Skip to main content

Temporal Lobe Epilepsy (TLE) and Neuroimaging

  • Living reference work entry
  • First Online:
Clinical Neuroradiology

Abstract

Temporal Lobe Epilepsy (TLE) comprises 30% of all epilepsies and is the most common cause of focal seizures in both adults and children, accounting for 60% of all cases of focal epilepsy evaluated in specialized centers. Nearly 30% of these patients will develop drug resistance and, of these, 30% will have negative MRIs with the routine epilepsy protocol. Detection of epileptogenic lesions is crucial in both the initial diagnosis and the presurgical assessment, and Clinical Neuroradiology plays a fundamental role in managing these patients.

The most common cause of TLE is mesial temporal sclerosis (MTS), a syndrome which displays signs of hippocampal sclerosis (HS) on MRI, accompanied by a characteristic electroclinical profile. Alternative causes of TLE include other focal lesions located in the temporal lobes, some of them undetectable with current technology (cryptogenic TLEs); there are also familiar forms associated with various genetic mutations.

Patients with refractory temporal seizures are candidates for surgical treatment. The detection of a structural lesion on MRI is related to poorer pharmacological control but better surgical results. However, when MRI is negative, other more expensive and invasive investigations must be considered. Therefore, studying these cases always requires a specific protocol and, frequently, a personalized diagnostic strategy, so the appropriate use of the different radiological techniques is essential. Structural MRI is the principal radiological technique in both diagnostic and presurgical settings, although functional imaging is required when the MRI is inconclusive. Findings from imaging should always be interpreted considering the EEG data, and patients with refractory seizures should be managed by multidisciplinary teams in specialized units.

This publication is endorsed by: European Society of Neuroradiology (www.esnr.org).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AED:

Antiepileptic drug

AHE:

Amygdalo-hippocampectomy

CA:

Cornu amonis

DG:

Dentate gyrus

FCD:

Focal cortical dysplasia

HS:

Hippocampal sclerosis

IPI:

Initial precipitating injury

LTLE:

Lateral temporal lobe epilepsy

MCD:

Malformation of cortical development

MTLE:

Mesial temporal lobe epilepsy

MTS:

Mesial temporal sclerosis

SISCOM:

Subtraction ictal SPECT co-registered to MRI

TIRDA:

Temporal intermittent rhythmic delta activity

TLE:

Temporal lobe epilepsy

References

  • Benke T, Koylu B, et al. Language lateralization in temporal lobe epilepsy: a comparison between fMRI and the Wada test. Epilepsia. 2006;47(8):1308–19.

    Article  PubMed  Google Scholar 

  • Bernardino L, Ferreira R, et al. Inflammation and neurogenesis in temporal lobe epilepsy. Curr Drug Targets CNS Neurol Disord. 2005;4(4):349–60.

    Article  CAS  PubMed  Google Scholar 

  • Bernhardt BC, Worsley KJ, et al. Longitudinal and cross-sectional analysis of atrophy in pharmacoresistant temporal lobe epilepsy. Neurology. 2009;72(20):1747–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernhardt BC, Kim H, et al. Patterns of subregional mesiotemporal disease progression in temporal lobe epilepsy. Neurology. 2013;81(21):1840–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Blumcke I, Thom M, et al. International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a task force report from the ILAE commission on diagnostic methods. Epilepsia. 2013;54(7):1315–29.

    Article  PubMed  Google Scholar 

  • Bocti C, Robitaille Y, et al. The pathological basis of temporal lobe epilepsy in childhood. Neurology. 2003;60(2):191–5.

    Article  CAS  PubMed  Google Scholar 

  • Bronen RA, Cheung G, et al. Imaging findings in hippocampal sclerosis: correlation with pathology. AJNR Am J Neuroradiol. 1991;12(5):933–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coan AC, Kubota B, et al. 3T MRI quantification of hippocampal volume and signal in mesial temporal lobe epilepsy improves detection of hippocampal sclerosis. AJNR Am J Neuroradiol. 2014;35(1):77–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen-Gadol AA, Wilhelmi BG, et al. Long-term outcome of epilepsy surgery among 399 patients with nonlesional seizure foci including mesial temporal lobe sclerosis. J Neurosurg. 2006;104(4):513–24.

    Article  PubMed  Google Scholar 

  • Elsharkawy AE, May T, et al. Long-term outcome and determinants of quality of life after temporal lobe epilepsy surgery in adults. Epilepsy Res. 2009;86(2–3):191–9.

    Article  PubMed  Google Scholar 

  • Engel J Jr, Wiebe S, et al. Practice parameter: temporal lobe and localized neocortical resections for epilepsy: report of the quality standards Subcommittee of the American Academy of neurology, in association with the American Epilepsy Society and the American Association of Neurological Surgeons. Neurology. 2003;60(4):538–47.

    Article  PubMed  Google Scholar 

  • Fuerst D, Shah J, et al. Hippocampal sclerosis is a progressive disorder: a longitudinal volumetric MRI study. Ann Neurol. 2003;53(3):413–6.

    Article  PubMed  Google Scholar 

  • Goncalves Pereira PM, Oliveira E, et al. Apparent diffusion coefficient mapping of the hippocampus and the amygdala in pharmaco-resistant temporal lobe epilepsy. AJNR Am J Neuroradiol. 2006;27(3):671–83.

    CAS  PubMed  Google Scholar 

  • Grant PE, Barkovich AJ, et al. High-resolution surface-coil MR of cortical lesions in medically refractory epilepsy: a prospective study. AJNR Am J Neuroradiol. 1997;18(2):291–301.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hammen T, Stefan H, et al. 1H-MR spectroscopy: a promising method in distinguishing subgroups in temporal lobe epilepsy? J Neurol Sci. 2003;215(1–2):21–5.

    Article  PubMed  Google Scholar 

  • Iwasaki M, Nakasato N, et al. Endfolium sclerosis in temporal lobe epilepsy diagnosed preoperatively by 3-tesla magnetic resonance imaging. J Neurosurg. 2009;110(6):1124–6.

    Article  PubMed  Google Scholar 

  • Jackson GD, Kuzniecky RI, et al. Hippocampal sclerosis without detectable hippocampal atrophy. Neurology. 1994;44(1):42–6.

    Article  CAS  PubMed  Google Scholar 

  • Knake S, Triantafyllou C, et al. 3T phased array MRI improves the presurgical evaluation in focal epilepsies: a prospective study. Neurology. 2005;65(7):1026–31.

    Article  CAS  PubMed  Google Scholar 

  • Meiners LC, van Gils A, et al. Temporal lobe epilepsy: the various MR appearances of histologically proven mesial temporal sclerosis. AJNR Am J Neuroradiol. 1994;15(8):1547–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morimoto K, Fahnestock M, et al. Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog Neurobiol. 2004;73(1):1–60.

    Article  CAS  PubMed  Google Scholar 

  • Mueller SG, Laxer KD, et al. Spectroscopic metabolic abnormalities in mTLE with and without MRI evidence for mesial temporal sclerosis using hippocampal short-TE MRSI. Epilepsia. 2003;44(7):977–80.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mueller SG, Laxer KD, et al. Voxel-based T2 relaxation rate measurements in temporal lobe epilepsy (TLE) with and without mesial temporal sclerosis. Epilepsia. 2007;48(2):220–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Brien TJ, Kilpatrick C, et al. Temporal lobe epilepsy caused by mesial temporal sclerosis and temporal neocortical lesions. A clinical and electroencephalographic study of 46 pathologically proven cases. Brain. 1996;119(Pt 6):2133–41.

    Article  PubMed  Google Scholar 

  • Scheffer IE, Berkovic S, et al. ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology. Epilepsia. 2017;58(4):512–21.

    Article  PubMed  PubMed Central  Google Scholar 

  • Taillibert S, Oppenheim C, et al. Yield of fluid-attenuated inversion recovery in drug-resistant focal epilepsy with noninformative conventional magnetic resonance imaging. Eur Neurol. 1999;41(2):64–72.

    Article  CAS  PubMed  Google Scholar 

  • Toledano R, Jimenez-Huete A, et al. Small temporal pole encephalocele: a hidden cause of “normal” MRI temporal lobe epilepsy. Epilepsia. 2016;57(5):841–51.

    Article  PubMed  Google Scholar 

  • Tsai MH, Vaughan DN, et al. Hippocampal malrotation is an anatomic variant and has no clinical significance in MRI-negative temporal lobe epilepsy. Epilepsia. 2016;57(10):1719–28.

    Article  PubMed  Google Scholar 

  • Von Oertzen J, Urbach H, et al. Standard magnetic resonance imaging is inadequate for patients with refractory focal epilepsy. J Neurol Neurosurg Psychiatry. 2002;73(6):643–7.

    Article  Google Scholar 

  • Wellmer J, Quesada CM, et al. Proposal for a magnetic resonance imaging protocol for the detection of epileptogenic lesions at early outpatient stages. Epilepsia. 2013;54(11):1977–87.

    Article  PubMed  Google Scholar 

  • Woermann FG, Barker GJ, et al. Regional changes in hippocampal T2 relaxation and volume: a quantitative magnetic resonance imaging study of hippocampal sclerosis. J Neurol Neurosurg Psychiatry. 1998;65(5):656–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Suggested Reading

  • Cendes F. Neuroimaging in investigation of patients with epilepsy. Continuum (Minneap Minn). 2013;19(3 Epilepsy):623–42.

    Google Scholar 

  • Duncan JS. Imaging in the surgical treatment of epilepsy. Nat Rev Neurol. 2010;6(10):537–50.

    Article  PubMed  Google Scholar 

  • Gillmann C, Coras R, Rossler K, Doerfler A, Uder M, Blumcke I, et al. Ultra-high field MRI of human hippocampi: morphological and multiparametric differentiation of hippocampal sclerosis subtypes. PLoS One. 2018;13(4):e0196008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Malmgren K, Thom M. Hippocampal sclerosis – origins and imaging. Epilepsia. 2012;53(Suppl 4):19–33.

    Article  CAS  PubMed  Google Scholar 

  • Muhlhofer W, Tan YL, Mueller SG, Knowlton R. MRI-negative temporal lobe epilepsy-what do we know? Epilepsia. 2017;58(5):727–42.

    Article  PubMed  Google Scholar 

  • Sidhu MK, Duncan JS, Sander JW. Neuroimaging in epilepsy. Curr Opin Neurol. 2018;31(4):371–8.

    Article  PubMed  Google Scholar 

  • Urbach H, Mast H, Egger K, Mader I. Presurgical MR Imaging in Epilepsy. Clin Neuroradiol. 2015;25(Suppl 2):151–5.

    Article  PubMed  Google Scholar 

  • Van Paesschen W. Qualitative and quantitative imaging of the hippocampus in mesial temporal lobe epilepsy with hippocampal sclerosis. Neuroimaging Clin N Am. 2004;14(3):373–400, vii.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Alvarez-Linera .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Alvarez-Linera, J. (2019). Temporal Lobe Epilepsy (TLE) and Neuroimaging. In: Barkhof, F., Jager, R., Thurnher, M., Rovira Cañellas, A. (eds) Clinical Neuroradiology. Springer, Cham. https://doi.org/10.1007/978-3-319-61423-6_50-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61423-6_50-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61423-6

  • Online ISBN: 978-3-319-61423-6

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics