Skip to main content

FXYD1 (Phospholemman)

  • Reference work entry
  • First Online:
Book cover Encyclopedia of Signaling Molecules

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 4,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Attali B, Latter H, Rachamim N, Garty H. A corticosteroid-induced gene expressing an “IsK-like” K+ channel activity in Xenopus oocytes. Proc Natl Acad Sci USA. 1995;92:6092–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beguin P, Crambert G, Monnet-Tschudi F, Uldry M, Horisberger JD, Garty H, et al. FXYD7 is a brain-specific regulator of Na,K-ATPase alpha 1-beta isozymes. EMBO J. 2002;21:3264–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beguin P, Wang X, Firsov D, Puoti A, Claeys D, Horisberger JD, et al. The gamma subunit is a specific component of the Na,K-ATPase and modulates its transport function. EMBO J. 1997;16:4250–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bell JR, Kennington E, Fuller W, Dighe K, Donoghue P, Clark JE, et al. Characterization of the phospholemman knockout mouse heart: depressed left ventricular function with increased Na-K-ATPase activity. Am J Physiol Heart Circ Physiol. 2008;294:H613–21.

    Article  PubMed  CAS  Google Scholar 

  • Bell JR, Lloyd D, Curl CL, Delbridge LM, Shattock MJ. Cell volume control in phospholemman (PLM) knockout mice: do cardiac myocytes demonstrate a regulatory volume decrease and is this influenced by deletion of PLM? Exp Physiol. 2009;94:330–43.

    Article  PubMed  CAS  Google Scholar 

  • Bibert S, Liu CC, Figtree GA, Garcia A, Hamilton EJ, Marassi FM, et al. FXYD proteins reverse inhibition of the Na+-K+ pump mediated by glutathionylation of its β1 subunit. J Biol Chem. 2011;286:18562–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bogaev RC, Jia LG, Kobayashi YM, Palmer CJ, Mounsey JP, Moorman JR, et al. Gene structure and expression of phospholemman in mouse. Gene. 2001;271:69–79.

    Article  PubMed  CAS  Google Scholar 

  • Boguslavskyi A, Pavlovic D, Aughton K, Clark JE, Howie J, Fuller W, et al. Cardiac hypertrophy in mice expressing unphosphorylatable phospholemman. Cardiovasc Res. 2014;104:72–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bossuyt J, Despa S, Han F, Hou Z, Robia SL, Lingrel JB, et al. Isoform specificity of the Na/K-ATPase association and regulation by phospholemman. J Biol Chem. 2009;284:26749–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bossuyt J, Despa S, Martin JL, Bers DM. Phospholemman phosphorylation alters its fluorescence resonance energy transfer with the Na/K-ATPase pump. J Biol Chem. 2006;281:32765–73.

    Article  PubMed  CAS  Google Scholar 

  • Cheung JY, Zhang XQ, Song J, Gao E, Rabinowitz JE, Chan TO, et al. Phospholemman: a novel cardiac stress protein. J Clin Transl Sci. 2010;3:189–96.

    Article  CAS  Google Scholar 

  • Crambert G, Fuzesi M, Garty H, Karlish S, Geering K. Phospholemman (FXYD1) associates with Na,K-ATPase and regulates its transport properties. Proc Natl Acad Sci USA. 2002;99:11476–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Despa S, Bossuyt J, Han F, Ginsburg KS, Jia LG, Kutchai H, et al. Phospholemman-phosphorylation mediates the β-adrenergic effects on Na/K pump function in cardiac myocytes. Circ Res. 2005;97:252–9.

    Article  PubMed  CAS  Google Scholar 

  • Despa S, Tucker AL, Bers DM. Phospholemman-mediated activation of Na/K-ATPase limits [Na]i and inotropic state during β-adrenergic stimulation in mouse ventricular myocytes. Circulation. 2008;117:1849–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • El-Armouche A, Wittkopper K, Fuller W, Howie J, Shattock MJ, Pavlovic D. Phospholemman-dependent regulation of the cardiac Na/K-ATPase activity is modulated by inhibitor-1 sensitive type-1 phosphatase. FASEB J. 2011;25:4467–75.

    Article  PubMed  CAS  Google Scholar 

  • Feschenko MS, Donnet C, Wetzel RK, Asinovski NK, Jones LR, Sweadner KJ. Phospholemman, a single-span membrane protein, is an accessory protein of Na,K-ATPase in cerebellum and choroid plexus. J Neurosci. 2003;23:2161–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fu X, Kamps MP. E2a-Pbx1 induces aberrant expression of tissue-specific and developmentally regulated genes when expressed in NIH 3 T3 fibroblasts. Mol Cell Biol. 1997;17:1503–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fuller W, Howie J, McLatchie LM, Weber RJ, Hastie CJ, Burness K, et al. FXYD1 phosphorylation in vitro and in adult rat cardiac myocytes: threonine 69 is a novel substrate for protein kinase C. Am J Physiol Cell Physiol. 2009;296:C1346–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garty H, Karlish SJ. Role of FXYD proteins in ion transport. Annu Rev Physiol. 2006;68:431–59.

    Article  CAS  PubMed  Google Scholar 

  • Geering K. FXYD proteins: new regulators of Na-K-ATPase. Am J Physiol Renal Physiol. 2006;290:F241–50.

    Article  PubMed  CAS  Google Scholar 

  • Han F, Bossuyt J, Despa S, Tucker AL, Bers DM. Phospholemman phosphorylation mediates the protein kinase C-dependent effects on Na+/K+ pump function in cardiac myocytes. Circ Res. 2006;99:1376–83.

    Article  PubMed  CAS  Google Scholar 

  • Howie J, Tulloch LB, Shattock MJ, Fuller W. Regulation of the cardiac Na+ pump by palmitoylation of its catalytic and regulatory subunits. Biochem Soc Trans. 2013;41:95–100.

    Article  PubMed  CAS  Google Scholar 

  • Kaplan JH. Biochemistry of Na. K-ATPase Annu Rev Biochem. 2002;71:511–35.

    Article  PubMed  CAS  Google Scholar 

  • Lindzen M, Gottschalk KE, Fuzesi M, Garty H, Karlish SJ. Structural interactions between FXYD proteins and Na+,K+-ATPase: α/β/FXYD subunit stoichiometry and cross-linking. J Biol Chem. 2006;281:5947–55.

    Article  PubMed  CAS  Google Scholar 

  • Mercer RW, Biemesderfer D, Bliss Jr DP, Collins JH, Forbush B. Molecular cloning and immunological characterization of the gamma polypeptide, a small protein associated with the Na. K-ATPase J Biol Chem. 1993;121:579–86.

    CAS  Google Scholar 

  • Mirza MA, Zhang XQ, Ahlers BA, Qureshi A, Carl LL, Song J, et al. Effects of phospholemman downregulation on contractility and [Ca2+]i transients in adult rat cardiac myocytes. Am J Physiol Heart Circ Physiol. 2004;286:H1322–30.

    Article  PubMed  CAS  Google Scholar 

  • Mishra NK, Habeck M, Kirchner C, Haviv H, Peleg Y, Eisenstein M, et al. Molecular mechanisms and kinetic effects of FXYD1 and phosphomimetic mutants on purified human Na, K-ATPase. J Biol Chem. 2015;290:28746–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moorman JR, Ackerman SJ, Kowdley GC, Griffin MP, Mounsey JP, Chen Z, et al. Unitary anion currents through phospholemman channel molecules. Nature. 1995;377:737–40.

    Article  PubMed  CAS  Google Scholar 

  • Moorman JR, Palmer CJ, John 3rd JE, Durieux ME, Jones LR. Phospholemman expression induces a hyperpolarization-activated chloride current in Xenopus oocytes. J Biol Chem. 1992;267:14551–4.

    PubMed  CAS  Google Scholar 

  • Morrison BW, Moorman JR, Kowdley GC, Kobayashi YM, Jones LR, Leder P. Mat-8, a novel phospholemman-like protein expressed in human breast tumors, induces a chloride conductance in Xenopus oocytes. J Biol Chem. 1995;270:2176–82.

    Article  PubMed  CAS  Google Scholar 

  • Morth JP, Pedersen BP, Toustrup-Jensen MS, Sorensen TL, Petersen J, Andersen JP, et al. Crystal structure of the sodium-potassium pump. Nature. 2007;450:1043–9.

    Article  PubMed  CAS  Google Scholar 

  • Palmer CJ, Scott BT, Jones LR. Purification and complete sequence determination of the major plasma membrane substrate for cAMP-dependent protein kinase and protein kinase C in myocardium. J Biol Chem. 1991;266:11126–30.

