Skip to main content

Molecular Mechanisms of Apoptosis in Naive and Memory Human T-Cell Subsets

Effect of Age

  • Living reference work entry
  • First Online:
  • 249 Accesses

Abstract

There are multiple ways for cells to die, including necrosis and apoptosis. Apoptosis or programmed cell death or suicidal cell death is a physiological form of cell death, which is critical in cellular homeostasis. Apoptosis occurs in almost all cell types in the body and begins as early as eight-cell embryo stage and continues throughout the lifespan of the organism, albeit at different rate. There are multiple roads to apoptotic cell death, including extrinsic or death receptor-mediated and intrinsic, which may be mediated via mitochondrial pathway and the endoplasmic reticulum (ER) pathways. Most of apoptotic cell deaths are mediated by serine proteases, the caspases, which cleave a number of target substrates, including enzymes, transcription factors, and structural proteins. However, apoptosis may also be mediated by caspase-independent pathways. In this review, we will discuss molecular signaling and regulation of death receptor pathways, particularly CD95- and TNFR-mediated apoptosis and mitochondrial and ER stress pathways of apoptosis in naïve and various memory subsets of T cells, and changes during human aging.

This is a preview of subscription content, log in via an institution.

References

  • Aggarwal S, Gupta S (1998) Increased apoptosis of T cell subsets in aging humans: altered expression of Fas (CD95), Fas ligand, Bcl-2, and Bax. J Immunol 160:1627–1637

    PubMed  CAS  Google Scholar 

  • Aggarwal S, Gupta S (1999) Increased activity of caspase-3 and caspase-8 during Fas-mediated apoptosis in lymphocytes from aging humans. Clin Exp Immunol 117:285–290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aggarwal S, Gollapudi S, Gupta S (1999) Increased TNF-α-induced apoptosis in lymphocytes from aged humans: changes in TNF-α receptor expression and activation of caspases. J Immunol 162:2154–2161

    PubMed  CAS  Google Scholar 

  • Alpdogan O, Van Den Brink MRM (2005) IL-7 and IL-15: therapeutic cytokines for immunodeficiency. Trends Immunol 26:56–64

    Article  PubMed  CAS  Google Scholar 

  • Ashkanazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281:1305–1308

    Article  Google Scholar 

  • Bandres E, Merino J, Vazquez S et al (2000) The increase of IFN-γ production through aging correlates with the expanded CD8+CD28-CD57+ subpopulation. Clin Immunol 96:230–235

    Article  PubMed  CAS  Google Scholar 

  • Bellomo G, Parotti M, Taddei F et al (1992) Tumor necrosis factor-α induces apoptosis in mammary adenocarcinoma cells by an increase in intranuclear free calcium concentration and DNA fragmentation. Cancer Res 52:1342–1346

    PubMed  CAS  Google Scholar 

  • Brzezinska A, Magalska A, Szybinska A et al (2004) Proliferation and apoptosis of human CD8+CD28+ and CD8+CD28- lymphocytes during aging. Exp Gerontol 39:539–544

    Article  PubMed  Google Scholar 

  • Chang DW, Xing Z, Capacio VL et al (2003) Interdimer processing mechanism of procaspase-8 activation. EMBO 22:4132–4142

    Article  CAS  Google Scholar 

  • Chen C, Edelstein LC, Gelinas C (2000) The Rel/NF-κB family directly activates expression of the apoptotic inhibitor Bcl-x (L). Mol Cell Biol 20:2687–2695

    Article  PubMed  PubMed Central  Google Scholar 

  • De Smaele E, Zazzeroni F, Papa S et al (2001) Induction of gadd45α by NF-κB downregulates proapoptotic JNK signaling. Nature 414:308–313

    Article  PubMed  Google Scholar 

  • Declercz W, Denecker G, Fiers W et al (1998) Cooperation of both TNF receptors in inducing apoptosis: involvement of the TNF receptor-associated factor binding domain of the TNF receptor 75. J Immunol 161:390–399

    Google Scholar 

  • Dohrman A, Kataoka T, Cuenin S et al (2005) Cellular FLIP (long form) regulates CD8+ T cell activation through caspase-8-dependent NF-κB activation. J Immunol 174:5270–5278

