Skip to main content

Effect of Epigenetic Differences in Identical Twins

  • Reference work entry
  • First Online:
Book cover Handbook of Nutrition, Diet, and Epigenetics

Abstract

Monozygotic (MZ) twins are an ideal model for scientific research since many of the confounding factors associated with most human studies, such as DNA sequence and environment, can be eliminated. Although MZ twins are genetically identical, they typically display some level of phenotypic discordance. With the emergence of the study of epigenetics, scientists have hypothesized that differences in epigenetic marks may account for some phenotypic discordance in MZ twins. Comparative analysis of the epigenomes of MZ twins discordant for disease, including cancer, obesity, and diabetes, has led to the identification of epigenetic modifications, including changes in DNA methylation, histone marks, and differences in microRNA expression, that may contribute to the disease phenotype. Following identification of these changes, researchers are working to elucidate both the cause and the potential mechanism by which these modifications may lead to disease. Understanding how epigenetic modifications drive changes in phenotype using MZ twin studies may serve as a powerful tool in identifying new experimental opportunities in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 579.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer’s disease

AML:

Acute myeloid leukemia

ART:

Assisted reproductive technology

BPA:

Bisphenol A

BWS:

Beckwith-Wiedemann syndrome

CNV:

Copy number variation

CRF:

Corticotrophin-releasing factor

CRISPR:

Clustered regularly interspaced short palindromic repeat

DZ:

Dizygotic

ICM:

Inner cell mass

MZ:

Monozygotic

SNP:

Single nucleotide polymorphism

SZ:

Schizophrenia

TALEN:

Transcription activator-like effector nuclease

T1D:

Type 1 diabetes

T2D:

Type 2 diabetes

ZFN:

Zinc finger nuclease

References

  • Almeida MI, Reis RM et al (2011) MicroRNA history: discovery, recent applications, and next frontiers. Mutat Res 717(1–2):1–8

    Article  CAS  Google Scholar 

  • Bailey A, et al (1995) Autism as a strongly genetic disorder: evidence from a British twin study. Psychological medicine 25(1):63–77

    Google Scholar 

  • Barres R, Yan J et al (2012) Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab 15(3):405–411

    Article  CAS  Google Scholar 

  • Bennett CM, Boye E et al (2008) Female monozygotic twins discordant for hemophilia a due to nonrandom X-chromosome inactivation. Am J Hematol 83(10):778–780

    Article  CAS  Google Scholar 

  • Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16(1):6–21

    Article  CAS  Google Scholar 

  • Bjornsson HT, Sigurdsson MI et al (2008) Intra-individual change over time in DNA methylation with familial clustering. JAMA 299(24):2877–2883

    Article  CAS  Google Scholar 

  • Bliek J, Verde G et al (2009) Hypomethylation at multiple maternally methylated imprinted regions including PLAGL1 and GNAS loci in Beckwith-Wiedemann syndrome. Eur J Hum Genet: EJHG 17(5):611–619

    Article  CAS  Google Scholar 

  • Boks MP, Derks EM et al (2009) The relationship of DNA methylation with age, gender and genotype in twins and healthy controls. PLoS One 4(8):e6767

    Article  Google Scholar 

  • Boomsma D, Busjahn A et al (2002) Classical twin studies and beyond. Nat Rev Genet 3(11):872–882

    Article  CAS  Google Scholar 

  • Bouchard TJ Jr, Heston L et al (1981) The Minnesota study of twins reared apart: project description and sample results in the developmental domain. Prog Clin Biol Res 69 Pt B:227–233

    PubMed  Google Scholar 

  • Breitling LP, Yang R et al (2011) Tobacco-smoking-related differential DNA methylation: 27K discovery and replication. Am J Hum Genet 88(4):450–457

    Article  CAS  Google Scholar 

  • Brons C, Jacobsen S et al (2010) Deoxyribonucleic acid methylation and gene expression of PPARGC1A in human muscle is influenced by high-fat overfeeding in a birth-weight-dependent manner. J Clin Endocrinol Metab 95(6):3048–3056

    Article  Google Scholar 

  • Cardno AG, Gottesman II (2000) Twin studies of schizophrenia: from bow-and-arrow concordances to star wars Mx and functional genomics. Am J Med Genet 97(1):12–17

    Google Scholar 

  • Dalgaard K, Landgraf K et al (2016) Trim28 Haploinsufficiency triggers bi-stable epigenetic obesity. Cell 164(3):353–364

    Article  CAS  Google Scholar 

  • Desai M, Jellyman JK et al (2015) Epigenomics, gestational programming and risk of metabolic syndrome. Int J Obes 39(4):633–641

    Article  CAS  Google Scholar 

  • Dick KJ, Nelson CP et al (2014) DNA methylation and body-mass index: a genome-wide analysis. Lancet 383(9933):1990–1998

    Article  CAS  Google Scholar 

  • Dolinoy DC, Huang D et al (2007a) Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci U S A 104(32):13056–13061

    Article  CAS  Google Scholar 

  • Dolinoy DC, Weidman JR et al (2007b) Epigenetic gene regulation: linking early developmental environment to adult disease. Reprod Toxicol 23(3):297–307