    PubMed  CAS  Google Scholar 

  • Pavlovic D, Fuller W, Shattock MJ. The intracellular region of FXYD1 is sufficient to regulate cardiac Na/K ATPase. FASEB J. 2007;21:1539–46.

    Article  PubMed  CAS  Google Scholar 

  • Pavlovic D, Fuller W, Shattock MJ. Novel regulation of cardiac Na pump via phospholemman. J Mol Cell Cardiol. 2013a;61:83–93.

    Article  PubMed  CAS  Google Scholar 

  • Pavlovic D, Hall AR, Kennington EJ, Aughton K, Boguslavskyi A, Fuller W, et al. Nitric oxide regulates cardiac intracellular Na+ and Ca2+ by modulating Na/K ATPase via PKCε and phospholemman-dependent mechanism. J Mol Cell Cardiol. 2013b;61:164–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pirkmajer S, Chibalin AV. Na,K-ATPase regulation in skeletal muscle. Am J Physiol Endocrinol Metab. 2016;311:E1–e31.

    Article  PubMed  Google Scholar 

  • Presti CF, Jones LR, Lindemann JP. Isoproterenol-induced phosphorylation of a 15-kilodalton sarcolemmal protein in intact myocardium. J Biol Chem. 1985a;260:3860–7.

    PubMed  CAS  Google Scholar 

  • Presti CF, Scott BT, Jones LR. Identification of an endogenous protein kinase C activity and its intrinsic 15-kilodalton substrate in purified canine cardiac sarcolemmal vesicles. J Biol Chem. 1985b;260:13879–89.

    PubMed  CAS  Google Scholar 

  • Rembold CM, Ripley ML, Meeks MK, Geddis LM, Kutchai HC, Marassi FM, et al. Serine 68 phospholemman phosphorylation during forskolin-induced swine carotid artery relaxation. J Vasc Res. 2005;42:483–91.

    Article  PubMed  CAS  Google Scholar 

  • Sweadner KJ, Rael E. The FXYD gene family of small ion transport regulators or channels: cDNA sequence, protein signature sequence, and expression. Genomics. 2000;68:41–56.

    Article  PubMed  CAS  Google Scholar 

  • Teriete P, Franzin CM, Choi J, Marassi FM. Structure of the Na,K-ATPase regulatory protein FXYD1 in micelles. Biochemistry. 2007;46:6774–83.

    Article  PubMed  CAS  Google Scholar 

  • Therien AG, Blostein R. Mechanisms of sodium pump regulation. Am J Physiol Cell Physiol. 2000;279:C541–66.

    Article  CAS  PubMed  Google Scholar 

  • Tulloch LB, Howie J, Wypijewski KJ, Wilson CR, Bernard WG, Shattock MJ, et al. The inhibitory effect of phospholemman on the sodium pump requires its palmitoylation. J Biol Chem. 2011;286:36020–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang X, Gao G, Guo K, Yarotskyy V, Huang C, Elmslie KS, et al. Phospholemman modulates the gating of cardiac L-type calcium channels. Biophys J. 2010;98:1149–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wetzel RK, Sweadner KJ. Phospholemman expression in extraglomerular mesangium and afferent arteriole of the juxtaglomerular apparatus. Am J Physiol Renal Physiol. 2003;285:F121–9.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi F, Yamaguchi K, Tai Y, Sugimoto K, Tokuda M. Molecular cloning and characterization of a novel phospholemman-like protein from rat hippocampus. Brain Res Mol Brain Res. 2001;86:189–92.

    Article  PubMed  CAS  Google Scholar 

  • Zhang XQ, Qureshi A, Song J, Carl LL, Tian Q, Stahl RC, et al. Phospholemman modulates Na+/Ca2+ exchange in adult rat cardiac myocytes. Am J Physiol Heart Circ Physiol. 2003;284:H225–33.

    Article  PubMed  CAS  Google Scholar 

  • Zhang XQ, Wang J, Song J, Rabinowitz J, Chen X, Houser SR, et al. Regulation of L-type calcium channel by phospholemman in cardiac myocytes. J Mol Cell Cardiol. 2015;84:104–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Shattock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Park, K.C., Pavlovic, D., Shattock, M.J. (2018). FXYD1 (Phospholemman). In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, Cham. https://doi.org/10.1007/978-3-319-67199-4_101757

Download citation

Publish with us

Policies and ethics