    Article  PubMed  CAS  Google Scholar 

  • Draper DW, Harris VG, Culver CA et al (2004) Calcium and its role in nuclear translocation and activation of cytosolic phospholipase A2 in cells rendered sensitive to TNF-induced apoptosis by cycloheximide. J Immunol 172:2416–2423

    Article  PubMed  CAS  Google Scholar 

  • Effros RB, Boucher N, Porter V et al (1994) Decline in CD28 +T cells in centenarians and in long-term T cell cultures: a possible cause of both in vivo and in vitro immunosenescence. Exp Gerontol 29:601–609

    Article  PubMed  CAS  Google Scholar 

  • Fagnoni FF, Vescovini R, Paserri G et al (2002) Shortage of circulating naïve CD8+ T cells provides new insights on immunodeficiency in aging. Blood 95:2860–2868

    Google Scholar 

  • Fernandez A, Kiefer J, Fosdick L et al (1995) Oxygen radical production and thiol depletion are required for Ca++ -mediated endogenous endonucleases activation in apoptotic thymocytes. J Immunol 155:5133–5139

    PubMed  CAS  Google Scholar 

  • Ferri KF, Kroemer G (2001) Organelle-specific initiation of cell death pathways. Nat Cell Biol 3:E255–E263

    Article  PubMed  CAS  Google Scholar 

  • Ghosh S, Karin M (2002) Missing pieces in the NF-kB puzzle. Cell 109:S81–S96

    Article  PubMed  CAS  Google Scholar 

  • Golks A, Brenner D, Krammer PH et al (2005a) The c-FLIP NH2 terminus (p22-FLIP) induces NF-κB activation. J Exp Med 203:1295–1305

    Article  CAS  Google Scholar 

  • Golks A, Brenner D, Fritsch C et al (2005b) cFLIP R a new regulator of death receptor-induced apoptosis. J Biol Chem 280:14507–14513

    Article  PubMed  CAS  Google Scholar 

  • Grayson JM, Harrington LE, Lanier JG et al (2002) Differential sensitivity of naïve and memory CD8+ T cells to apoptosis in vivo. J Immunol 169:3760–3770

    Article  PubMed  CAS  Google Scholar 

  • Green DR, Evan GI (2002) A matter of life and death. Cancer Cell 1:19–30

    Article  PubMed  CAS  Google Scholar 

  • Gupta S (2000a) Molecular steps of death receptor and mitochondrial pathways of apoptosis. Life Sci 69:2957–2964

    Article  Google Scholar 

  • Gupta S (2000b) Molecular and biochemical pathways of apoptosis in lymphocytes from aged humans. Vaccine 18:1596–1601

    Article  PubMed  CAS  Google Scholar 

  • Gupta S (2001) Molecular steps of TNF receptor-mediated apoptosis. Curr Mol Med 1:299–306

    Article  Google Scholar 

  • Gupta S (2002a) Decision between life and death during TNF-induced signaling. J Clin Immunol 22:270–278

    Article  Google Scholar 

  • Gupta S (2002b) Tumor necrosis factor-a-induced apoptosis in T cells from aged humans: a role of TNFR-I and downstream signaling molecules. Exp Gerontol 37:293–299

    Article  PubMed  CAS  Google Scholar 

  • Gupta S (2003) Molecular signaling in death receptor and mitochondrial pathways of apoptosis. Int J Oncol 22:15–20

    PubMed  CAS  Google Scholar 

  • Gupta S (2005a) Death of lymphocytes: a clue to immune deficiency in human aging. Discov Med 5:298–302

    PubMed  Google Scholar 

  • Gupta S (2005b) Molecular mechanisms of apoptosis in the cells of the immune system in human aging. Immunol Rev 205:114–129

    Article  PubMed  CAS  Google Scholar 

  • Gupta S, Gollapudi S (2006a) Molecular mechanisms of TNF-α-induced apoptosis in naïve and memory T cell subsets. Autoimmun Rev 5:264–268

    Article  PubMed  CAS  Google Scholar 

  • Gupta S, Gollapudi S (2006b) TNF-α-induced apoptosis in human naïve and memory CD8+ T cells in aged humans. Exp Gerontol 41:69–77

    Article  PubMed  CAS  Google Scholar 

  • Gupta S, Gupta A (2007) Death of memory T cell subsets in humans: changes during aging. Expert Rev Clin Immunol 3:637–645