    Article  CAS  Google Scholar 

  • Durand CM, Betancur C et al (2007) Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet 39(1):25–27

    Article  CAS  Google Scholar 

  • Enokida H, Shiina H et al (2006) Smoking influences aberrant CpG hypermethylation of multiple genes in human prostate carcinoma. Cancer 106(1):79–86

    Article  CAS  Google Scholar 

  • Fisher HL, Murphy TM et al (2015) Methylomic analysis of monozygotic twins discordant for childhood psychotic symptoms. Epigenetics 10(11):1014–1023

    Article  Google Scholar 

  • Fraga MF, Ballestar E et al (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A 102(30):10604–10609

    Article  CAS  Google Scholar 

  • Galetzka D, Hansmann T et al (2012) Monozygotic twins discordant for constitutive BRCA1 promoter methylation, childhood cancer and secondary cancer. Epigenetics: Official Journal of the DNA Methylation Society 7(1):47–54

    Article  CAS  Google Scholar 

  • Gatz M, Reynolds CA, et al (2006) Role of genes and environments for explaining alzheimer disease. Archives of General Psychiatry 63(2):168

    Google Scholar 

  • Gringras P, Chen W (2001) Mechanisms for differences in monozygous twins. Early Hum Dev 64(2):105–117

    Article  CAS  Google Scholar 

  • Hall JG (2003) Twinning. Lancet 362(9385):735–743

    Article  Google Scholar 

  • Heyn H, Carmona FJ et al (2013) DNA methylation profiling in breast cancer discordant identical twins identifies DOK7 as novel epigenetic biomarker. Carcinogenesis 34(1):102–108

    Article  CAS  Google Scholar 

  • Jacobsen SC, Brons C et al (2012) Effects of short-term high-fat overfeeding on genome-wide DNA methylation in the skeletal muscle of healthy young men. Diabetologia 55(12):3341–3349

    Article  CAS  Google Scholar 

  • Kaminsky ZA, Tang T et al (2009) DNA methylation profiles in monozygotic and dizygotic twins. Nat Genet 41(2):240–245

    Article  CAS  Google Scholar 

  • Kato T, Iwamoto K et al (2005) Genetic or epigenetic difference causing discordance between monozygotic twins as a clue to molecular basis of mental disorders. Mol Psychiatry 10(7):622–630

    Article  CAS  Google Scholar 

  • Kyvik KO, et al (1995). Concordance rates of insulin dependent diabetes mellitus: a population based study of young Danish twins. BMJ 311(7010): 913–917

    Google Scholar 

  • Leger AJ, Jacques SL et al (2006) Blocking the protease-activated receptor 1-4 heterodimer in platelet-mediated thrombosis. Circulation 113(9):1244–1254

    Article  CAS  Google Scholar 

  • Levesque ML, Casey KF et al (2014) Genome-wide DNA methylation variability in adolescent monozygotic twins followed since birth. Epigenetics 9(10):1410–1421

    Article  Google Scholar 

  • Loke YJ, Galati JC et al (2013) Association of maternal and nutrient supply line factors with DNA methylation at the imprinted IGF2/H19 locus in multiple tissues of newborn twins. Epigenetics 8(10):1069–1079

    Article  CAS  Google Scholar 

  • Maes HH, Neale MC et al (1997) Genetic and environmental factors in relative body weight and human adiposity. Behav Genet 27(4):325–351

    Article  CAS  Google Scholar 

  • Marsit CJ, Houseman EA et al (2007) Promoter hypermethylation is associated with current smoking, age, gender and survival in bladder cancer. Carcinogenesis 28(8):1745–1751

    Article  CAS  Google Scholar 

  • Meda F, Folci M et al (2011) The epigenetics of autoimmunity. Cell Mol Immunol 8(3):226–236

    Article  CAS  Google Scholar 

  • Momi N, Kaur S et al (2014) Smoking and microRNA dysregulation: a cancerous combination. Trends Mol Med 20(1):36–47

    Article  CAS  Google Scholar 

  • Mueller BR, Bale TL (2008) Sex-specific programming of offspring emotionality after stress early in pregnancy. J Neurosci 28(36):9055–9065

    Article  CAS  Google Scholar 

  • Niculescu MD, Zeisel SH (2002) Diet, methyl donors and DNA methylation: interactions between dietary folate, methionine and choline. J Nutr 132(8 Suppl):2333S–2335S

    Article  CAS  Google Scholar 

  • Nistico L (2006) Concordance, disease progression, and heritability of coeliac disease in Italian twins. Gut 55(6):803–808

    Google Scholar 

  • Nitert MD, Dayeh T et al (2012) Impact of an exercise intervention on DNA methylation in skeletal muscle from first-degree relatives of patients with type 2 diabetes. Diabetes 61(12):3322–3332

    Article  CAS  Google Scholar 

  • Oh G, Petronis A (2008) Environmental studies of schizophrenia through the prism of epigenetics. Schizophr Bull 34(6):1122–1129

    Article  Google Scholar 

  • Petronis A (2006) Epigenetics and twins: three variations on the theme. Trends Genet 22(7):347–350

    Article  CAS  Google Scholar 

  • Petronis A, Gottesman II et al (2003) Monozygotic twins exhibit numerous epigenetic differences: clues to twin discordance? Schizophr Bull 29(1):169–178

    Article  Google Scholar 

  • Polanczyk G, Moffitt TE et al (2010) Etiological and clinical features of childhood psychotic symptoms: results from a birth cohort. Arch Gen Psychiatry 67(4):328–338

    Article  Google Scholar 

  • Poulsen P, Kyvik KO et al (1999) Heritability of type II (non-insulin-dependent) diabetes mellitus and abnormal glucose tolerance – a population-based twin study. Diabetologia 42(2):139–145

    Article  CAS  Google Scholar 

  • Rakyan VK, Beyan H et al (2011) Identification of type 1 diabetes-associated DNA methylation variable positions that precede disease diagnosis. PLoS Genet 7(9):e1002300

    Article  CAS  Google Scholar 

  • Redondo MJ, Yu L et al (2001) Heterogeneity of type I diabetes: analysis of monozygotic twins in great Britain and the United States. Diabetologia 44(3):354–362

    Article  CAS  Google Scholar 

  • Ribel-Madsen R, Fraga MF et al (2012) Genome-wide analysis of DNA methylation differences in muscle and fat from monozygotic twins discordant for type 2 diabetes. PLoS One 7(12):e51302

    Article  CAS  Google Scholar 

  • Roos L, van Dongen J et al (2016) Integrative DNA methylome analysis of pan-cancer biomarkers in cancer discordant monozygotic twin-pairs. Clin Epigenetics 8:7

    Article  Google Scholar 

  • Sarachana T, Zhou R et al (2010) Investigation of post-transcriptional gene regulatory networks associated with autism spectrum disorders by microRNA expression profiling of lymphoblastoid cell lines. Genome Med 2(4):23

    Article  Google Scholar 

  • Satta R, Maloku E et al (2008) Nicotine decreases DNA methyltransferase 1 expression and glutamic acid decarboxylase 67 promoter methylation in GABAergic interneurons. Proc Natl Acad Sci U S A 105(42):16356–16361

    Article  CAS  Google Scholar 

  • Shur N (2009) The genetics of twinning: from splitting eggs to breaking paradigms. Am J Med Genet C Semin Med Genet 151C(2):105–109

    Article  Google Scholar 

  • Singh SM, Murphy B et al (2002) Epigenetic contributors to the discordance of monozygotic twins. Clin Genet 62(2):97–103

    Article  CAS  Google Scholar 

  • Skinner MK, Manikkam M et al (2011) Epigenetic transgenerational actions of endocrine disruptors. Reprod Toxicol 31(3):337–343

    Article  CAS  Google Scholar 

  • Tagliani-Ribeiro A, Oliveira M et al (2011) Twin town in South Brazil: a Nazi’s experiment or a genetic founder effect? PLoS One 6(6):e20328

    Article  CAS  Google Scholar 

  • Ushijima T, Watanabe N et al (2003) Fidelity of the methylation pattern and its variation in the genome. Genome Res 13(5):868–874

    Article  CAS  Google Scholar 

  • Vaquero A, Loyola A et al (2003) The constantly changing face of chromatin. Sci Aging Knowl Environ: SAGE KE 2003(14):RE4

    Article  Google Scholar 

  • Weaver IC, Cervoni N et al (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7(8):847–854

    Article  CAS  Google Scholar 

  • Weinstock M (2008) The long-term behavioural consequences of prenatal stress. Neurosci Biobehav Rev 32(6):1073–1086

    Article  CAS  Google Scholar 

  • Whitelaw NC, Chong S et al (2010) Reduced levels of two modifiers of epigenetic gene silencing, Dnmt3a and Trim28, cause increased phenotypic noise. Genome Biol 11(11):R111

    Article  CAS  Google Scholar 

  • Wong AH, Gottesman II et al (2005) Phenotypic differences in genetically identical organisms: the epigenetic perspective. Hum Mol Genet 14 Spec No 1:R11–R18

    Article  Google Scholar 

  • Wong DW, Leung EL et al (2009) The EML4-ALK fusion gene is involved in various histologic types of lung cancers from nonsmokers with wild-type EGFR and KRAS. Cancer 115(8):1723–1733

    Article  CAS  Google Scholar 

  • Wong CC, Caspi A et al (2010) A longitudinal study of epigenetic variation in twins. Epigenetics 5(6):516–526

    Article  CAS  Google Scholar 

  • Zhang J, Fang Z et al (2008) Fragile X-related proteins regulate mammalian circadian behavioral rhythms. Am J Hum Genet 83(1):43–52

    Article  CAS  Google Scholar 

  • Zhu X, He F et al (2014) Identification of functional cooperative mutations of SETD2 in human acute leukemia. Nat Genet 46(3):287–293

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tara L. Hogenson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Schwab, T.L., Hogenson, T.L. (2019). Effect of Epigenetic Differences in Identical Twins. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-55530-0_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55530-0_65

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55529-4

  • Online ISBN: 978-3-319-55530-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics