwang C (2009) Synthesis and hydrogen gas sensing properties of ZnO wirelike thin films. J Vac Sci Technol A 27:1347–1351

    Article  Google Scholar 

  40. Johnson BJL, Behnam A, Pearton SJ, Ural A (2010) Hydrogen sensing using Pd-functionalized multi-layer graphene nanoribbon networks. Adv Mater 22:4877–4880

    Article  Google Scholar 

  41. Krsko O, Plecenik T, Mosko M, Haidry AA, Durina P, Truchly M, Grancic B, Gregor M, Roch T, Satrapinskyy L, Moskova A, Mikula M, Kus P, Plecenik A (2015) Highly sensitive hydrogen semiconductor gas sensor operating at room temperature. Procedia Eng 120:618–622

    Article  Google Scholar 

  42. Jang YT, Moon S, Ahn JH, Lee YH, Ju BK (2004) A simple approach in fabricating chemical sensor using laterally grown multi-walled carbon nanotubes. Sensors Actuators B 99:118–122

    Article  Google Scholar 

  43. Fiorilli S, Onida B, Macquarrie D, Garrone E (2004) Mesoporous SBA-15 silica impregnated with Reichardt’s dye: a material optically responding to NH3. Sensors Actuators B 100:103–106

    Article  Google Scholar 

  44. Chapelle A, Oudrhiri-Hassani F, Presmanes L, Barnabe A, Tailhades P (2010) CO2 sensing properties of semiconducting copper oxide and spinel ferrite nanocomposite thin film. Appl Surf Sci 256(14):4715–4519

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarat Kumar Swain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Swain, S.K., Barik, S., Das, R. (2019). Nanomaterials as Sensor for Hazardous Gas Detection. In: Martínez, L., Kharissova, O., Kharisov, B. (eds) Handbook of Ecomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-68255-6_128

Download citation

Publish with us

Policies and ethics