    Article  PubMed  CAS  Google Scholar 

  • Gupta S, Hacki J, Egger L, Monney L et al (2000) Apoptotic cross talk between the endoplasmic reticulum and mitochondria controlled by Bcl-2. Oncogene 19:2286–2295

    Article  Google Scholar 

  • Gupta S, Chiplunkar S, Kim C et al (2003) Effect of age on molecular signaling of TNF-α-induced apoptosis in human lymphocytes. Mech Ageing Dev 124:503–509

    Article  PubMed  CAS  Google Scholar 

  • Gupta S, Bi R, Su K et al (2004) Characterization of naïve, memory, and effector CD8+ T cells: effect of age. Exp Gerontol 39:545–550

    Article  PubMed  CAS  Google Scholar 

  • Gupta S, Bi R, Kim C et al (2005) A role of NF-κB signaling pathway in increased tumor necrosis factor-α-induced apoptosis of lymphocytes in aged humans. Cell Death Differ 12:177–183

    Article  PubMed  CAS  Google Scholar 

  • Gupta S, Bi R, Gollapudi S (2006) Differential sensitivity of naïve and memory subsets of human CD8+ T cells to TNF-α-induced apoptosis. J Clin Immunol 26:193–203

    Article  PubMed  CAS  Google Scholar 

  • Gupta S, Young T, Yel L et al (2007) Differential sensitivity of naïve and subsets of memory CD4+ and CD8+ T cells to hydrogen peroxide-induced-apoptosis. Genes Immun 8:1–10

    Article  CAS  Google Scholar 

  • Gupta S, Bi R, Su H et al (2008) CD95-mediated apoptosis in naïve, and central and effector memory subsets of CD4+ and CD8+ T cells in aged humans. Exp Gerontol 43:266–274

    Article  PubMed  CAS  Google Scholar 

  • Gupta S, Agrawal S, Su H, Gollapudi S (2018) Molecular changes associated with of TNF-α-induced apoptosis in naïve (TN) and central memory (TCM) CD8+ T cells in aging. Ageing Immun 15:2. https://doi.org/10.1186/s12979-017-0109-0

    Article  Google Scholar 

  • Hacki J, Egger L, Monney L et al (2000) Apoptotic crosstalk between the endoplasmic reticulum and mitochondria controlled by Bcl-2. Oncogene 19:2286–2295

    Article  PubMed  CAS  Google Scholar 

  • Haridas V, Darnay BG, Natrajan K et al (1998) Overexpression of the p80 TNFR leads to TNF-dependent apoptosis, nuclear factor-kappa B activation. J Immunol 160:3152–3162

    PubMed  CAS  Google Scholar 

  • Hegde R, Srinivasula SM, Zhang Z et al (2002) Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J Biol Chem 277:432–438

    Article  PubMed  CAS  Google Scholar 

  • Herndon FJ, Hsu HC, Mountz JD (1997) Increased apoptosis of CD45RO- T cells with aging. Mech Ageing Dev 194:123–134

    Article  Google Scholar 

  • Heyninck K, Beyaert R (2005) A20 inhibits NF-kB activation by dual ubiquitin-editing functions. Trends Biochem Sci 30:1–4

    Article  PubMed  CAS  Google Scholar 

  • Hsu H, Shu HB, Pan MG et al (1996) TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1signal transduction pathways. Cell 84:299–308

    Article  CAS  PubMed  Google Scholar 

  • Igney FH, Krammer PH (2002) Immune escape of tumors: apoptosis resistance and counterattack. J Leukoc Biol 71:907–920

    PubMed  CAS  Google Scholar 

  • Iwai K, Miyawaki T, Takizawa T et al (1994) Differential expression of bcl-2 and susceptibility toanti-Fas-mediated death in peripheral blood lymphocytes, monocytes and neutrophils. Blood 84:1201–1208

    PubMed  CAS  Google Scholar 

  • Karin M, Lin A (2002) NF-κB at the crossroads of life and death. Nat Immunol 3:221–227

    Article  PubMed  CAS  Google Scholar 

  • Kataoka T, Tschopp J (2004) N-terminal fragment of c-FLIP, process by caspase-8 specifically interacts with TRAF2 and induces activation of the NF-κB. Mol Cell Biol 24:2627–2636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kataoka T, Budd RC, Holler N et al (2001) Preferential localization of effector memory cells in nonlymphoid tissue. Science 291:2413–2417

    Article  Google Scholar 

  • Kaufman RJ (2002) Orchestrating the unfolded protein response in health and disease. J Clin Invest 110:1389–1298

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kischkel FC, Lawrence DA, Tinel A et al (2001) Death receptor recruitment of endogenous caspase- 10 and apoptosis initiation in the absence of caspase-8. J Biol Chem 276:46639–46646

    Article  PubMed  CAS  Google Scholar 

  • Kong SK, Fung KP, Choi YM et al (1997) Slow increase in intranuclear and cytosolic free Ca++ concentrations in L929 cells is important in tumor necrosis factor-α-mediated cell death. Oncology 54:55–62

    Article  PubMed  CAS  Google Scholar 

  • Krammer PH, Arnold R, Lavrik I (2007) Life and death in peripheral T cells. Nat Rev Immunol 7:532–542

    Article  PubMed  CAS  Google Scholar 

  • Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6:513–519

    Article  PubMed  CAS  Google Scholar 

  • Lam M, Dubyak G, Chen L et al (1994) Evidence that Bcl-2 can inhibit apoptosis induced by regulating endoplasmic reticulum-associated fluxes. Proc Nat Acad Sci USA 91:6569–6573

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Larvik I, Golks A, Krammer PH (2005) Death receptor signaling. J Cell Sci 118:265–267

    Article  CAS  Google Scholar 

  • Lechner H, Amort M, Steger MM et al (1996) Regulation of CD95 (Apo-1) expression and the induction of apoptosis of human T cells: changes in old age. Int Arch Allergy Immunol 110:238–243

    Article  PubMed  CAS  Google Scholar 

  • Lee ST, Hoeflich KP, Wasfy GW et al (1999) Bcl-2 targeted to the endoplasmic reticulum can inhibit apoptosis induced by Myc but not etoposide in rat-1 fibroblasts. Oncogene 18:3520–3528

    Article  PubMed  CAS  Google Scholar 

  • Li LY, Luo X, Wang X (2001) Endonuclease G is an apoptotic DNAase when released from mitochondria. Nature 412:95–99

    Article  PubMed  CAS  Google Scholar 

  • Liston P, Roy N, Tamai K et al (1996) Suppression of apoptosis in mammalian cells by NIAP and a related family of IAP genes. Nature 379:349–353

    Article  PubMed  CAS  Google Scholar 

  • Locksley RM, Kileen N, Lenardo MJ (2001) The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104:487–501

    Article  PubMed  CAS  Google Scholar 

  • Loeffler M, Daugas E, Susin SA et al (2001) Dominant cell death induced by extramitochondrially targeted apoptosis-inducing factor. FASEB J 15:758–767

    Article  PubMed  CAS  Google Scholar 

  • Lorenzo HK, Susin SA, Penninger J et al (1999) Apoptosis inducing factor (AIF): a physiologically old, caspases-independent effector of cell death. Cell Death Diff 6:516–524

    Article  CAS  Google Scholar 

  • Martinou J-C, Green DR (2001) Breaking the mitochondrial barrier. Nat Rev Mol Cell Biol 2:63–67

    Article  PubMed  CAS  Google Scholar 

  • Miyawaki T, Uehara T, Nabu R et al (1992) Differential expression of apoptosis-related Fas antigen on lymphocyte subpopulations in human peripheral blood. J Immunol 49:3753–3758

    Google Scholar 

  • Monteiro J, Baltiwala F, Ostrer H et al (1996) Shortened telomeres in clonally expanded CD28- CD8+ T cells imply a replicative history that is distinct from their CD28+CD8+ counterparts. J Immunol 156:3587

    PubMed  CAS  Google Scholar 

  • Nakagawa T et al (2000) Caspase-12 mediated endoplasmic reticulum-specific apoptosis and cytotoxicity by amyloid β. Nature 403:98–103

    Article  PubMed  CAS  Google Scholar 

  • Natoli G, Costanzo A, Ianni A et al (1997) Activation of SAPK/JNK by TNF receptor 1 through a noncytotoxic TRAF-2-dependent pathway. Science 275:200–203

