Skip to main content

Modeling Temperature-Driven Ductile-to-Brittle Transition Fracture in Ferritic Steels

  • Reference work entry
  • First Online:
Handbook of Nonlocal Continuum Mechanics for Materials and Structures

Abstract

The most catastrophic brittle failure in ferritic steels is observed as their tendency of losing almost all of their toughness when the temperature drops below their ductile-to-brittle transition (DBT) temperature. There have been put large efforts in experimental and theoretical studies to clarify the controlling mechanism of this transition; however, it still remains unclear how to model accurately the coupled ductile∕brittle fracture behavior of ferritic steels in the region of ductile-to-brittle transition.

Therefore, in this study, an important attempt is made to model coupled ductile∕brittle fracture by means of blended micro-void and micro-cracks. To this end, a thermomechanical finite strain-coupled plasticity and continuum damage mechanics models which incorporate the blended effects of micro-heterogeneities in the form of micro-cracks and micro-voids are proposed.

In order to determine the proposed model material constant, a set of finite element model, where the proposed unified framework, which characterizes ductile-to-brittle fracture behavior of ferritic steels, is implemented as a VUMAT, is performed by modeling the benchmark experiment given in the experimental research published by Turba et al., then, using these models as a departure point, the fracture response of the small punch fracture testing is investigated numerically at 22C and − 196C and at which the fracture is characterized as ductile and brittle, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • CEN, Cen workshop agreement: small punch test method for metallic materials. Technical Report CWA 15627 (2006)

    Google Scholar 

  • R. Abu Al-Rub, G. Voyiadjis, On the coupling of anisotropic damage and plasticity models for ductile materials. Int. J. Solids Struct. 40, 2611–2643 (2003)

    Article  Google Scholar 

  • T. Anderson, Fracture Mechanics: Fundamentals and Applications, Taylor & Francis Group, Boca Raton (CRC Press, 2004)

    MATH  Google Scholar 

  • P. Baloso, R. Madanrao, M. Mohankumar, Determination of the ductile to brittle transition temperature of various metals. Int. J. Innov. Eng. Res. Technol. 4, 1–27 (2017)

    Google Scholar 

  • F. Basbus, M. Moreno, A. Caneiro, L. Mogni, Effect of pr-doping on structural, electrical, thermodynamic,and mechanical properties of BaCeo3 proton conductor. J. Electrochem. Soc. 161(10), 969–976 (2014)

    Article  Google Scholar 

  • R. Batra, M. Lear, Simulation of brittle and ductile fracture in an impact loaded prenotched plate. Int. J. Fract. 126, 179–203 (2004)

    Article  Google Scholar 

  • F.M. Beremin, A local criterion for cleavage fracture of a nuclear pressure vessel steel. Met. Trans. A 14A, 2277–2287 (1983)

    Article  Google Scholar 

  • J.-M. Bergheau, J.-B. Leblond, G. Perrin, A new numerical implementation of a second-gradient model for plastic porous solids, with an application to the simulation of ductile rupture tests. Comput. Method. Appl. M 268, 105–125 (2014)

    Article  MathSciNet  Google Scholar 

  • J. Besson, G. Cailletaud, J. Chaboche, S. Forest, Non-linear Mechanics of Materials (Springer, Berlin, 2010)

    Book  Google Scholar 

  • J. Chaboche, Sur l’utilisation des variables d’ètat interne pour la description de la viscoplasticitè cyclique avec endommagement, in Symposium Franco-Polonais de Rhèologie et Mècanique, 1977, pp 137–159

    Google Scholar 

  • J. Chaboche, M. Boudifa, K. Saanouni, A CDM approach of ductile damage with plastic compressibility. Int. J. Fract. 137, 51–75 (2006)

    Article  Google Scholar 

  • P. Chakraborty, B. Biner, Modeling the ductile brittle fracture transition in reactor pressure vessel steels using a cohesive zone model based approach. Int. Work. Struct. Mater. Innov. Nucl. Syst. (72):1–10 (2013)

    Google Scholar 

  • C. Chow, J. Wang, An anisotropic theory of continuum damage mechanics for ductile fracture. Eng. Fract. Mech. 27, 547–558 (1987a)

    Article  Google Scholar 

  • C. Chow, J. Wang, An anisotropic theory of elasticity for continuum damage mechanics. Int. J. Fract. 33, 3–18 (1987b)

    Article  Google Scholar 

  • C. Chu, A. Needleman, Void nucleation effects in biaxially stretched sheets. J. Eng. Mater. Technol. 102, 249–256 (1980)

    Article  Google Scholar 

  • J.P. Cordebois, F. Sidoroff, Damage induced elastic anisotropy. In: JP. Boehler, (eds), Mech. Behav. Anisotropic Solids / Comportment Mech. des Sol. Anisotropic. Springer, Dordrecht https://doi.org/10.1007/978-94-009-6827-1_44 761–774 (1982)

    Chapter  Google Scholar 

  • D. Curry, F. Knott, The relationship between fracture toughness and micro-structure in the cleavage fracture of mild steel. Mater. Sci. 10, 1–6 (1976)

    Google Scholar 

  • D. Curry, J.F. Knott, Effect of microstructure on cleavage fracture toughness in mild steel. Metal Sci. 13, 341–345 (1979)

    Article  Google Scholar 

  • F. Erdogan, G.C. Sih, On the crack extension in plates under plane loading and transverse shear. J. Bas. Eng. 85, 519–529 (1963)

    Article  Google Scholar 

  • L.B. Freund, Y.J. Lee, Observations on high strain rate crack growth based on a strip yield model. Int. J. Fract. 42, 261–276 (1990)

    Article  Google Scholar 

  • P. Germain, Q. Nguyen, P. Suquet, Continuum thermodynamics. J. Appl. Mech. 50, 1010–1020 (1983)

    Article  Google Scholar 

  • A.L. Gurson, Continuum theory of ductile rupture by void nucleation and growth: Part I- Yield Criteria and Flow Rules for Porous Ductile Media, J. Eng. Mater. Technol 99, 2–15 (1977)

    Article  Google Scholar 

  • P. Hakansson, M. Wallin, M. Ristinmaa, Thermomechanical response of non-local porous material. Int. J. Plasticity 22, 2066–2090 (2006)

    Article  Google Scholar 

  • V. Hardenacke, J. Hohe, V. Friedmann, D. Siegele, Enhancement of local approach models for assessment of cleavage fracture considering micromechanical aspects, in Proceedings of the 19th European Conference on Fracture, Kazan (72), pp. 49–72 (2012)

    Google Scholar 

  • K. Hayakawa, S. Murakami, Thermodynamical modeling of elastic-plastic damage and experimental validation of damage potential. Int. J. Damage Mech. 6, 333–362 (1997)

    Article  Google Scholar 

  • D. Hayhurst, F. Leckie, The effect of creep constitutive and damage relationships upon rupture time of solid and circular torsion bar. J. Mech. Phys. Solids 21, 431–446 (1973)

    Article  Google Scholar 

  • J. Hockett, O. Sherby, Large strain deformation of polycrystalline metals at low homologous temperatures. J. Mech. Phys. Solids 23(2), 87–98 (1975)

    Article  Google Scholar 

  • G. Hutter, Multi-scale simulation of crack propagation in the Ductile-Brittle transition region. PhD. Thesis, Faculty of Mechanical, Process and Energy Engineering, Technische Universitat Bergakademie Freiberg (2013a)

    Google Scholar 

  • G. Hütter (2013b) Multi-scale simulation of crack propagation in the ductile-brittle transition region. PhD. Thesis, Faculty of Mechanical, Process and Energy Engineering, Technische Universität Bergakademie Freiberg

    Google Scholar 

  • G. Hutter, T. Linse, S. Roth, U. Muhlich, M. Kuna, A modeling approach for the complete Ductile-to-Brittle transition region: cohesive zone in combination with a nonlocal gurson-model. Int. J. Fract. 185, 129–153 (2014)

    Article  Google Scholar 

  • R. Kabir, A. Cornec, W. Brocks, Simulation of quasi-brittle fracture of lamellar tial using the cohesive model and a stochastic approach. Comput. Mater. Sci. 39, 75–84 (2007)

    Article  Google Scholar 

  • L. Kachanov, Time of the rupture process under creep conditions. IsvAkadNaukSSR 8, 26–31 (1958)

    Google Scholar 

  • D. Krajcinovic, G. Fonseka, The continuous damage theory of brittle materials, parts 1 and 2. J. Appl. Mech. 48, 809–824 (1981)

    Article  Google Scholar 

  • F. Leckie, D. Hayhurst, Constitutive equations for creep rupture. Acta Metall. 25, 1059–1070 (1977)

    Article  Google Scholar 

  • J. Lemaitre, A continuous damage mechanics model for ductile fracture. J. Eng. Mater. Technol. 107, 83–89 (1985)

    Article  Google Scholar 

  • J. Lemaitre, R. Desmorat, Engineering Damage Mechanics (Springer, Berlin/New York, 2005)

    Google Scholar 

  • J. Lemaitre, R. Desmorat, M. Sauzay, Anisotropic damage law of evolution. Eur. J. Mech. Solids 19, 187–208 (2000)

    Article  Google Scholar 

  • T. Linse, G. Hütter, M. Kuna, Simulation of crack propagation using a gradient-enriched ductile damage model based on dilatational strain. Eng. Fract. Mech. 95, 13–28 (2012)

    Article  Google Scholar 

  • L. Malcher, F. Andrade Pires, J. Cesar de Sa, An assessment of isotropic constitutive models for ductile fracture under high and low stress triaxiality. Int. J. Plasticity 30–31, 81–115 (2012)

    Article  Google Scholar 

  • C. McAuliffe, H. Waisman, A unified model for metal failure capturing shear banding and fracture. Int. J. Plasticity 65, 131–151 (2015)

    Article  Google Scholar 

  • F. Mudry, A local approach to cleavage fracture. Nucl. Eng. Des. 105, 65–76 (1987)

    Article  Google Scholar 

  • S. Murakami, N. Ohno, A continuum theory of creep and creep damage, in 3rd Creep in Structures Symposium, Leicester, pp. 422–443 (1980)

    Google Scholar 

  • K. Nahshon, J. Hutchinson, Modification of the gurson model to shear failure. Eur. J. Mech. A/Solids 27, 1–17 (2008)

    Article  Google Scholar 

  • K. Nahshon, Z. Xue, A modified gurson model and its applications to punch-out experiments. Eng. Fract. Mech. 76, 997–1009 (2009)

    Article  Google Scholar 

  • A. Needleman, V. Tvergaard, Dynamic crack growth in a nonlocal progressively cavitating solid. Eur. J. Mech. A/Solids 17(3), 421–438 (1998)

    Article  MathSciNet  Google Scholar 

  • A. Needleman, V. Tvergaard, Numerical modeling of the ductile-brittle transition. Int. J. Fract. 101, 73–97 (2000)

    Article  Google Scholar 

  • T. Pardoen, J.W. Hutchinson, An extended model for void growth and coalescence, J. Mech. Phys. Solids 48(12), 2467–2512 (2000)

    Article  Google Scholar 

  • Y. Rabotnov, Creep Problems in Structural Members (North-Holland, Amsterdam, 1969)

    MATH  Google Scholar 

  • S. Ramaswamy, N. Aravas, Finite element implementation of gradient plasticity models. Part I: gradient-dependent yield functions. Comput. Methods Appl. Mech. Eng. 163, 33–53 (1998)

    MATH  Google Scholar 

  • S. Renevey, S. Carassou, B. Marini, C. Eripret, A. Pineau, Ductile – brittle transition of ferritic steels modelled by the local approach to fracture. JOURNAL DE PHYSIQUE IV Colloque C6, supplBment au Journal de Physique III 6, 343–352 (1996)

    Google Scholar 

  • R. Ritchie, J. Knott, J. Rice, On the relationship between critical tensile stress and fracture toughness in mild steel. J. Mech. Phys. Solids 21, 395–410 (1973)

    Article  Google Scholar 

  • F. Rivalin, A. Pineau, M. Di Fant, J. Besson, Ductile tearing of Pipeline steel wide plates-I: Dynamics and quasi static experiments. Engng Fract. Mech 68(3), 329–345 (2001a)

    Article  Google Scholar 

  • F. Rivalin, J. Besson, M. Di Fant, A. Pineau, Ductile tearing of Pipeline steel wide plates-II: Modeling of in-plane crack propagation. Engng Fract. Mech 68(3), 347–364 (2001b)

    Article  Google Scholar 

  • G. Rousselier, Ductile fracture models and their potential in local approach of fracture. Nuc. Eng. Des. 105, 97–111 (1987)

    Article  Google Scholar 

  • M. Samal, M. Seidenfuss, E. Roos, B.K. Dutta, H.S. Kushwaha, A mesh independent GTN damage model and its application in simulation of ductile fracture behaviour. ASME 2008 Pressure vessels and piping conference volume 3: Design and Analysi, Chicago, Illinois, USA, July 27–31 pp. 187–193 (2008)

    Google Scholar 

  • I. Scheider, W. Brocks, Simulation of cup-cone fracture using the cohesive model. Eng. Fract. Mech. 70, 1943–1961 (2003)

    Article  Google Scholar 

  • A. Shterenlikht, 3D CAFE modeling of transitional ductile-brittle fracture in steels. PhD. Thesis, Department of Mechanical Engineering, University of Sheffield (2003)

    Google Scholar 

  • J. Skrzypek, A. Ganczarski, F. Rustichelli, H. Egner, Advanced Materials and Structures for Extreme Operating Conditions (Springer, Berlin, 2008)

    Google Scholar 

  • C. Soyarslan, I. Turtuk, B. Deliktas, S. Bargmann, A thermomechanically consistent constitutive theory for modeling micro-void and/or micro-crack driven failure in metals at finite strains. Int. J. Appl. Mech. 8, 1–20 (2016)

    Article  Google Scholar 

  • S. Sutar, G. Kale, S. Merad, Analysis of ductile-to-brittle transition temperature of mild steel. Int. J. Innov. Eng. Res. Technol. 1, 1–10 (2014)

    Google Scholar 

  • B. Tanguy, J. Besson, R. Piques, A. Pineau, Ductile to brittle transition of an a508 steel characterized by charpy impact test, Part I. Experimental results. Eng. Fract. Mech. 72, 49–72 (2007)

    Article  Google Scholar 

  • G. Taylor, H. Quinney, The latent energy remaining in a metal after cold working. Proc. R. Soc. Lond. A143, 307–326 (1934)

    Article  Google Scholar 

  • K. Turba, B. Gulcimen, Y. Li, D. Blagoeva, P. Hähner, R. Hurst, Introduction of a new notched specimen geometry to determine fracture properties by small punch testing. Eng. Fract. Mech. 78(16), 2826–2833 (2011)

    Article  Google Scholar 

  • I. Turtuk, B. Deliktas, Coupled porous plasticity – continuum damage mechanics approaches in modelling temperature driven ductile-to-brittle transition fracture in ferritic steels. Int. J. Plasticity 77, 246–261 (2016)

    Article  Google Scholar 

  • V. Tvergaard, Influence of voids on shear band instabilities under plane strain conditions. Int. J. Fract. 17, 389–407 (1981)

    Article  Google Scholar 

  • V. Tvergaard, On localization in ductile materials containing spherical voids. Int. J. Fract. 18, 237–252 (1982a)

    Google Scholar 

  • V. Tvergaard, Influence of void nucleation on ductile shear fracture at a free surface. J. Mech. Phys. Solids 30, 399–425 (1982b)

    Article  Google Scholar 

  • V. Tvergaard, A. Needleman, Analysis of the cup-cone fracture in a round tensile bar. Acta Metall. 32, 157–169 (1984)

    Article  Google Scholar 

  • W. Weibull, A statistical distribution function of wide applicability. Jour. App. Mech 18, 293–297 (1953)

    MATH  Google Scholar 

  • J. Wen, Y. Huang, K. Hwang, C. Liu, M. Li, The modified gurson model accounting for the void size effect. Int. J. Plasticity 21, 381–395 (2005)

    Article  Google Scholar 

  • L. Xia, C. Fong Shih, A fracture model applied to the ductile/brittle regime. Journal de Physique IV 6, 363–372 (1996)

    Article  Google Scholar 

  • Z.L. Zhang, C. Thaulow, J. Ødegard, A complete gurson model approach for ductile fracture, Eng. Fract. Mech 67(2), 155–168 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babür Deliktaş .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Deliktaş, B., Turtuk, I.C., Voyiadjis, G.Z. (2019). Modeling Temperature-Driven Ductile-to-Brittle Transition Fracture in Ferritic Steels. In: Voyiadjis, G. (eds) Handbook of Nonlocal Continuum Mechanics for Materials and Structures. Springer, Cham. https://doi.org/10.1007/978-3-319-58729-5_6

Download citation

Publish with us

Policies and ethics