    Article  PubMed  CAS  Google Scholar 

  • Ng FW et al (1997) p28BAP31, a Bcl-2/Bcl-xL and procaspase-8 associated protein in the endoplasmic reticulum. J Cell Biol 139:327–328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nociari MM, Telford W, Russo C (1999) Postthymic development of CD28-CD8+ T cell subset: age-associated expansion and shift from memory to naïve phenotype. J Immunol 162:3327–3335

    PubMed  CAS  Google Scholar 

  • Nutt LK et al (2002) BAX and BAK promote apoptosis by regulating endoplasmic reticular and mitochondrial Ca++ stores. J Biol Chem 277:9219–9225

    Article  PubMed  CAS  Google Scholar 

  • Opipari AW Jr, Hu HM, Yabkowitz R et al (1992) The A20 zinc finger protein protects cells from tumor necrosis factor cytotoxicity. J Biol Chem 267:12424–12427

    PubMed  CAS  Google Scholar 

  • Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4:552–564

    Article  PubMed  CAS  Google Scholar 

  • Pahlavani M, Harris MD (1996) The age-related changes in DNA binding activity of AP-1, NF-κB, and Oct-1 transcription factors in lymphocytes from rats. Age 19:45–54

    Article  CAS  Google Scholar 

  • Phelouzat MA, Arbogast A, Laforge T et al (1996) Excessive apoptosis of mature T lymphocytes is a characteristic feature of human immune senescence. Mech Ageing Dev 88:25–38

    Article  PubMed  CAS  Google Scholar 

  • Phelouzat MA, Laforge T, Abrogast A et al (1997) Susceptibility to apoptosis of T lymphocytes from elderly humans is associated with increased in vivo expression of functional fas receptors. Mech Ageing Dev 96:35–46

    Article  PubMed  CAS  Google Scholar 

  • Pimentel-Muinos FX, Seed B (1999) Regulated commitment of TNF receptor signaling: a molecular switch for death or activation. Immunity 11:783–793

    Article  PubMed  CAS  Google Scholar 

  • Ponnappan U, Zhong M, Trebilcock GU (1999) Decreased proteasome-mediated degradation in T cells from the elderly: a role in immune senescence. Cell Immunol 192:167–174

    Article  PubMed  CAS  Google Scholar 

  • Posnett DN, Sinha R, Kabak S et al (1994) Clonal populations of T cells in normal elderly humans: the cell equivalent to “benign monoclonal gammopathy”. J Exp Med 179:609–618

    Article  PubMed  CAS  Google Scholar 

  • Reed JC (1997) Double identity for protein of Bcl-2 family. Nature 387:773–778

    Article  PubMed  CAS  Google Scholar 

  • Sallusto F, Geginat J, Lanzavecchia A (2004) Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol 22:745–763

    Article  PubMed  CAS  Google Scholar 

  • Salvesen GS, Duckett CS (2004) IAP proteins: blocking the road to death’s door. Nat Rev Mol Cell Biol 3:401–410

    Article  CAS  Google Scholar 

  • Saurwein-Teissl M, Lung TL, Marx F et al (2002) Lack of antibody production following immunization in old age: association with CD8+CD28- T cell clonal expansions and an imbalance in the production of Th1 and Th2 cytokines. J Immunol 168:5893–5899

    Article  PubMed  CAS  Google Scholar 

  • Scaffidi C, Fulda S, Srinivasan A et al (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17:1675–1687

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schluns KS, Lefrancois L (2003) Cytokine control of memory T cell development and survival. Nat Rev Immunol 3:269–279

    Article  PubMed  CAS  Google Scholar 

  • Scorrano L, Oakes SA, Opferman JT et al (2003) BAX and BAX regulation of endoplasmic reticulum Ca++: a control point for apoptosis. Science 300:135–139

    Article  PubMed  CAS  Google Scholar 

  • Screaton G, Xu X-N (2000) T cell life and death signaling via TNF-receptor family members. Curr Opin Immunol 12:316–3222

    Article  PubMed  CAS  Google Scholar 

  • Shinohara S, Sawada T, Nishioka Y et al (1995) Differential expression of Fas and Bcl-2 protein on CD4+ T cells, CD8+ T cells and monocytes. Cell Immunol 163:303–308

    Article  PubMed  CAS  Google Scholar 

  • Sprick MR, Rieser E, Stahl H et al (2002) Caspase-10 is recruited to and activated at the native TRAIL and CD95 death-inducing signaling complexes in FADD-dependent manner but cannot functionally substitute caspase-8. EMBO J 21:4520–4530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suzuki Y, Imai Y, Nakayama H et al (2001) A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol Cell 8:613–621

    Article  PubMed  CAS  Google Scholar 

  • Tang G, Minemoto Y, Dibling B et al (2001) Inhibition of JNK activation through NF-κB target genes. Nature 414:313–317

    Article  PubMed  CAS  Google Scholar 

  • Tartaglia L, Pennica D, Goddel DV (1993) Ligand passing: the 75-kDa tumor necrosis factor (TNF) receptor recruits TNF for signaling by the p55-kDa TNF receptor. J Biol Chem 268: 18542–18548

    PubMed  CAS  Google Scholar 

  • Thomas B, Grell M, Pfizenmaier K et al (1990) Identification of a 60-kDa tumor necrosis factor (TNF) receptor as the major signal transducing component in TNF responses. J Exp Med 172:019–1023

    Article  Google Scholar 

  • Thome M, Tschopp J (2001) Regulation of lymphocyte proliferation and death by flip. Nat Rev Immunol 1:50–58

    Article  PubMed  CAS  Google Scholar 

  • Tomiyama H, Matsuda T, Takiguchi M (2002) Differentiation of CD8+ T cells from a memory to memory/effector phenotype. J Immunol 168:5538–5550

    Article  PubMed  CAS  Google Scholar 

  • Trebilcock GU, Ponnappan U (1996) Evidence for lowered induction of nuclear factor kappa B in activated human T lymphocytes during aging. Gerontology 42:137–146

    Article  PubMed  CAS  Google Scholar 

  • Vandenabeele P, Declercq W, Vanhaesebroeck B et al (1995) Both TNF receptors are required for TNF-mediated induction of apoptosis in PC60 cells. J Immunol 154:2904–2913

    PubMed  CAS  Google Scholar 

  • Weiss T, Grell M, Siekienski K et al (1998) TNFR80-dependent enhancement of TNFR60-induced cell death is mediated by TNFR-associated factor 2 and is specific for TNFR60. J Immunol 161:3136–3142

    PubMed  CAS  Google Scholar 

  • Weninger W, Crowley MA, Manjunath N (2001) Migratory properties of naïve, effector, and memoryCD8 (+) T cells. J Exp Med 194:953–966

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Whisler RL, Beiqing L, Chen M (1996) Age-related decreases in IL-2 production by human T cells are associated with impaired activation of nuclear transcriptional factors AP-1 and NF-AT. Cell Immunol 169:185–195

    Article  PubMed  CAS  Google Scholar 

  • Yoshino K, Kondo E, Cao L et al (1994) Inverse expression of Bcl-2 protein and Fas antigen in lymphoblasts in peripheral nodes and activated peripheral blood T and B lymphocytes. Blood 83:1856–1861

    PubMed  CAS  Google Scholar 

  • Zamzami N, Kroemer G (2001) The mitochondrion in apoptosis: how pandora’s box opens. Nat Rev Mol Cell Biol 2:67–71

    Article  PubMed  CAS  Google Scholar 

  • Zhu W, Cowie A, Wasfy GW et al (1996) Bcl-2 mutants with restricted subcellular location reveal spatially distinct pathways for apoptosis in different cell types. EMBO J 15:4130–4414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhir Gupta .

Editor information

Editors and Affiliations

Addendum

Addendum

Since submission, we have published molecular mechanisms associated with increased sensitivity of aged naïve and central memory CD8+ T cells to TNF-α-induced apoptosis (Gupta et al. 2018).

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gupta, S., Gupta, A. (2018). Molecular Mechanisms of Apoptosis in Naive and Memory Human T-Cell Subsets. In: Fulop, T., Franceschi, C., Hirokawa, K., Pawelec, G. (eds) Handbook of Immunosenescence. Springer, Cham. https://doi.org/10.1007/978-3-319-64597-1_36-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64597-1_36-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64597-1

  • Online ISBN: 978-3-319-64597-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics